Determinantal zeros and factorization of noncommutative polynomials

Jurij Volčič

Also starring: Bill Helton (UCSD) and Igor Klep (U Lj)

Drexel University

Rings and Factorizations (Graz, July 2023)

Outline

(1) Motivation
(2) Determinantal zeros of nc polynomials
(3) Factorization in free algebra
(4) Nullstellensatz Singulärstellensatz
(5) Free Bertini's irreducibility

Hilbert's Nullstellensatz

Geometry vs Algebra
$\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$
Hilbert's Nullstellensatz: let $f_{1}, \ldots, f_{\ell}, g \in \mathbb{C}[\underline{x}]$. Then

$$
f_{1}(\underline{\alpha})=\cdots=f_{\ell}(\underline{\alpha})=0 \Longrightarrow g(\underline{\alpha})=0 \quad \text { for all } \underline{\alpha} \in \mathbb{C}^{d}
$$

if and only if

$$
g^{r}=p_{1} \cdot f_{1}+\cdots+p_{\ell} \cdot f_{\ell} \quad \text { for some } p \in \mathbb{C}[\underline{x}] \text { and } r \in \mathbb{N}
$$

Cornerstone of algebraic geometry: solutions of polynomial equations vs ideals

Today: a noncommutative Nullstellensatz

To talk about Nullstellensatz, one needs to say what are

1. functions
2. points (evaluations) in affine space
3. zero sets
4. algebraic counterpart

Noncommutative polynomials

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be freely noncommuting variables. Elements of the free algebra $\mathbb{C}<\underline{x}>$ are nc polynomials. We can evaluate them at points in $M_{n}(\mathbb{C})^{d}$. For example, if

$$
f=x_{1}^{3} x_{2} x_{1} x_{2}+x_{1} x_{2}-x_{2} x_{1}+2 x_{1}-3
$$

and $\underline{X}=\left(X_{1}, X_{2}\right) \in \mathrm{M}_{n}(\mathbb{C})^{2}$, then

$$
f(\underline{X})=X_{1}^{3} X_{2} X_{1} X_{2}+X_{1} X_{2}-X_{2} X_{1}+2 X_{1}-3 I_{n} \quad \in M_{n}(\mathbb{C})
$$

Noncommutative polynomials

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be freely noncommuting variables. Elements of the free algebra $\mathbb{C}<\underline{x}>$ are nc polynomials. We can evaluate them at points in $M_{n}(\mathbb{C})^{d}$. For example, if

$$
f=x_{1}^{3} x_{2} x_{1} x_{2}+x_{1} x_{2}-x_{2} x_{1}+2 x_{1}-3
$$

and $\underline{X}=\left(X_{1}, X_{2}\right) \in \mathrm{M}_{n}(\mathbb{C})^{2}$, then

$$
f(\underline{X})=X_{1}^{3} X_{2} X_{1} X_{2}+X_{1} X_{2}-X_{2} X_{1}+2 X_{1}-3 I_{n} \quad \in M_{n}(\mathbb{C}) .
$$

polynomials $\longleftrightarrow 4$ evaluations on \mathbb{C}^{d} nc polynomials $\quad \rightsquigarrow$ evaluations on $\bigcup_{n \in \mathbb{N}} M_{n}(\mathbb{C})^{d}$

Why all n ? No nonzero nc polynomial vanishes on all matrices; for each fixed n, there are polynomials vanishing on $M_{n}(\mathbb{C})^{d}$

Dimension-free "zero sets" of an nc polynomial

Let $f_{1}, \ldots, f_{\ell}, g \in \mathbb{C}<\underline{x}>$. There are four popular choices.

Dimension-free "zero sets" of an nc polynomial

(1) nc zero set, "true" zeros

$$
Z\left(f_{1}, \ldots, f_{\ell}\right)=\bigcup_{n}\left\{\underline{X} \in M_{n}(\mathbb{C})^{d}: f_{i}(\underline{X})=0 \forall i\right\}
$$

Amitsur's Nullstellensatz ${ }^{57}$ for fixed n :
$Z\left(f_{1}, \ldots, f_{\ell}\right) \cap \mathrm{M}_{n}(\mathbb{C})^{d} \subseteq Z(g) \cap \mathrm{M}_{n}(\mathbb{C})^{d} \Longrightarrow g^{r} \in\left(f_{1}, \ldots, f_{\ell}\right)+\mathrm{PI}_{n}$
In general, can't draw conclusions for all n at once!
$g=1, f_{1}=x_{1} x_{2}-x_{2} x_{1}-1$
If $\left(f_{1}, \ldots, f_{\ell}\right)$ is either homogeneous Salomon-Shalit-Shamovich ${ }^{18}$ or rationally resolvable Klep-Vinnikov- V^{17} :
$Z\left(f_{1}, \ldots, f_{\ell}\right) \subseteq Z(g) \Longleftrightarrow g \in\left(f_{1}, \ldots, f_{\ell}\right)$

Dimension-free "zero sets" of an nc polynomial

(2) directed zero set, directional zeros

$$
Z_{\operatorname{dir}}\left(f_{1}, \ldots, f_{\ell}\right)=\bigcup_{n}\left\{(\underline{X}, v) \in \mathrm{M}_{n}(\mathbb{C})^{d} \times \mathbb{C}^{n}: f_{i}(\underline{X}) v=0 \forall i\right\}
$$

Bergman's Nullstellensatz ${ }^{04}$:

$$
Z_{\operatorname{dir}}\left(f_{1}, \ldots, f_{\ell}\right) \subseteq Z_{\operatorname{dir}}(g) \Longleftrightarrow g \in \mathbb{C}<\underline{x}>\cdot f_{1}+\cdots+\mathbb{C}<\underline{x}>\cdot f_{\ell}
$$

Dimension-free "zero sets" of an nc polynomial

(3) trace zero set, tracial zeros

$$
Z_{\operatorname{tr}}\left(f_{1}, \ldots, f_{\ell}\right)=\bigcup_{n}\left\{\underline{X} \in \mathrm{M}_{n}(\mathbb{C})^{d}: \operatorname{tr} f_{i}(\underline{X})=0 \forall i\right\}
$$

Brešar-Klep-Špenko Nullstellensatz ${ }^{11,13}$:
$Z_{\operatorname{tr}}\left(f_{1}, \ldots, f_{\ell}\right) \subseteq Z_{\operatorname{tr}}(g) \Longleftrightarrow g$ or 1 is contained in

$$
\mathbb{C} \cdot f_{1}+\cdots+\mathbb{C} \cdot f_{\ell}+[\mathbb{C}<\underline{x}>, \mathbb{C}<\underline{x}>]
$$

Dimension-free "zero sets" of an nc polynomial

(4) free locus, determinantal zeros

$$
\mathscr{Z}\left(f_{1}, \ldots, f_{\ell}\right)=\bigcup_{n}\left\{\underline{X} \in M_{n}(\mathbb{C})^{d}: f_{i}(\underline{X}) \text { is singular } \forall i\right\}
$$

(A) Matrix inequalities:

$$
\left\{\left(X_{1}, X_{2}\right): X_{1}, X_{2} \text { hermitian, } I-X_{2}^{2}-X_{1} X_{2}^{2} X_{1} \succeq 0\right\}
$$

The "Zariski closure of the boundary" is

$$
\left\{\left(X_{1}, X_{2}\right): \operatorname{det}\left(I-X_{2}^{2}-X_{1} X_{2}^{2} X_{1}\right)=0\right\}
$$

(A) Matrix inequalities:

$$
\left\{\left(X_{1}, X_{2}\right): X_{1}, X_{2} \text { hermitian, } I-X_{2}^{2}-X_{1} X_{2}^{2} X_{1} \succeq 0\right\}
$$

The "Zariski closure of the boundary" is

$$
\left\{\left(X_{1}, X_{2}\right): \operatorname{det}\left(I-X_{2}^{2}-X_{1} X_{2}^{2} X_{1}\right)=0\right\}
$$

(B) NC rational expressions:

$$
\left(X_{1}-X_{2} X_{4}^{-1} X_{3}\right)^{-1}
$$

its "full" domain is

$$
\left\{\left(X_{1}, X_{2}, X_{3}, X_{4}\right): \operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \neq 0\right\}
$$

Who cares?

about dim-free matrix inequalities \& rational expressions

- Control theory

Prefilter

- linear systems are given by matrices
- system connections are given by polynomials in matrices
- energy dissipation gives inequalities

Thermal
Stepper $\quad 2+$
Motor

- Operator algebras and systems
- Quantum information theory
- Noncommutative function theory, free probability
- Polynomial optimization
- Computational complexity

Free locus

For $f \in \mathbb{C}<\underline{x}>$ we define its free locus (Klep- V^{17}) as

$$
\mathscr{Z}(f)=\bigcup_{n \in \mathbb{N}} \mathscr{Z}_{n}(f), \quad \mathscr{Z}_{n}(f)=\left\{\underline{X} \in \mathrm{M}_{n}(\mathbb{C})^{d}: \operatorname{det} f(\underline{X})=0\right\} .
$$

Free locus

For $f \in \mathbb{C}<\underline{x}>$ we define its free locus (Klep- V^{17}) as

$$
\mathscr{Z}(f)=\bigcup_{n \in \mathbb{N}} \mathscr{Z}_{n}(f), \quad \mathscr{Z}_{n}(f)=\left\{\underline{X} \in \mathrm{M}_{n}(\mathbb{C})^{d}: \operatorname{det} f(\underline{X})=0\right\} .
$$

- $\mathscr{Z}_{n}(f)$ is a (possibly degenerate) hypersurface in $\mathrm{M}_{n}(\mathbb{C})^{d}$, invariant under simultaneous conjugation:

$$
\underline{X} \in \mathscr{Z}_{n}(f) \Longrightarrow P \underline{X} P^{-1} \in \mathscr{Z}_{n}(f) \text { for } P \in \mathrm{GL}_{n}(\mathbb{C})
$$

- $\underline{X} \in \mathscr{Z}(f) \Longrightarrow\left(\begin{array}{l}X \\ 0\end{array} \underset{\star}{*}\right) \in \mathscr{Z}(f)$.
- $\mathscr{Z}\left(f_{1} \cdots f_{\ell}\right)=\mathscr{Z}\left(f_{1}\right) \cup \cdots \cup \mathscr{Z}\left(f_{\ell}\right)$
- $\mathscr{Z}\left(f_{1}\right) \cap \cdots \cap \mathscr{Z}\left(f_{\ell}\right) \subseteq \mathscr{Z}(g) \Longrightarrow \mathscr{Z}\left(f_{j}\right) \subseteq \mathscr{Z}(g)$ for some j
(surprising?)

Factorization in free algebra

Opus of P. M. Cohn

Every nc polynomial admits a complete factorization into irreducible factors.

Factorization in free algebra

Opus of P. M. Cohn

Every nc polynomial admits a complete factorization into irreducible factors. Uniqueness?
$\left(x_{1} x_{2}+1\right)\left(x_{3} x_{2} x_{1}+x_{3}+x_{1}\right)=\left(x_{1} x_{2} x_{3}+x_{1}+x_{3}\right)\left(x_{2} x_{1}+1\right)$

Factorization in free algebra

Opus of P. M. Cohn

Every nc polynomial admits a complete factorization into irreducible factors. Uniqueness?

$$
\left(x_{1} x_{2}+1\right)\left(x_{3} x_{2} x_{1}+x_{3}+x_{1}\right)=\left(x_{1} x_{2} x_{3}+x_{1}+x_{3}\right)\left(x_{2} x_{1}+1\right)
$$

$f, g \in \mathbb{C}<\underline{x}>$ are stably associated if

$$
\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)=P\left(\begin{array}{ll}
f & 0 \\
0 & 1
\end{array}\right) Q \quad \text { for some } P, Q \in \mathrm{GL}_{2}(\mathbb{C}<\underline{x}>) .
$$

E.g.

$$
\left(\begin{array}{cc}
1+x_{1} x_{2} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & 1+x_{1} x_{2} \\
-1 & -x_{2}
\end{array}\right)\left(\begin{array}{cc}
1+x_{2} x_{1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x_{2} & -1 \\
1+x_{1} x_{2} & x_{1}
\end{array}\right)
$$

Factorization continued

$\left(\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right)=P\left(\begin{array}{ll}f & 0 \\ 0 & 1\end{array}\right) Q$
Stable association is an equivalence relation
It preserves irreducibility
Equivalence class of a homogeneous $f \in \mathbb{C}<\underline{x}>$ is $\mathbb{C}^{*} \cdot f$
Bergman ${ }^{99}$: equivalence classes are finite $\bmod \mathbb{C}^{*}$
Cohn ${ }^{73}$: irreducible factors in a complete factorization of an nc polynomial are unique up to stable association
$\left(x_{1} x_{2}+1\right)\left(x_{3} x_{2} x_{1}+x_{3}+x_{1}\right)=\left(x_{1} x_{2} x_{3}+x_{1}+x_{3}\right)\left(x_{2} x_{1}+1\right)$
more can be said about admissible swaps etc.

Factorization continued

$$
\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)=P\left(\begin{array}{ll}
f & 0 \\
0 & 1
\end{array}\right) Q
$$

Most relevant today:
f, g stably associated $\Longrightarrow \mathscr{Z}(f)=\mathscr{Z}(g)$
E.g. $I+X_{1} X_{2}$ is singular if and only if $I+X_{2} X_{1}$ is singular.

Irreducibility theorem

Theorem (Helton-Klep- ${ }^{18,22}$)
Let $f \in \mathbb{C}<\underline{x}>$ be irreducible. Then $\mathscr{Z}_{n}(f)$ is a reduced irreducible hypersurface for all but finitely many $n \in \mathbb{N}$.

Irreducibility theorem

Theorem (Helton-Klep- $\mathrm{V}^{18,22}$)
Let $f \in \mathbb{C}<\underline{x}>$ be irreducible. Then $\mathscr{Z}_{n}(f)$ is a reduced irreducible hypersurface for all but finitely many $n \in \mathbb{N}$.

Example: $f=\left(1-x_{1}\right)^{2}-x_{2}^{2}$ is irreducible in $\mathbb{C}\langle\underline{x}\rangle$,
$\mathscr{Z}_{1}(f)=\left\{1-\xi_{1}-\xi_{2}=0\right\} \cup\left\{1-\xi_{1}+\xi_{2}=0\right\}$
is a union of two lines in \mathbb{C}^{2},
$\mathscr{Z}_{2}(f)$ is an irreducible hypersurface in $\mathrm{M}_{2}(\mathbb{C})^{2}$.

Irreducibility theorem

Theorem (Helton-Klep- $\mathrm{V}^{18,22}$)
Let $f \in \mathbb{C}<\underline{x}>$ be irreducible. Then $\mathscr{Z}_{n}(f)$ is a reduced irreducible hypersurface for all but finitely many $n \in \mathbb{N}$.

Example: $f=\left(1-x_{1}\right)^{2}-x_{2}^{2}$ is irreducible in $\mathbb{C}\langle\underline{x}\rangle$,
$\mathscr{Z}_{1}(f)=\left\{1-\xi_{1}-\xi_{2}=0\right\} \cup\left\{1-\xi_{1}+\xi_{2}=0\right\}$
is a union of two lines in \mathbb{C}^{2},
$\mathscr{Z}_{2}(f)$ is an irreducible hypersurface in $\mathrm{M}_{2}(\mathbb{C})^{2}$.
How large can n be so that $\mathscr{Z}_{n}(f)$ splits even though f is irreducible?
Known upper bound is doubly exponential in $\operatorname{deg} f$.

Singulärstellensatz

Nullstellensatz

Theorem (Helton-Klep- $\mathrm{V}^{18,22}$)
(i) Let $f, g \in \mathbb{C}<\underline{x}>$ be irreducible. Then $\mathscr{Z}(f)=\mathscr{Z}(g)$ if and only if f and g are stably associated.
(ii) Let $f, g \in \mathbb{C}<\underline{x}>$. Then $\mathscr{Z}(f) \subseteq \mathscr{Z}(g)$ if and only if every irreducible factor of f is stably associated to a factor of g.
nc zero sets \nVdash ideals
directed nc zero sets $\leftrightarrow \rightsquigarrow l$ left ideals
free loci $\longleftrightarrow \rightsquigarrow$ factorization

Ingredients of the proof

- Linearization from automata thy

Higman, Schützenberger

$$
a+b c \rightsquigarrow\left(\begin{array}{cc}
a & b \\
c & -1
\end{array}\right)
$$

Ingredients of the proof

- Linearization from automata thy

Higman, Schützenberger

$$
f(\underline{X}) \rightsquigarrow L(\underline{X})=A_{0} \otimes I+A_{1} \otimes X_{1}+\cdots+A_{d} \otimes X_{d}, \quad A_{i} \in \mathrm{M}_{\ell}(\mathbb{C})
$$

Ingredients of the proof

- Linearization from automata thy

Higman, Schützenberger
$f(\underline{X}) \rightsquigarrow L(\underline{X})=A_{0} \otimes I+A_{1} \otimes X_{1}+\cdots+A_{d} \otimes X_{d}, \quad A_{i} \in \mathrm{M}_{\ell}(\mathbb{C})$

- factorization of matrices over free algebra

Cohn

Ingredients of the proof

- Linearization from automata thy

Higman, Schützenberger

$$
f(\underline{X}) \rightsquigarrow L(\underline{X})=A_{0} \otimes I+A_{1} \otimes X_{1}+\cdots+A_{d} \otimes X_{d}, \quad A_{i} \in \mathrm{M}_{\ell}(\mathbb{C})
$$

- factorization of matrices over free algebra

Cohn

- Invariant thy for GL_{n} on $\mathrm{M}_{n}(\mathbb{C})^{d}$

Procesi
and $\mathrm{SL}_{\ell} \times \mathrm{SL}_{\ell}$ on $\mathrm{M}_{\ell}(\mathbb{C})^{d+1}$
King, Schofield, van den Berg

Ingredients of the proof

- Linearization from automata thy Higman, Schützenberger

$$
f(\underline{X}) \rightsquigarrow L(\underline{X})=A_{0} \otimes I+A_{1} \otimes X_{1}+\cdots+A_{d} \otimes X_{d}, \quad A_{i} \in \mathrm{M}_{\ell}(\mathbb{C})
$$

- factorization of matrices over free algebra

Cohn

- Invariant thy for GL_{n} on $\mathrm{M}_{n}(\mathbb{C})^{d}$

Procesi
and $\mathrm{SL}_{\ell} \times \mathrm{SL}_{\ell}$ on $\mathrm{M}_{\ell}(\mathbb{C})^{d+1} \quad$ King, Schofield, van den Berg

- Ampliations from NC function theory Voiculescu, Vinnikov $\mathscr{Z}_{n}(f)$ for all $n \quad \rightsquigarrow \quad \mathscr{Z}(f)$?

Real vs Complex

Back towards matrix inequalities
Algebraic geometry: zero sets of complex polynomials in \mathbb{C}^{d}. Real algebraic geometry: zero sets of real polynomials in \mathbb{R}^{d}. real $=$ complex fixed by complex conjugation.

On $\mathbb{C}<\underline{x}>$ there is a natural involution $*: \mathbb{R}$-linear antihomomorphism given by $x_{j}^{*}=x_{j}$ and $\alpha^{*}=\bar{\alpha}$ for $\alpha \in \mathbb{C}$.
real nc polynomials: $f \in \mathbb{C}\langle\underline{x}\rangle, f=f^{*}$. real points: $\mathrm{H}_{n}(\mathbb{C})^{d}$, tuples of hermitian matrices.

Real free locus:

$$
\mathscr{Z}^{\mathrm{re}}(f)=\bigcup_{n} \mathscr{Z}_{n}^{\mathrm{re}}(f), \quad \mathscr{Z}_{n}^{\mathrm{re}}(f)=\mathscr{Z}_{n}(f) \cap \mathrm{H}_{n}(\mathbb{C})^{d}
$$

Real Singulärstellensatz

Bad example: $f=x_{1}^{2}+x_{2}^{2}$ and $g=x_{1}$.
Then $\mathscr{Z}^{\mathrm{re}}(f) \subseteq \mathscr{Z}^{\mathrm{re}}(g)$ but $\mathscr{Z}(f) \nsubseteq \mathscr{Z}(g)$.

Real Singulärstellensatz

Bad example: $f=x_{1}^{2}+x_{2}^{2}$ and $g=x_{1}$.
Then $\mathscr{Z}^{\mathrm{re}}(f) \subseteq \mathscr{Z}^{\mathrm{re}}(g)$ but $\mathscr{Z}(f) \nsubseteq \mathscr{Z}(g)$.
$f=f^{*}$ is unsignatured if one of the following equivalent conditions hold:

- there are $\underline{X}, \underline{Y}$ such that $f(\underline{X}), f(\underline{Y})$ are invertible with distinct signatures;
- there are $\underline{X}, \underline{Y}$ such that $f(\underline{X}) \succ 0 \succ f(\underline{Y})$;
- neither f or $-f$ equals $s_{1} s_{1}^{*}+\cdots+s_{\ell} s_{\ell}^{*}$ for some $s_{j} \in \mathbb{C}\langle\underline{x}\rangle$.

Real Singulärstellensatz

Bad example: $f=x_{1}^{2}+x_{2}^{2}$ and $g=x_{1}$.
Then $\mathscr{Z}^{\mathrm{re}}(f) \subseteq \mathscr{Z}^{\mathrm{re}}(g)$ but $\mathscr{Z}(f) \nsubseteq \mathscr{Z}(g)$.
$f=f^{*}$ is unsignatured if one of the following equivalent conditions hold:

- there are $\underline{X}, \underline{Y}$ such that $f(\underline{X}), f(\underline{Y})$ are invertible with distinct signatures;
- there are $\underline{X}, \underline{Y}$ such that $f(\underline{X}) \succ 0 \succ f(\underline{Y})$;
- neither f or $-f$ equals $s_{1} s_{1}^{*}+\cdots+s_{\ell} s_{\ell}^{*}$ for some $s_{j} \in \mathbb{C}\langle\underline{x}\rangle$.

Theorem (Helton-Klep- ${ }^{22}$)

Let $f, g \in \mathbb{C}<\underline{x}>$. If $f=f^{*}$ is irreducible and unsignatured, then $\mathscr{Z}^{\mathrm{re}}(f) \subseteq \mathscr{Z}^{\mathrm{re}}(g)$ iff f is stably associated to a factor of g.

Some applications

- Helton-Klep-McCullough- V^{21} : poly-time algorithm deciding whether a free semialgebraic set is convex
- Augat-Helton-Klep-McCullough ${ }^{18}$: classification of bianalytic maps between convex free semialgebraic sets
- $\mathrm{V}^{19,20}$: stability and quasi-convexity of nc polynomials
- Jury-Martin-Shamovich ${ }^{21}$: Blaschke-singular-outer factorization, Clarke measures in free analysis
- Arvind-Joglekar ${ }^{22}$: factorization in free algebra
- Arora-Augat-Jury-Sargent ${ }^{22}$: optimal approximants in Fock space

Bertini's theorem

The simplest case - level sets of a polynomial

$$
\left(x_{1}^{3}-2 x_{2}^{2}+\frac{4}{3}\right)\left(x_{1}^{3}-2 x_{2}^{2}\right)+\frac{1}{2}\left(x_{1}^{2}-x_{2}\right)
$$

$\left(x_{1}^{3}-2 x_{2}^{2}+\frac{4}{3}\right)\left(x_{1}^{3}-2 x_{2}^{2}\right)$

Bertini's theorem

The simplest case - level sets of a polynomial

$$
\left(x_{1}^{3}-2 x_{2}^{2}+\frac{4}{3}\right)\left(x_{1}^{3}-2 x_{2}^{2}\right)+\frac{1}{2}\left(x_{1}^{2}-x_{2}\right)
$$

$$
\left(x_{1}^{3}-2 x_{2}^{2}+\frac{4}{3}\right)\left(x_{1}^{3}-2 x_{2}^{2}\right)
$$

Bertini: let $f \in \mathbb{C}[\underline{x}]$. Then either the level sets $\{f=\lambda\}$ are irreducible hypersurfaces for all but finitely many $\lambda \in \mathbb{C}$, or $f=p \circ q$ for some $q \in \mathbb{C}[\underline{x}]$ and $p \in \mathbb{C}[t]$ of degree at least 2 .

Eigenlevel sets and free Bertini's theorem

$f \in \mathbb{C}<\underline{x}>$ is composite if there are $g \in \mathbb{C}<\underline{x}>$ and $p \in \mathbb{C}[t]$ with $\operatorname{deg} p>1$ such that $f=p \circ g$.

An eigenlevel set of $f \in \mathbb{C}\langle\underline{x}>$ for $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$ is

$$
\left\{\underline{X} \in \mathrm{M}_{n}(\mathbb{C})^{d}: \lambda \text { is an eigenvalue of } f(\underline{X})\right\}=\mathscr{Z}_{n}(f-\lambda) .
$$

Eigenlevel sets and free Bertini's theorem

$f \in \mathbb{C}<\underline{x}>$ is composite if there are $g \in \mathbb{C}<\underline{x}>$ and $p \in \mathbb{C}[t]$ with $\operatorname{deg} p>1$ such that $f=p \circ g$.

An eigenlevel set of $f \in \mathbb{C}\langle\underline{x}\rangle$ for $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$ is

$$
\left\{\underline{X} \in \mathrm{M}_{n}(\mathbb{C})^{d}: \lambda \text { is an eigenvalue of } f(\underline{X})\right\}=\mathscr{Z}_{n}(f-\lambda)
$$

Theorem (V^{20})
For $f \in \mathbb{C}\langle\underline{x}\rangle$, the following are equivalent:
(i) f is not composite;
(ii) all but finitely many eigenlevel sets of f are irreducible.

Polynomials with the same eigenvalues

Theorem (V^{20})
Let $f, g \in \mathbb{C}<\underline{x}>$. Then the spectra of $f(\underline{X})$ and $g(\underline{X})$ coincide for every matrix tuple \underline{X} if and only if

$$
f a=a g
$$

for some nonzero $a \in \mathbb{C}\langle\underline{x}\rangle$.

Polynomials with the same eigenvalues

Theorem (V^{20})
Let $f, g \in \mathbb{C}<\underline{x}>$. Then the spectra of $f(\underline{X})$ and $g(\underline{X})$ coincide for every matrix tuple \underline{X} if and only if

$$
f a=a g
$$

for some nonzero $a \in \mathbb{C}\langle\underline{x}\rangle$.
E.g.

$$
\begin{aligned}
& f=x_{1}+x_{2}+x_{1} x_{2}^{2} \\
& g=x_{1}+x_{2}+x_{2}^{2} x_{1} \\
& a=1+x_{1}^{2}+x_{1} x_{2}+x_{2} x_{1}+x_{1} x_{2}^{2} x_{1}
\end{aligned}
$$

satisfy $f a=a g$.

Some open questions

- Bounds

If f is irreducible, for which n is $\mathscr{Z}_{n}(f)$ irreducible?
If $f-\lambda$ factors for $\operatorname{deg}(f)$ different λ, is f composite?

Some open questions

- Bounds

If f is irreducible, for which n is $\mathscr{Z}_{n}(f)$ irreducible?
If $f-\lambda$ factors for $\operatorname{deg}(f)$ different λ, is f composite?

- Equivalence relation $\exists a \neq 0: f a=a g$

Bounds on deg a ?
Are equivalence classes finite?
How to construct whole classes?

Some open questions

- Bounds

If f is irreducible, for which n is $\mathscr{Z}_{n}(f)$ irreducible?
If $f-\lambda$ factors for $\operatorname{deg}(f)$ different λ, is f composite?

- Equivalence relation $\exists a \neq 0: f a=a g$

Bounds on deg a ?
Are equivalence classes finite?
How to construct whole classes?

- Low-rank values of nc polynomials

If rk $f=\mathrm{rk} g$ pointwise, are f and g stably associated?
Geometry of $\{\underline{X}: \operatorname{rk} f(\underline{X})$ is small $\}$

Some open questions

- Bounds

If f is irreducible, for which n is $\mathscr{Z}_{n}(f)$ irreducible?
If $f-\lambda$ factors for $\operatorname{deg}(f)$ different λ, is f composite?

- Equivalence relation $\exists a \neq 0: f a=a g$

Bounds on deg a ?
Are equivalence classes finite?
How to construct whole classes?

- Low-rank values of nc polynomials

If rk $f=\mathrm{rk} g$ pointwise, are f and g stably associated?
Geometry of $\{\underline{X}: \operatorname{rk} f(\underline{X})$ is small $\}$

- Bertini for nc rational expressions

End credits

Things to take home

- nc polynomial inequalities and equations from control, quantum, operator algebras, optimization...
- free locus of an nc polynomial: $\{\operatorname{det} f=0\}$
- "persistent" irreducible components $\nrightarrow \rightarrow$ irreducible factors
- inclusion of free loci $\rightsquigarrow \rightarrow$ factorization in free algebra
- Bertini: eigenlevel sets detect composition

Thank you!

