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0. Algebroid branches and curves

An algebroid branch is a one-dimensional domain of the form

R = k[[x1, . . . , xn]]/P

(P prime ideal, k algebraically closed).

Q(R) ∼= k((t)) and R ∼= k[[t]] (and it is a finite R-module).

If v is the usual valuation on k((t)), then v(R \ {0}) is a

numerical semigroup. i.e. a submonoid S ⊆ (N,+) s.t.

|N \ S| <∞ .

S = 〈g1, . . . , gν〉 = {
∑
i nigi : ni ∈ N}, where GCD(g1, . . . , gν) = 1.



An algebroid curve is a one-dimensional, reduced ring of the form

R = k[[x1, . . . , xn]]/P1 ∩ · · · ∩ Ph
(Pi height n− 1 primes, k algebraically closed).

Ri = k[[x1, . . . , xn]]/Pi is the i-th algebroid branch of R.

Q(R) ∼= k((t1))× · · · × k((th)) and R ∼= k[[t1]]× · · · × k[[th]].

Remark. k[[ti]] = (R/Pi).

If we set v(r) = (v1(r1), . . . , vh(rh)), with vi the usual valuation

on k((ti)), then the value semigroup is:

S = v(R) := {v(r) : r ∈ R, r non-zero divisor} ⊂ Nh.

Remark. For plane curves we have rings of the form k[[X,Y ]]/(F ).

If F is irreducible we have a branch.



1. Value semigroups and equisingularity of plane curves.

Value semigroup is a possible criterion of equisingularity for al-
gebroid branches or curves.

Two plane algebroid branches are formally equivalent (i.e. they
have the same multiplicity sequence)⇔ they have the same value
semigroup.
In case k = C two plane analytic branches are topologically equiv-
alent ⇔ are formally equivalent [Zariski].

Notice that any algebroid (resp analytic) plane branch is formally
(resp. topologically) equivalent to an algebraic branch (i.e. F is
a polynomial) [Samuel]

Multiplicity sequences and value semigroups of plane algebroid
branches have been charachterized [Zariski, Bertin-Carbonne,
Brezinsky, Angermüller].



As in the one branch case,

two plane algebroid curves are formally equivalent ⇔
they have the same value semigroup [Waldi].

Is it possible to characterize value semigroups of plane curves?

Remark. Any numerical semigroup is the value semigroup of a

branch (e.g. monomial curves). But there is no characterization

of value semigroups of algebroid curves.

Remark. For non-plane singularities the different criteria are no

more equivalent.



2. Why to study value semigroups? One branch case

Notation: m max ideal of R, S = v(R), M = S \ {0},
f(S) =max(N \ S) (Frobenius nb.), n(S) = |{s ∈ S | s < f(S)},

Proposition. If I ⊇ J are two fractional ideals, then λR(I/J) =

|v(I) \ v(J)|.

Using this fact we can read numerically many invariants and

properties of the ring:

• degree of singularity: λR(R̄/R) = f(S) + 1− n(S)

(= number of holes)

• multiplicity: e(R) = λR(R/(x)) =minM

(x minimal reduction of m ⇔ v(x) =minM)

Also we can get information on embeddig dimension, type, Gorestein-

ness, Arf property, C.I. property, tangent cone etc.



3. Value semigroups of algebroid curves

The value semigroup of an algebroid curve is a submonoid of Nh,

with some more properties connected to valuations.

In the case h = 2, setting

∆S(a1, a2) = ({(a1, y) : a2 < y} ∪ {(x, a2) : a1 < x}) ∩ S, they are:

(1) ∃ γ = γ(S) ∈ N2 s.t. ∆S(γ) = ∅ and γ + (1,1) + N2 ⊆ S;

(2) α,β ∈ S ⇒ min(α,β) ∈ S;

(3) u
u
⇒ u u u

⇑

u

(4) (0,0) is the only element of S on the axes.
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Picture 1. S = v(R)

R = k[[x,y,z]]
(x3−z2,y)∩(x3−y4,z)

x 7→ (t2, u4)

y 7→ (0, u3)

z 7→ (t3,0)

v(x+ y) = (2,3)

γ = (4,8)



Formal definition with more branches: α = (α1, . . . , αh)

∆i(α) = {β | βi = αi, βj > αj, ∀ j 6= i} ∆S
i (α) = ∆i(α) ∩ S

∆(α) =
⋃
i∆i(α) ∆S(α) = ∆S(α) ∩ S

(1) ∃ γ = γ(S) ∈ Nh s.t. ∆S(γ) = ∅ and γ + (1, . . . ,1) + Nh ⊆ S;

(2) α,β ∈ S ⇒ min(α,β) ∈ S;

(3) α 6= β ∈ S and αi = βi (for some i) ⇒
. ∃ δ ∈ S s.t. δi > αi = βi and δj ≥ min{αj, βj}
(and the equality holds if αj 6= βj).

(4) (0, . . . ,0) is the only element of S with a zero component



4. Good semigroups

A subsemigroup S of Nh satisfying properties (1), (2), (3) is
called a good semigroup. If (4) holds it is said local.

Remark. Properties (1), (2) and (3) imply that a good semi-
group is completeley determined by its elements in the hyper-
rectangle bounded by (0, . . . ,0) and γ + (1, . . . ,1)

Not all good semigroups arise as value semigroups [V. Barucci,
, R. Fröberg - 2000], [N. Maugeri, G. Zito - 2019]

Open problem: characterize value semigroups among good
semigroups.

If we want to define concepts or to prove results for good semi-
groups we cannot make use of valuation, so we have to use only
numerical/combinatorical techniques.



Definition. I ⊆ Zh is a relative ideal of S if α+ I ⊆ I, ∀ α ∈ S
and ∃ α ∈ S, s.t. α+ I ⊆ S.
We say that I is good if it satisfies properties (2), (3)
((1) follows by the same property for good semigroups).

Notation/remarks: • m(E) :=minE;
• If E,F are relative ideals, E + F := {α+ β | α ∈ E,β ∈ F}.
E − F := {α ∈ Z | α+ F ⊆ E};
• I fractional ideal of R ⇒ v(I) good relative ideal of v(R).

“Bad”facts:
• good semigroups are not finitely generated as semigroups;
• good ideals are not finitely generated as semigroup ideals;
• operations on good ideals do not produce good ideals:
• we have to deal with infinite sets (e.g. M \ 2M).
• It is much more difficult to prove results for h ≥ 3, than for
h = 2. However, I do not know results proved in the case h = 2
that are false for h ≥ 3, but many of them have been proved only
for h = 2.
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Picture 2. Generators of S



5. Why to study value semigroups in the general case?

Proposition. [ ] Let I be a good relative ideal of S. Let ≤ be
the usual partial order on Nh. Then, ∀ α,β ∈ I, any saturated
chain

α = α0 < α1 < · · · < αm−1 < αm = β

(αi ∈ I) has the same length m.

Using this fact it is possible to define a “distance” function,
d(E \ F ), between good relative ideals E ⊇ F :

Proposition. [ ]
i) ∀ G ⊆ F ⊆ E: d(E \G) = d(E \ F ) + d(F \G).
ii) ∀ F ⊆ E: d(E \ F ) = 0⇔ E = F .

Proposition. [ ] If I ⊇ J are two fractional ideals of R, then
λR(I/J) = d(v(I) \ v(J)).



Invariants and properties of rings we can read on semigroups.

Notation. M = S \ {0} ad e = (e1, . . . , eh) = min(M).

• multiplicity: λR(R/(x)) = e1 + · · ·+ eh
with x minimal reduction of m i.e. v(x) = e.
Notice that ei is the multiplicity of the i-th branch of R;

• degree of singularity: λR(R/R) = d(Nh \ S);

Also we can get information e.g on Goresteinness [Delgado], Arf
property, embedding dimension [Maugeri, Zito], type [ , Guerri-
eri, Micale].

The study of other properties is still open:
• Properties of the tangent cone grm(R) =

⊕
mi/mi+1;

• complete intersection property;
• characterization of value semigroups of plane algebroid curves.



6. Blowing up tree and multiplicity tree

Let R be a branch: its blow up (or strict quadratic transform) is

Rm = ∪n>0(mn : mn).

We have mn : mn ⊆ mn+1 : mn+1 (∀n) and Rm = mn0 : mn0 for

some n0, since R is Noetherian. Moreover, if x is a minimal

reduction of m and m = (x, x2, . . . , xν), Rm = R[x2/x, . . . xν/x].

It holds R ⊂ Rm ⊆ R ∼= k[[t]], hence it is again local.

Denoting Rm = R1 we can blow up its maximal ideal and so on,

getting, since R is a finite R-module:

R = R0 ⊂ R1 ⊂ · · · ⊂ Rl = R = R = · · ·

The sequence of multiplicities ei = e(Ri) is the multiplicity se-

quence of R.



More generally, if R is a curve and I an ideal of R, the blowing

up RI of I is ∪n>0(In : In) = In0 : In0 for some n0.

Again we can associate to R a sequence (Lipman sequence) of

semilocal rings

R = R0 ⊂ R1 ⊂ · · · ⊂ Rl = R = R = · · ·

where Ri+1 is obtained from Ri by blowing up the Jacobson

radical of Ri, J(Ri).

Given a maximal ideal nj of R the branch sequence of R along nj
is the sequence of rings (Ri)nj∩Ri and the multiplicity sequence

of R along nj is given by the multiplicities of these rings.

Proposition. If (R,m1, . . . ,mr) is a Noetherian semilocal ring

with R = V1×· · ·×Vd, where Vi is a DVR, then R ' Rm1×· · ·×Rmr.



Hence to an algebroid curve R with R = V1 × · · · × Vd we can

associate the blowing up tree of R and its multiplicity tree

(ni are the maximal ideals of R = k[[t1]]× k[[t2]]× k[[t3]]):
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It is possible to chacterize all the trees that can be realized as

multiplicity trees of an algebroid curve [Barucci, ,Fröberg].

But in general (for non-plane singularities) it is NOT possible to

reconstruct the multplicity tree only by the value semigroup.



7. Apéry set and value semigroups of plane branches:

Apéry algortihm

Let s ∈ S ⊆ N. The Apéry set of S (with respect to s) is:

Ap(S, s) = {x ∈ S : x−s /∈ S} = {a0 = 0 < a1 < · · · < as−1 = f(S)+s}

Apery set can be used to charachterize symmetric semigroups,

the type of a semigroup, but also to describe the properties of

the tangent cone.

Theorem. [Apéry] [Angermüller]

Let R be a plane algebroid branch, e = e(R) and v(R) = S.

Set Ap(S, e) = {a0 = 0 < a1 < a2 < . . . < ae−1}; then

Ap(v(R1), e) = {a0 < a1 − e < a2 − 2e < . . . < ae−1 − (e− 1)e}.



Using this result it is easy to compute the multiplicity sequence
of a plane branch, by its value semigroup and conversely, recon-
struct the value semigroup by its multiplicity sequence.

Example. R = k[[t4, t6 + t7]] (char(k) 6= 2). Set Si = v(Ri).

• v(R) = S = 〈4,6,13〉, e(R) = 4 and Ap(S,4) = {0,6,13,19}.

• Apéry’s result implies

Ap(S1,4) = {0,2 = 6− 4,5 = 13− 8,7 = 19− 12},
which gives S1 = 〈2,5〉 and e1 = 2.

• Ap(S1,2) = {0,5}, so Ap(S2,2) = {0,3 = 5− 2},
which gives S2 = 〈2,3〉 and e2 = 2.

• Ap(S2,2) = {0,3}, so Ap(S3,2) = {0,1} and S3 = N.

Hence the multiplicity sequence of R is 4,2,2,1, . . ..



If we start with the multiplicity sequence

e0 = 4, e1 = 2, e2 = 2, e3 = 1, . . .

we can go backwards in the sequence of blowups:

• we have e3 = 1, so S3 = v(R3) = N.

• e2 = 2: determine the Apery set of N w.r.t. 2: {0,1},
so Ap(S2) = {0,3 = 1 + 2} and S2 = 〈2,3〉.

• e1 = 2: determine the Apery set of S2 w.r.t. 2: {0,3},
so Ap(S1,2) = {0,5 = 3 + 2} and S1 = 〈2,5〉.

• e0 = 4: determine the Apery set of S1 w.r.t. 4: {0,2,5,7},
so Ap(S,4) = {0,6 = 2 + 4,13 = 5 + 8,19 = 7 + 12} and we get

S = 〈4,6,13,19〉 = 〈4,6,13〉.



The reason is that R = k[[X,Y ]]/(F ); by Weierstrass preparation

theorem, can assume F to be of the form Y e +
∑e−1
i=0 ci(X)Y i,

where e = e(R).

Setting x = X + (F ) and y = Y + (F ), we have R = k[[x, y]] =

k[[x]] + k[[x]]y + · · ·+ k[[x]]ye−1, where v(y) > v(x) = e.

Blowing up the maximal ideal we obtain

R1 = R[y/x] = k[[x, y/x]] = k[[x]]+k[[x]](y/x)+· · ·+k[[x]](y/x)e−1.

If Ap(S, e) = {a0 = 0 < a1 < a2 < . . . < ae−1}, then

ai = v(yi + φi(x, y))

where degy(φ) < i. Set fi = yi + φi and call {f0, . . . , fe−1} an

Apéry basis of R.



In the above example: R = k[[t4, t6 + t7]], x = t4, y = t6 + t7

Ap(S,4) = {0,6,13,19};
a1 = 6 = v(y), a2 = 13 = v(y2 − x3), a3 = 19 = v(y3 − x3y).

R1 = k[[t4, t2 + t3]], Ap(v(R1),4) = {0,2,5,7}, and e.g.

5 = v((y2 − x3)/x2)).

Why can we go backwards?

Proposition. [Barucci, , Fröberg] Let R be a branch. Set

R1 = R[y/x], e = v(x) and Ap(S1, e) = {a′0, . . . , a
′
e−1}.

Then we can find a minimal set of generators {g0, . . . , ge−1} of

R1 as k[[x]]-module, s.t. v(gi) = a′i, gi = (y/x)i + ψi (with

deg(ψi) < i).

Moreover for any such set {gixi | i = 0, . . . e−1} is an Apéry basis

of R.



Algorithm. Given S ⊂ N we can apply the Apéry process. If

• at each step we get and ordered Apery set,

• at the end we get N
• the sequence of multiplicities is the multiplicity sequence of a

plane branch,

then the semigroup is the value semigroup of a plane branch ( 

explicit conditions for the semigroup).

Example. S = {0,4,8,9,10,12,13,14,16,→ . . . };
Ap(S,4) = {0,9,10,19}.
Hence we get {0,9−4 = 5,10−8 = 2,19−12 = 7} which is not

ordered.

We get S1 = {0,2,4,→ . . . } and in two more steps we get N  
4,2,2,1, . . . that is admissble.

Applying the process backwards we get the semigroup with or-

dered Apéry set {0,6,13,19} of the previous example.



8. Apéry set and value semigroups of plane curves

Let S ⊂ Nh and set δ = (d1, . . . , dh) ∈ S.

The Apéry set of S (with respect to δ) is:

Ap(S, δ) = {α ∈ S : α− δ /∈ S}

The problem, now, is that Ap(S, δ) is infinite and not linearly

ordered.

We would like to have a partition of Ap(S, δ) in D = d1 + · · ·+dh
subsets:

Ap(S, δ) =
D−1⋃
i=0

Ai

in such a way that the Ai play the role of the ai.
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Picture 4. Ap(S, δ)

now Ap(S, δ) is infinite

δ = (2,3) = e

How do we define the Ai?

Define α ≤≤ β iff either α = β or αi < βi for both i = 1,2.
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Picture 5. A4

e = (2,3), E = 2 + 3 = 5

A4 = {α ∈ Ap(S, e) | α max. w.r.t. ≤≤}

= ∆S(γ + e)
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Picture 6. A3

A3 ⊆ {α ∈ Ap(S, e) \A5 max. w.r.t. ≤≤}

we exclude the β obtained as infimums
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Picture 7. Ap(S, e) = A0 ∪A1 ∪A2 ∪A3 ∪A4



Theorem [ , Guerrieri, Micale] [Guerrieri, Maugeri, Micale] Let

S ⊆ Nh be a good semigroup, δ = (d1, . . . , dh) and D = d1 + · · ·+
dh. Then Ap(S, δ) = ∪D−1

i=0 Ai.

Remark. We can construct the partition for any complement of

a good ideal I and the number of levels measures the distance

between S and I:

Theorem. [ , Guerrieri, Micale] [Guerrieri, Micale, Maugeri] Let

S ⊆ Nh be a good semigroup. Let A ⊆ S such that I := S \ A is

a proper good ideal of S and let A =
⋃N−1
i=0 Ai be the partition of

A. Then

N = d(S \ I).



9. Apéry algorithm for plane curves

Let R = k[[X,Y ]]/(F ); with F = G1G2 · · ·Gh, (Gi irreducible,

pairwise distinct).

By Weierstrass preparation thm. and up to a change of variables,

we can assume F = Y E +
∑E−1
i=0 ci(X)Y i, where E = e(R).

Setting x = X + (F ) and y = Y + (F ), we have:

R = k[[x, y]] = k[[x]] + k[[x]]y + · · ·+ k[[x]]yE−1,

where v(y) > v(x) = e = (e1, . . . , eh) and E = e1 + · · ·+ eh.

Set: Ui = k[[x]] + k[[x]]y + · · ·+ k[[x]]yi ∀ 0 ≤ i ≤ E − 1,

T0 = {1} and

Ti = {yi + φi(x, y) | φi(x, y) ∈ Ui−1, v(yi + φi(x, y)) /∈ v(Ui−1)}.

Theorem. [Barucci, , Fröberg] Setting Ap(v(R), e) = ∪E−1
i=0 Ai,

then Ai = v(Ti).



Blowing up the maximal ideal we obtain

R1 = R[y/x] = k[[x]] + k[[x]](y/x) + · · ·+ k[[x]](y/x)E−1.

When R1 is still local we can go backwards.

Theorem. [Barucci, , Fröberg] Let R be a plane algebroid curve

and assume R1 = R[y/x] local. Let e = v(x) = (e1, . . . , eh) and

E = e1+· · ·+eh. Set Ap(S, e) = ∪E−1
i=0 Ai and Ap(S1, e) = ∪E−1

i=0 A
′
i.

Then , ∀i, Ai = A′i + ie.

The reason is that g = y/x ∈ R1 is such that

R1 = k[[x]] + k[[x]]g + · · ·+ k[[x]]ge−1

and ∀i, A′i = {v(gi + ψi) | . . . }.

Remark. We are using the presentation of R1 as quotient of

k[[X,Y ]].
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Picture 8. S = v(R) Ap(S, e) = A0 ∪A1 ∪A3 ∪A4

R = k[[x,y]]
(x7−y2)∩(x7−x4+2x2y−y2)

x 7→ (t2, u2)

y 7→ (u7, u4 + u7)

e = (2,2)
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Picture 9. Ap(v(R1, e)) = A0 ∪A1 ∪A3 ∪A4 and Ap(v(R2), e1))

Now R2
∼= R2,1 ×R2,2 is semilocal and S2 := v(R2) = π1(S2)× π2(S2).



Once we are in the semilocal case we can proceed the blowing

up process, working on the localizations. So we can go on from

R to R̄ and compute the multiplicity tree by the semigroup.

If, conversely, we want to obtain the semigroup from the multi-

plicity tree, the problem arise passing backwards from the non-

local to the local case. More precisely we need:

1. describe the levels of the Apéry set in function of the levels

of the projections;

2. find a description of R = R1 × R2 as a k[[f ]]-module, f =

(f1, f2) ∈ R, genererated by the powers of another element g =

(g1, g2);

3. Find an analogue of the results that charachterize the levels

of the Apéry set w.r.t. v(f) as value sets, depending on the

power of g.



Problem 1. was solved completely (i.e. for any h ≥ 2) [Guerrieri,

Maugeri, Micale].

As for problems 2. and 3. we have the solution for h = 2:

Theorem. [ , Delgado, Guerrieri, Maugeri, Micale] Let W =

W1 ×W2 be a non local ring, W = k[[t]]× k[[u]]. Let S = v(W ),

fix ε = (ε1, ε2) ∈ S, with ε1, ε2 > 0 and set E = ε1 + ε2. Choose

any f = (f1, f2) ∈ W of value v(f) = ε. Then there exists

g = (g1, g2) ∈W , s.t. W = k[[f ]] + k[[f ]]g + · · ·+ k[[f ]]gE−1.

Theorem. [ , Delgado, Guerrieri, Maugeri, Micale] Set Ui =

k[[f ]] + k[[f ]]g + · · ·+ k[[f ]]gi for any i = 0, . . . , E − 1, T0 = {1}
and

Ti = {yi + φi(x, y) | φi(x, y) ∈ Ui−1, v(yi + φi(x, y)) /∈ v(Ui−1)}.

Then, setting Ap(v(W ), ε) = ∪A′i, A
′
i = v(Ti).



Corollary. If W = R1,

set Ap(S, e) = ∪E−1
i=0 Ai and Ap(S1, e) = ∪E−1

i=0 A
′
i.

Then , ∀i,

Ai = A′i + ie.

Hence to give a semigroup of a plane curve with two branches

is equivalent to give its multiplicity tree.

In [Barucci, , Fröberg] we characterized the multiplicity trees of

plane curves with two branches.

Thus we can give an algorithm to check if a good semigroup is

the value semigroup of a plane singularity with two branches.



What does remain to do? Since the general (non local case) can

be studied looking at R as R1×R2 (with Ri either local or not),

in order to get the complete solution (h ≥ 3), we can proceed by

induction on the number of branches, but we still have to solve

some technical problems.

Moreover we have to give and explicit description of the admis-

sible multiplicity trees for a plane singularity with h branches.



THANKS FOR YOUR ATTENTION!


