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Basic definitions

H = (multiplicative) monoid with identity 1H .

H× = group of units or invertible elements of H.

The monoid H is
I cancellative if ax = bx or xa = xb ⇒ a = b, for every a, b, x ∈ H;
I unit-cancellative if a = ax or a = xa⇒ x ∈ H×, for every a, x ∈ H.

A non-unit element a ∈ H is
I an atom of H if a = xy ⇒ x ∈ H× or y ∈ H×.
I an irreducible of H if a = xy ⇒ x ∈ HaH or y ∈ HaH.

Note: atom⇒ irreducible, but in general irreducible ; atom.

E.g., if D is a domain, 0 ∈ D is irreducible but not an atom.

The two notions are equivalent if H is commutative and unit-cancellative
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The classical theory of factorization

A great variety of problems from all areas of mathematics involve the
decomposition of certain elements of a monoid in terms of certain other
elements that act as building blocks and, in a sense, cannot be broken
down into smaller pieces.

In the “classical theory of factorization”, the building blocks are mainly atoms
and two are the basic questions addressed:

1. Check if every non-unit of H factors as a product of atoms (i.e., H is
atomic); and if not, characterize which elements do.

2. Assuming that H is atomic, qualify and quantify by the use of
“invariants” the non-uniqueness, however defined, of the factorizations.

Answering these questions when H is commutative and cancellative has
led to a solid theory, partly extended recently to the unit-cancellative case.

A. GEROLDINGER, F. HALTER-KOCH, Non-Unique Factorizations, 2006
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Moving away from the classical setting

Moving from a commutative to a non-commutative setting the extensions of
the classical theory work nicely if there exists a “transfer morphism” from H
to a commutative and [unit-]cancellative monoid, otherwise the theory shows
some “gaps”:

1. some monoids are not atomic even if they should morally be (e.g., H is
cancellative, reduced, and 2-generated);

2. the classical invariants associated with atomic factorizations (or with
decompositions defined in terms of a different type of building blocks)
blow up in a predictable way and lose most of their significance.

Analogous issues appear in highly non-cancellative (even commutative)
monoids, e.g., in the presence of non-trivial idempotents or in rings with
non-zero zero divisors.

The above gaps have been recognized for a long time and various solutions have been
proposed to overcome their effects. E.g., for commutative rings with zero divisors
irreducibles (instead of atoms) are the building blocks that extend the classical results.

D. D. ANDERSON, S. VALDES-LEON, Factorization in Commutative Rings with Zero Divisors, Rocky Mount. J.
Math, 1996.
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Our strategy

Fundamental aspects of the classical theory of factorization can be widely
generalized by combining the languages of monoids and preorders.

Endowing H with a suitable preorder permits to define a general notion of
irreducible suitable for the extension of classical results on atomicity.

In addition, an appropriate preorder on the free monoid F (H) over H allows
the introduction of minimal factorizations, a refinement of classical
factorizations that counter the blow-up phenomena mentioned before.

A preorder on a set X is a reflexive and transitive (binary) relation � (read
“pē” ) on X . We say that x and y are �-equivalent if x � y � x , and we write
x ≺ y to mean that x � y and y 6� x .

A preorder induced by the multiplication of a monoid H is the divisibility
preorder |H : for all x , y ∈ H, x |H y if and only if y = uxv for some u, v ∈ H.
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Premonoids

Definition (Premons and �-irreds)

Let H be a monoid and � be a preorder on its underlying set. The couple
H := (H,�) is said to be a premonoid (or premon, for short).

An element u ∈ H is a �-unit (of H) if u � 1H � u, and is a �-non-unit
otherwise.

We say that a �-non-unit x ∈ H is a �-irreducible (or �-irred) (of H) if
x 6= y1y2 for all �-non-units y1 ≺ x and y2 ≺ x .

We use H× for the set of �-units, and I (H) for the set of �-irreds of the
monoid H, which we also refer to as the irreds of the premon H.

We will call the premon Hdiv := (H, |H) the divisibility premon of H.

S. TRINGALI, An abstract factorization theorem and some applications, J. Algebra, 2022.

L. COSSU & S. TRINGALI, Abstract Factorization Theorems with Applications to Idempotent Factorizations,
Israel J. Math., 202?.
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Remarks:

1. If H is a Dedekind-finite monoid (i.e., xy = 1H iff yx = 1H ), then |H -unit =
unit and |H -irreducible = irreducible. If, in particular, H is commutative
and unit-cancellative, then |H -irreducible = atom.

The classical theory of factorization can be seen as the study of the
arithmetic of the divisibility premon of a Dedekind-finite monoid.

2. In some premons H = (H,�) the elements of I (H) can be idempotent
or invertible [Tringali 2022, C. & Tringali, 202?].
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Preorders vs blow up phenomena

Definition (The shuffling preorder)

Given a premon H = (H,�), we define the shuffling preorder vH (read
“squek”) on F (H) as follows: for some H-words a and b with ‖a‖ = m and
‖b‖ = n, a vH b if and only if there is an injective function σ : J1,mK→ J1, nK
such that a[i] � b[σ(i)] � a[i] for every i ∈ J1,mK.

L. COSSU & S. TRINGALI, Factorization under Local Finiteness Conditions, J. Algebra, 2023.

Remark: The preorder vH is artinian1, therefore every non-empty subset of
F (H) admits a vH-minimal element.

1A preorder � on a set X is artinian if, for every �-non-increasing sequence (xk )k≥0 of
elements of X , there exists k0 ∈ N such that xk � xk+1 for every k ≥ k0.
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Minimal factorizations

Definition ([Minimal] �-factorization)

Let H = (H,�) be a premon. A �-factorization of an element x ∈ H is an
I (H)-word a = a1 ∗ · · · ∗ an such that a1 · · · an = x and we call ZH(x) the
set of �-factorizations of x .

A minimal �-factorization of x is then a vH-minimal word in ZH(x), i.e.,
an element a ∈ ZH(x) such that there is no b ∈ ZH(x) with b @H a. We
denote the set of minimal �-factorizations of x by Zm

H(x).

L. COSSU & S. TRINGALI, Factorization under Local Finiteness Conditions, J. Algebra, 2023.

Remark: If H is commutative and unit-cancellative, then every |H -factorization
is a minimal |H -factorization and they are (classical) atomic factorizations.

All the results mentioned from now on come from the preprint
L. COSSU & S. TRINGALI, On the finiteness of certain factorization invariants, submitted, 2023.
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Minimal elasticity

We define the (classical) elasticity %(H) of a monoid H as the supremum of the set of
rational numbers of the form m/n with m, n ∈ N+ such that a1 · · · am = b1 · · · bn for
some atoms a1, . . . , am, b1, . . . , bn ∈ H.

Definition (Minimal elasticity)

Given a premon H = (H,�),

• The minimal elasticity %m
H(x) of an element x ∈ H is defined as:

%m
H(x) := sup

{
‖b‖−1‖a‖ : ε 6= a, b ∈ Zm

H(x)
}
∈ [0,+∞].

• The minimal elasticity %m(H) of the premon H is then defined as:

%m(H) := sup
{
%m
H(x) : x ∈ H \ H×

}
∈ [0,+∞].

In particular, we let the minimal elasticity of the monoid H be the minimal
elasticity of Hdiv.

Remark: The minimal elasticity of a commutative, unit-cancellative monoid is exactly
the classical elasticity.
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A finiteness result for the minimal elasticity

Theorem 1

The minimal elasticity of a commutative premonoid with finitely many
irreducibles is finite.

Proof: This is a consequence of a more general, purely combinatorial result, using
Dickson’s lemma in a different way than in the classical setting.

Corollary 1

If a commutative monoid is finitely generated modulo units, then its minimal
elasticity is finite.

Corollary 2 (cf. Fan et. al 2017, Anderson et. al 1993)

If a commutative unit-cancellative monoid is finitely generated modulo units,
then its elasticity is finite.
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Remarks:

I If a commutative unit-cancellative monoid is finitely generated modulo
units, then its elasticity is not only finite but also rational. The question
if, under the hypothesis of Theorem 1, %m(H) is rational remains open.

I No other result comparable to Theorem 1 exists for highly
non-cancellative monoids.

I In the above theorem, we cannot get rid of the assumption that H is
commutative. We proved that, if A = {a, b, c} and
R = {(sn, tn) : n = 2, 3, ...} with sn := c ∗ a∗n ∗ b∗2

n
∗ a∗n ∗ c and

tn := a ∗ c∗n ∗ b∗n ∗ c∗n ∗ a, then H = Mon〈A|R〉 is a reduced, atomic,
3-generated, and cancellative monoid with %m(Hdiv) =∞. This means
that for every n ∈ N+ there exist minimal atomic factorizations an and bn

of a non-unit xn ∈ H s.t. ‖an‖ ≥ n‖bn‖.

Given a set X and a relation R on the free monoid F (X), we take Mon〈X |R〉 := F (X)/ ≡R ,
where ≡R is the smallest congruence on F (X) containing R. Mon〈X |R〉 is called a presentation.

11 / 14



Minimal length sets and their unions

The following concepts extend those of set of lengths, system of sets of
lengths, and union of sets of lengths from the classical theory.

Definition (Minimal length sets and their unions)

Given a premon H = (H,�) and an element x ∈ H, we let

Lm
H(x) :=

{
‖a‖ : a ∈ Zm

H(x)
}
⊆ N

be the minimal length set of x (relative to H). Accordingly, we refer to

L m(H) :=
{

Lm
H(x) : x ∈ H \ H×

}
as the system of minimal length sets of H; and given k ∈ N, we call

U m
k (H) :=

⋃
{L ∈ L m(H) : k ∈ L}

the union of minimal length sets containing k .
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Other finiteness results

Proposition 1

The following hold for a premon H = (H,�):

• %m(H) = 1 if and only if |Lm
H(x)| = 1 for each x ∈ H \ H×, i.e., if and only

if H is “minimal HF”.

• If %m(H) is finite, then U m
k (H) is finite for every k ∈ N.

Theorem 2

Let H = (H,�) be a premon and suppose there is a finite set A ⊆ I (H)
such that every�-irred is�-equivalent to an element of A. Then the minimal
length sets of H are all finite, i.e., H is “minimal BF”.

Corollary 3 (cf. Geroldinger and Lettl 1990)

In a premonH = (H,�) with finitely many�-irreds, unions of minimal length
sets are all finite.
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An easy example

Let H be the multiplicative monoid Z/pnZ of the integers modulo pn, where p ∈ N is a
prime and n is an integer ≥ 2.

H is an atomic monoid and the atoms (resp., the units) of H are precisely the |H -irreds
(resp., the |H -units).

In addition, every non-zero non-unit of H has an essentially unique atomic factorization,
with “essentially unique” meaning that any two atomic factorizations of the same
element are equivalent with respect to the shuffling preorder induced by the divisibility
preorder |H .

On the other hand, the residue class of 0 modulo pn has an essentially unique minimal
atomic factorization (of length n), but atomic factorizations of any length ≥ n.

It follows that H is not BF but minimal factorial: the elasticity %(H) =∞; the minimal
elasticity %m(H) = 1; and for every k ∈ N+, we have

Uk (H) =

{
{k} if 1 ≤ k < n,
Jk ,∞K if k ≥ n and U m

k (H) =

{
{k} if 1 ≤ k ≤ n,
∅ if k > n.

Here, Uk (H) denotes the classical union of length sets containing k .

14 / 14



THANK YOU
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