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In this talk, R is an integral domain with fraction field K ̸= R. We
assume that R is atomic, that is, each nonzero nonunit in R is a
finite product of atoms (irreducible elements).



On general Zaks domains

The domain R is a Zaks domain if there exists a factorial domain
D containing R such that each irreducible element of R remains
irreducible in D.
A Zaks domain is half-factorial, but the converse is not true in
general. Recall that the domain R is half-factorial if all
factorizations of a nonzero element of R into irreducible elements
have the same length.



Reduction to overrings
R is a Zaks domain if and only if R has a factorial overring D such
that R ⊆

Irr
D (that is, each irreducible element of R remains

irreducible in D).
Hence a polynomial extension R[X] is a Zaks domain if and only
there exists a factorial overring D of R and a factorial overring T
of D[X] such that R[X] ⊆

Irr
T . Here X is a set of independent

indeterminates, not necessarily finite.

Remark 1.
If R is not factorial, then T ̸= D[X].

Indeed, R is not factorial if and only if there exist two atoms a, b in
R that are associated in D, but not in R. Hence, the polynomial
aX + b is irreducible in R[X ], but not in D[X ].
Actually, this example shows that T [X ] is not a well-centered
extension of R[X ], which is a necessary condition for having
R[X ] ⊆

Irr
D[X ]. Recall that a domain D containing R is a

well-centered extension of R if D = U(D)R.



A characterization of Zaks domains
Recall that an element c of R is reducible if c is a product of two
nonunits in R.

Theorem 2.
Let D be a factorial overring of R. The following three conditions
are equivalent:

1. R ⊆
Irr

D.

2. The following three conditions are satisfied:

2.1 D is a well-centered extension of R.
2.2 R ⊆

U
D (that is, each non-invertible element of R is

non-invertible also in D).
2.3 If c is reducible in R, and u ∈ D, uc ∈ R, then uc is reducible

in R.

3. R is half-factorial, and for each t ∈ D•, we have
ℓR(t) = 0 ⇔ t ∈ U(D).

Hence R is Zaks domain if and only if there exists an overring D of
R satisfying the above conditions.



Remark

Theorem 2.3 shows what additional property one can add to
half-factoriality in order to obtain the Zaks property. There are
also other possibilities.



A characterization of Zaks polynomial rings
Using the characterization of Zaks domains, we obtain:

Theorem 3.
Let R[X] be a proper polynomial extension of a domain R with
field of fractions K, and let D be a factorial overring of R such
that R ⊆

Irr
D. Set W = {g ∈ Irr(D[X]) | (∀u ∈ U(D)) ug /∈ R[X]}.

Let S be the multiplicative subset of D[X] generated by the set
W , and let SatD[X ](S) be the saturation of S in R. The following
three conditions are equivalent:

1. R[X] ⊆
Irr

D[X]S .

2. 2.1 R ⊆
Irr

D.

2.2 If f is a reducible polynomial of positive degree in R[X], and
φ ∈ S, then f φ is reducible in R[X].

3. R[X] is half-factorial, and (the saturation of S),
SatD[X ](S) = {f ∈ R[X] | ℓR[X](f ) = 0}.

Hence, R[X] is a Zaks domain if and only if there exists a factorial
domain D as above.



Remark

Here is a possible reformulation of Theorem 3.2:
The following three conditions are satisfied:

1. D is a well-centered extension of R.

2. R ⊆
U
D (that is, each non-invertible element of R is

non-invertible also in D).

3. If f is a reducible polynomial (not necessarily of positive
degree) in R[X], and φ ∈ S , then f φ is reducible in R[X].



Zaks not-factorial polynomial rings

We show that all polynomial extensions of a local one-dimensional
Mori domain obtained by Valentina Barucci in a more general
setting, are Mori and Zaks, but not factorial. However, Zaks
proper polynomial extensions of Krull domains are factorial. It is
not clear if this is true more generally for completely integrally
closed domains. Recall that a domain is Mori if it satisfies the
ascending chain condition on integral divisorial ideals. A domain is
Krull if and only is both completely integrally closed and Mori.



Lemma 4.
Let A ⊆ B be domains such that A is integrally closed in B. Then
all factors in B[X] of a polynomial f ∈ A[X] of positive degree
belong to A[X] in each of the following two cases:

1. f is a monic polynomial in A[X ] (so f is a polynomial in one
indeterminate).

2. A,B are fields.



Proof.

1. Let g be a monic divisor of f in R[X ] of positive degree.
Since f is a monic polynomial in R[X ] and R is integrally
closed, all roots of f , so also of g in a splitting field of f over
B, belong to A. Hence also the coefficients of g belong to A,
so g ∈ A[X ]. Since f is irreducible in R[X ], it follows that
f = g , so condition (2) holds.

2. We may assume that X is finite: X = {X1, . . . ,Xn}. We
proceed by induction on n. If n > 1, then, by changing
indeterminates, we may assume that f is a polynomial in
A[X1, . . . ,Xn−1][Xn] with invertible leading coefficient, so we
may apply item (1).



Proposition 5.

Let R ⊆ D be local domains with the same maximal ideal M,
where D is factorial. Let D[X] be a proper polynomial extension of
D. Set

S = {g ∈ (D[X] | (∀u ∈ U(D)) ug /∈ R[X]}.

The following two conditions are equivalent:

1. S is a multiplicatively closed subset of R[X], and
R[X] ⊆

Irr
D[X]S .

2. R is integrally integrally closed (equivalently, the field R/M is
algebraically closed in D/M).

Hence all polynomial extensions of R are Zaks domains,
equivalently half-factorial, if and only if R is integrally closed.



Proof: (1) ⇒ (2)

Since R[X] ⊆
Irr

D[X]S , we see that R[X] is half-factorial. By

Coykendall’s Theorem, we obtain that R is integrally closed. Since
D is an overring of R, we see that R is integrally closed in D, and
this holds if and only if the field R/M is algebraically closed in
D/M.



Proof: (2) ⇒ (1)

Let g1, g2 ∈ S , so g1, g2 /∈ R[X]. Assume that g1g2 /∈ S , so
ug1g2 ∈ R[X] for some u ∈ U(D). Since ug1 ∈ S , replacing g1 by
ug1, we may assume that g1g2 ∈ R[X]. Since g1 /∈ R[X], we obtain
that g1 /∈ M. Also, g1 /∈ U(D) = D \M, so g1 /∈ D. Applying
Lemma 2 to the fields (R/M)[X] ⊆ (D/M)[X], we obtain that
g1 ∈ R[X], a contradiction. Hence S is a multiplicative subset of
D[X].
Let f be a reducible polynomial in R[X], thus f = f1f2, where f1, f2
are noninvertible polynomials in R[X]. Let φ ∈ S . We have to
show that if f1f2φ ∈ R[X], then f1f2φ is reducible in R[X]. If, e.g.,
f2 ∈ M[R][X], then f = f1(f2φ) is reducible in R[X]. We now
assume that f1, f2 /∈ MR[X ]. Hence f1, f2 have unit content in R,
so the content of φ over R (the submodule of D over R generated
by the coefficients of φ) is contained in R, implying that φ ∈ R[X],
a contradiction.



Example

Let F ⫋ L be fields such that F is uncountable and algebraically
closed in L. Let t be an indeterminate over L. Set
D = L[t](t),M = L[t](t), and R = F +M. Then all polynomial
extensions of R are Mori and Zaks.
Indeed, by Proposition 5, all polynomial extensions of R are Zaks.
It is known that R = F +M is Mori, and since the field F is
uncountable, it follows that all polynomial extensions of R are
Mori. It is possible that the assumption that F is uncountable, is
superfluous.



The property of R[X ] being integrally closed in
terms of half-factoriality, for R half-factorial

We present a simple proof to an extension of Coykendall’s
Theorem that a half-factorial domain is integrally closed. Recall
that a polynomial in R[X ] is primitive if its content over R is not
contained in a proper principal ideal of R[X ].
The next theorem is well-known.



Theorem 6.
Let R be a half-factorial domain with fraction field K. The
following conditions are equivalent:

1. R is integrally closed.

2. Each irreducible monic polynomial R[X ] of positive degree is
irreducible also in K [X ].

3. Each irreducible monic polynomial in R[X ] of positive degree
is prime in R[X ].

4. Each monic polynomial in R[X ] of a positive degree is a
product of prime polynomials.



Proof

(1) ⇒ (2) This follows from Lemma 4.1.
(2) ⇒ (1) Let c ∈ R (the integral closure of R). The minimal
polynomial g of c over R is irreducible in R[X ], so also in K [X ].
Thus g = X − c , so c ∈ R, and R is integrally.
(2) ⇒ (3) Assume that f ∈ Irr(R[X ]) is monic of positive degree.
Let g , h be polynomials in R[X ] such that f | gh in R[X ]. Since f
is irreducible in K [X ], we see that f is prime in K [X ], so we may
assume that f | g in K [X ]. Since f is monic, when dividing f by g
with remainder in R[X ] and in K [X ], we obtain the same
remainder. It follows that f | g in R[X ], so f is prime in R[X ].
(3) ⇒ (2) Clear.
(3) ⇔ (4) Clear.



Theorem 7.
Let R be a half-factorial domain. The following conditions are
equivalent:

1. R is integrally closed.

2. The multiplicative monoid consisting of monic polynomials, is
half-factorial (that is, all factorizations into atoms of a monic
polynomial in R[X ] have the same length).



Proof
(1) ⇒ (2) By Theorem 6 [(1) ⇒ (4)], each monic polynomial in
f ∈ R[X ] of positive degree is a product of prime polynomials, so
any two factorizations of f are identical (up to order).

(2) ⇒ (1) Assume that R is not integrally closed. By Theorem 6,
there exists a polynomial f of minimal degree among the monic
polynomials of positive degree that are irreducible in R[X ], but not
in K [X ]. Let f = g1g2 . . . gn, where n > 1, and gi are irreducible
monic polynomials in K [X ]. For each i , choose ai ∈ R•, such that
aigi ∈ R[X ] with ℓR(ai ) minimal. For all i , the polynomial aigi is
primitive in R[X ]. Since aigi is irreducible in K [X ], it follows that
aigi is irreducible in R[X ]. If for some i , we have ai ∈ U(R), then
gi ∈ R[X ], and f

gi
∈ R[X ]. If n > 2, then f

gi
is reducible in R[X ],

contradicting the minimality of deg f . If n = 2 we get the
contradiction that f = gi

f
gi

is reducible in R[X ]. It follows that all

ai are non-units in R, so (
∏n

i=1 ai )f has a factorization of length
≥ n + 1. On the other hand (

∏n
i=1 ai )f is equal to

∏n
i=1 aigi ,

which is a factorization of length n.



Remark

In Theorem 6 and 7, we may replace monic polynomials by
polynomials with invertible initial coefficients, where the initial
coefficient of a polynomial f is f (0). Indeed, we use reciprocity.
Recall that the reciprocal to a polynomial anX

n + · · ·+ a0, where
a0 and an are nonzero, is the polynomial a0X

n + · · ·+ an. For
example, we may conclude from Theorem 7 for R half-factorial,
that R is integrally closed ⇔ the multiplicative monoid consisting
of polynomials with invertible initial coefficients, is half-factorial .
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