On the class semigroup of a class of C-monoids

Jun Seok Oh

Jeju National University

Conference on Rings and Factorizations 2023, July 10, 2023

Results 000000

Outline

1. C-monoids

2. Results

Monoids

• A monoid means a commutative cancellative semigroup with identity element, so that any monoid H has its quotient group q(H).

For a monoid H, we call

- $H' = \{x \in q(H) \mid \exists N \in \mathbb{N} \text{ such that } x^n \in H \text{ for all } n \geq N\}$ the seminormalization of H,
- $\widetilde{H}=\left\{x\in \mathsf{q}(H)\mid x^{N}\in H \text{ for some } N\in\mathbb{N}\right\}$ the root-closure of H ,
- $\widehat{H} = \{x \in q(H) \mid \exists c \in H \text{ such that } cx^n \in H \text{ for all } n \in \mathbb{N}\}$ the complete integral closure of H.

Then, $H\subseteq H'\subseteq \widetilde{H}\subseteq \widehat{H}\subseteq \mathsf{q}(H),$ and H is called

• seminormal (resp., root-closed, or completely integrally closed) if H = H' (resp., $H = \widetilde{H}$, or $H = \widehat{H}$).

The class semigroup

Let $H \subseteq F$ be monoids.

- For $y, y' \in F$, $y \sim_H y'$ on $F \iff y^{-1}H \cap F = (y')^{-1}H \cap F$.
- The set of congruence classes $C(H, F) = \{[y] \mid y \in F\}$ (resp., $C^*(H, F) = \{[y] \mid y \in (F \setminus F^{\times}) \cup \{1\}\}$) is the class semigroup (resp., reduced class semigroup) of H in F.
- $C(H, F) = \{[y] \mid y \in F^{\times}\} \cup C^{*}(H, F)$, and either $\{[y] \mid y \in F^{\times}\} \subset C^{*}(H, F) \text{ or } \{[y] \mid y \in F^{\times}\} \cap C^{*}(H, F) = \{[1]\}.$

C-monoids

- A monoid H is called a C-monoid if H is a submonoid of a factorial monoid F such that $H \cap F^{\times} = H^{\times}$ and $\mathcal{C}^*(H, F)$ is finite.
- A domain *R* is a C-domain if its multiplicative monoid *R*[•] is a C-monoid.
- Reinhart, 2013

If R is a non-local semilocal Noetherian domain, then $\mathcal{C}_v(\widehat{R})$ and $\widehat{R}/(R:\widehat{R})$ are both finite if and only if R is a C-domain.

ex) If $R=\mathbb{Z}[2i],$ then $\widehat{R}=\mathbb{Z}[i]$ and $(R:\widehat{R})=2\mathbb{Z}[i],$ whence R is a non-Krull C-domain.

More generalily, every non-principal order in a number field is a non-Krull C-domain.

• Halter-Koch, 2005

Every C-monoid is a Mori monoid, and a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group.

 $\label{eq:constraint} \rightsquigarrow \left\{ \begin{array}{l} {\sf Krull monoids with} \\ {\sf finite class group} \end{array} \right\} \subset \{{\sf C}\text{-monoids}\} \subset \{{\sf Mori monoids}\}.$

Krull monoids are central objects to the study of non-unique factorizations, in particular, the monoid $\mathcal{B}(G)$ of product-one sequences over a finite abelian group G.

• Cziszter-Domokos-Geroldinger, 2016

The monoid $\mathcal{B}(G)$ is finitely generated C-monoid defined in $\mathcal{F}(G)$.

- Geroldinger-Grynkiewicz-OH-Zhong, 2022 The following statements are equivalent:
 - (a) G is abelian.
 - (b) $\mathcal{B}(G)$ is a Krull monoid.
 - (c) $\mathcal{B}(G)$ is a transfer Krull monoid.
 - (d) $\mathcal{B}(G)$ is a weakly Krull monoid.
 - (e) $\mathcal{C}(\mathcal{B}(G), \mathcal{F}(G)) \cong G.$

Results 000000

$\mathcal{L}(\mathcal{B}(G))$ has an universal character.

For an atomic monoid H,

$$\mathcal{L}(H) = \{ \mathsf{L}(a) \mid a \in H \},\$$

where L(a) is the set of all factorization lengths k.

Classic

If H is a Krull monoid with finite class group G such that each class contains a prime divisor, then $\mathcal{L}(H) = \mathcal{L}(\mathcal{B}(G))$.

• Baeth-Geroldinger-Grynkiewicz-Smertnig, 2015

Let R be a hereditary Noetherian prime ring, and H be the monoid of stable isomorphism classes of finitely generated projective right R-modules. Then, there exist a commutative Krull monoid H_0 and a non-trivial commutative monoid D such that

$$H = \left((H_0 \setminus H_0^{\times}) \times D \right) \cup \left(H_0^{\times} \times \{1_D\} \right)$$

is not Krull, but $\mathcal{L}(H) = \mathcal{L}(\mathcal{B}(G))$ for some abelian group G.

C-monoids: The class semigroup

• Geroldinger-Zhong, 2019

If H is a C-monoid, then H is seminormal if and only if its class semigroup is a union of groups.

Let \mathcal{C} be a commutative semigroup, and $e, f \in \mathsf{E}(\mathcal{C})$.

- $C_e = \{x \in C \mid x + e = x \text{ and } x + y = e\}$ is a group with identity e, and $C_e \cap C_f = \emptyset$ if $e \neq f$.
- C is a union of groups if and only if $C = \bigcup_{e \in \mathsf{E}(C)} C_e$.

Observation

- If ${\cal H}$ is a C-monoid defined in ${\cal F},$ then
- (a) if $[a] \in \mathsf{E}(\mathcal{C}^*(H, F))$, then $a \in \widehat{H}$.
- (b) if H is seminormal, then $\{[x] \mid x \in H\} \subset \mathsf{E}(\mathcal{C}^*(H,F)).$
- (c) if H is completely integrally closed, then $[a]\in\mathsf{E}(\mathcal{C}^*(H,F))$ if and only if [a]=[1].

Results •00000

Outline

1. C-monoids

2. Results

Results 000000

Finitely primary monoids

• A monoid H is finitely primary of rank s and exponent α if there exist $s, \alpha \in \mathbb{N}$ such that H is a submonoid of a factorial monoid $F = F^{\times} \times \mathcal{F}(\{p_1, \ldots, p_s\})$ satisfying

 $H \setminus H^{\times} \subseteq (p_1 \dots p_s)F$ and $(p_1 \dots p_s)^{\alpha}F \subseteq H$.

ex) Every numerical semigroup is a finitely primary monoid.

- For a domain *R*, the following statements are equivalent:
 - (a) R is a root-closed 1-dimensional local Mori domain.
 - (b) R^{\bullet} is a root-closed finitely primary monoid.

Finitely primary monoids: The class semigroup

Theorem

Let H be finitely primary of rank s. Then

$$\widetilde{H} \setminus (\widetilde{H})^{\times} = H' \setminus (H')^{\times} = (p_1 \dots p_s)F,$$

and \widetilde{H} is a C-monoid defined in F. Moreover, if H is root-closed, then

$$\mathcal{C}^*(H,F) \cong \mathcal{C}_1 \times \ldots \times \mathcal{C}_s$$
,

where $C_i = \{ [p_i]_H^F, [1]_H^F \}$ is a subsemigroup of $C^*(H, F)$.

Sketch of the proof.

• $[p] \in \mathsf{E}(\mathcal{C}(H,F))$ for every prime $p \in F$, and thus

 $\mathcal{C}^*(H,F) = \{ [p_1^{r_1} \cdots p_s^{r_s}] \mid r_i \in \{0,1\} \text{ for all } i \in [1,s] \}.$

• The map
$$\theta : \mathcal{C}^*(H, F) \to \mathcal{C}_1 \times \cdots \times \mathcal{C}_s$$
, given by $\theta([x]) = ([p_1^{r_1}], \dots, [p_s^{r_s}])$, is an semigroup isomorphism.

Weakly Krull Mori monoids

• A monoid H is weakly Krull if

 $H = \bigcap_{\mathfrak{p} \in \mathfrak{X}(H)} H_{\mathfrak{p}} \text{ and } \{ \mathfrak{p} \in \mathfrak{X}(H) \mid a \in \mathfrak{p} \} \text{ is finite for all } a \in H \, .$

- A domain *R* is weakly Krull if and only if *R* is a weakly Krull monoid.
- ex) Every Krull monoid is a (root-closed) weakly Krull Mori monoid.
- ex) Every 1-dimensional Noetherian domain is weakly Krull.
 - If ${\boldsymbol{H}}$ is a weakly Krull Mori monoid, then

$$\mathcal{I}_v^*(H) \cong \prod_{\mathfrak{p} \in \mathfrak{X}(H)} (H_{\mathfrak{p}})_{\mathrm{red}},$$

given by $\mathfrak{a} \mapsto (a_{\mathfrak{p}}H_{\mathfrak{p}}^{\times})_{\mathfrak{p} \in \mathfrak{X}(H)}$ if $\mathfrak{a}_{\mathfrak{p}} = a_{\mathfrak{p}}H_{\mathfrak{p}}$.

Weakly Krull Mori monoids: The class semigroup

Theorem

Let H be a root-closed weakly Krull Mori monoid with $\emptyset \neq \mathfrak{f} = (H : \widehat{H})$ such that $H_{\mathfrak{p}}$ is finitely primary for each $\mathfrak{p} \in \mathfrak{X}(H)$.

1. If $\widehat{H}_{\mathfrak{p}}^{\times}/H_{\mathfrak{p}}^{\times}$ is finite for each $\mathfrak{p} \in \mathfrak{X}(H)$, then $\mathcal{I}_{v}^{*}(H)$ is a C-monoid defined in $\widehat{\mathcal{I}_{v}^{*}(H)}$, and there exists a semigroup isomorphism

$$\mathcal{C}^*(\widehat{\mathcal{I}_v^*(H),\widehat{\mathcal{I}_v^*(H)}}) \cong \prod_{\mathfrak{p}\in P^*} \mathcal{C}^*(H_\mathfrak{p},\widehat{H}_\mathfrak{p}) \cong \prod_{\mathfrak{p}\in P^*} \left(\mathcal{C}_1\times\cdots\times\mathcal{C}_{s_\mathfrak{p}}\right),$$

where, for each $\mathfrak{p} \in P^* = \{\mathfrak{p} \in \mathfrak{X}(H) \mid \mathfrak{f} \subseteq \mathfrak{p}\},\ s_{\mathfrak{p}} = |\{\mathfrak{P} \in \mathfrak{X}(\widehat{H}) \mid \mathfrak{P} \cap H = \mathfrak{p}\}|, \ C_i = \{[\mathfrak{P}_i(\mathfrak{p})], [1]\}\ \text{for each } i \in [1, s_{\mathfrak{p}}],\ \text{and }\{\mathfrak{P}_1(\mathfrak{p}), \dots, \mathfrak{P}_{s_{\mathfrak{p}}}(\mathfrak{p})\}\ \text{is the set of pairwise non-associated prime elements in }\widehat{H}_{\mathfrak{p}}.$

- 2. Suppose that $C_v(H)$ is finite.
 - (a) H_{red} is a C-monoid defined in $F = \mathcal{F}(P) \times \prod_{\mathfrak{p} \in P^*} \widehat{H}_{\mathfrak{p}}/H_{\mathfrak{p}}^{\times}$.
 - (b) If H_{red} is dense in F, then H is weakly factorial if and only if \widehat{H} is factorial. In this case, we have $\mathcal{C}^*(H_{red}, F) \cong \mathcal{C}^*(\mathcal{I}_v^*(H), \widehat{\mathcal{I}_v^*(H)})$.

Weakly Krull Mori monoids: Root-closed examples

• Angermüller, 1983

 $\mathbb{Z}[\sqrt{d}]$ is root-closed, but not integrally closed if and only of d is squeare-free and $d \equiv 1 \pmod{8}$.

• Picavet-L'Hermitte, 2002

An order in a number field is root-closed, but not integrally closed if and only if $(R: \hat{R})$ is an intersection of maximal ideals P_i of \hat{R} such that $|\hat{R}/P_i| = 2$ for each P_i .

J.S. Oh, On the class semigroup of root-closed weakly Krull Mori monoids, Semigroup Forum **105** (2022), 517-533.

Thank you for your attention!