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Hilbert’s Nullstellensatz
Geometry vs Algebra

x = (x1, . . . , xd)

Hilbert’s Nullstellensatz: let f1, . . . , fℓ, g ∈ C[x ]. Then

f1(α) = · · · = fℓ(α) = 0 =⇒ g(α) = 0 for all α ∈ Cd

if and only if

g r = p1 · f1 + · · ·+ pℓ · fℓ for some p ∈ C[x ] and r ∈ N.

Cornerstone of algebraic geometry:

solutions of polynomial equations vs ideals



Today: a noncommutative Nullstellensatz

To talk about Nullstellensatz, one needs to say what are

1. functions

2. points (evaluations) in affine space

3. zero sets

4. algebraic counterpart



Noncommutative polynomials

Let x = (x1, . . . , xd) be freely noncommuting variables. Elements

of the free algebra C<x> are nc polynomials. We can evaluate

them at points in Mn(C)d . For example, if

f = x31x2x1x2 + x1x2 − x2x1 + 2x1 − 3

and X = (X1,X2) ∈ Mn(C)2, then

f (X ) = X 3
1X2X1X2 + X1X2 − X2X1 + 2X1 − 3In ∈ Mn(C).

polynomials ↭ evaluations on Cd

nc polynomials ↭ evaluations on
⋃
n∈N

Mn(C)d

Why all n? No nonzero nc polynomial vanishes on all matrices; for each

fixed n, there are polynomials vanishing on Mn(C)d .
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Dimension-free “zero sets” of an nc polynomial

Let f1, . . . , fℓ, g ∈ C<x>. There are four popular choices.



Dimension-free “zero sets” of an nc polynomial

(1) nc zero set, “true” zeros

Z (f1, . . . , fℓ) =
⋃
n

{X ∈ Mn(C)d : fi (X ) = 0 ∀i}

Amitsur’s Nullstellensatz57 for fixed n:

Z (f1, . . . , fℓ)∩Mn(C)d ⊆ Z (g)∩Mn(C)d =⇒ g r ∈ (f1, . . . , fℓ)+PIn

In general, can’t draw conclusions for all n at once!

g = 1, f1 = x1x2 − x2x1 − 1

If (f1, . . . , fℓ) is either homogeneous Salomon-Shalit-Shamovich18 or

rationally resolvable Klep-Vinnikov-V17:

Z (f1, . . . , fℓ) ⊆ Z (g) ⇐⇒ g ∈ (f1, . . . , fℓ)



Dimension-free “zero sets” of an nc polynomial

(2) directed zero set, directional zeros

Zdir(f1, . . . , fℓ) =
⋃
n

{(X , v) ∈ Mn(C)d × Cn : fi (X )v = 0 ∀i}

Bergman’s Nullstellensatz04:

Zdir(f1, . . . , fℓ) ⊆ Zdir(g) ⇐⇒ g ∈ C<x>·f1 + · · ·+ C<x>·fℓ



Dimension-free “zero sets” of an nc polynomial

(3) trace zero set, tracial zeros

Ztr(f1, . . . , fℓ) =
⋃
n

{X ∈ Mn(C)d : tr fi (X ) = 0 ∀i}

Brešar-Klep-Špenko Nullstellensatz11,13:

Ztr(f1, . . . , fℓ) ⊆ Ztr(g) ⇐⇒ g or 1 is contained in

C · f1 + · · ·+ C · fℓ + [C<x>,C<x>]



Dimension-free “zero sets” of an nc polynomial

(4) free locus, determinantal zeros

Z (f1, . . . , fℓ) =
⋃
n

{X ∈ Mn(C)d : fi (X ) is singular ∀i}



Why do? propaganda

(A) Matrix inequalities:

{(X1,X2) : X1,X2 hermitian, I − X 2
2 − X1X

2
2X1 ⪰ 0}

The “Zariski closure of the boundary” is

{(X1,X2) : det(I − X 2
2 − X1X

2
2X1) = 0}

(B) NC rational expressions:

(X1 − X2X
−1
4 X3)

−1

its “full” domain is

{(X1,X2,X3,X4) : det
(

X1 X2
X3 X4

)
̸= 0}
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Who cares? propaganda

about dim-free matrix inequalities & rational expressions

▶ Control theory

▶ linear systems are given by matrices

▶ system connections are given by polynomials in matrices

▶ energy dissipation gives inequalities

▶ Operator algebras and systems

▶ Quantum information theory

▶ Noncommutative function theory, free probability

▶ Polynomial optimization

▶ Computational complexity



Free locus

For f ∈ C<x> we define its free locus (Klep-V17) as

Z (f ) =
⋃
n∈N

Zn(f ), Zn(f ) = {X ∈ Mn(C)d : det f (X ) = 0}.

▶ Zn(f ) is a (possibly degenerate) hypersurface in Mn(C)d ,
invariant under simultaneous conjugation:

X ∈ Zn(f ) =⇒ PXP−1 ∈ Zn(f ) for P ∈ GLn(C)

▶ X ∈ Z (f ) =⇒ ( X ⋆
0 ⋆

) ∈ Z (f ).

▶ Z (f1 · · · fℓ) = Z (f1) ∪ · · · ∪ Z (fℓ)

▶ Z (f1) ∩ · · · ∩ Z (fℓ) ⊆ Z (g) =⇒ Z (fj) ⊆ Z (g) for some j

(surprising?)
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Factorization in free algebra
Opus of P. M. Cohn

Every nc polynomial admits a complete factorization into

irreducible factors.

Uniqueness?

(x1x2 + 1)(x3x2x1 + x3 + x1) = (x1x2x3 + x1 + x3)(x2x1 + 1)

f , g ∈ C<x> are stably associated if(
g 0

0 1

)
= P

(
f 0

0 1

)
Q for some P,Q ∈ GL2(C<x>).

E.g.(
1 + x1x2 0

0 1

)
=

(
x1 1 + x1x2

−1 −x2

)(
1 + x2x1 0

0 1

)(
x2 −1

1 + x1x2 x1

)
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Factorization continued

(
g 0
0 1

)
=P

(
f 0
0 1

)
Q

Stable association is an equivalence relation

It preserves irreducibility

Equivalence class of a homogeneous f ∈ C<x> is C∗ · f

Bergman99: equivalence classes are finite mod C∗

Cohn73: irreducible factors in a complete factorization of an nc

polynomial are unique up to stable association

(x1x2+1)(x3x2x1+x3+x1)=(x1x2x3+x1+x3)(x2x1+1)

more can be said about admissible swaps etc.



Factorization continued

(
g 0
0 1

)
=P

(
f 0
0 1

)
Q

Most relevant today:

f , g stably associated =⇒ Z (f ) = Z (g)

E.g. I + X1X2 is singular if and only if I + X2X1 is singular.



Irreducibility theorem

Theorem (Helton-Klep-V18,22)

Let f ∈ C<x> be irreducible. Then Zn(f ) is a reduced irreducible

hypersurface for all but finitely many n ∈ N.

Example: f = (1− x1)
2 − x22 is irreducible in C<x>,

Z1(f ) = {1− ξ1 − ξ2 = 0} ∪ {1− ξ1 + ξ2 = 0}
is a union of two lines in C2,

Z2(f ) is an irreducible hypersurface in M2(C)2.

How large can n be so that Zn(f ) splits even though f is irreducible?

Known upper bound is doubly exponential in deg f .
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Singulärstellensatz Nullstellensatz

Theorem (Helton-Klep-V18,22)

(i) Let f , g ∈ C<x> be irreducible. Then Z (f ) = Z (g) if and

only if f and g are stably associated.

(ii) Let f , g ∈ C<x>. Then Z (f ) ⊆ Z (g) if and only if every

irreducible factor of f is stably associated to a factor of g .

nc zero sets↭ ideals

directed nc zero sets↭ left ideals

free loci↭ factorization



Ingredients of the proof

▶ Linearization from automata thy Higman, Schützenberger

a+ bc ⇝

(
a b

c −1

)

f (X )⇝ L(X ) = A0⊗I+A1⊗X1+· · ·+Ad⊗Xd , Ai ∈ Mℓ(C)

▶ factorization of matrices over free algebra Cohn

▶ Invariant thy for GLn on Mn(C)d Procesi

and SLℓ×SLℓ on Mℓ(C)d+1 King, Schofield, van den Berg

▶ Ampliations from NC function theory Voiculescu, Vinnikov

Zn(f ) for all n ⇝ Z (f )?
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Real vs Complex
Back towards matrix inequalities

Algebraic geometry: zero sets of complex polynomials in Cd .

Real algebraic geometry: zero sets of real polynomials in Rd .

real = complex fixed by complex conjugation.

On C<x> there is a natural involution ∗: R-linear
antihomomorphism given by x∗j = xj and α∗ = ᾱ for α ∈ C.

real nc polynomials: f ∈ C<x>, f = f ∗.

real points: Hn(C)d , tuples of hermitian matrices.

Real free locus:

Z re(f ) =
⋃
n

Z re
n (f ), Z re

n (f ) = Zn(f ) ∩ Hn(C)d .



Real Singulärstellensatz

Bad example: f = x21 + x22 and g = x1.

Then Z re(f ) ⊆ Z re(g) but Z (f ) ̸⊆ Z (g).

f = f ∗ is unsignatured if one of the following equivalent conditions

hold:

▶ there are X ,Y such that f (X ), f (Y ) are invertible with

distinct signatures;

▶ there are X ,Y such that f (X ) ≻ 0 ≻ f (Y );

▶ neither f or −f equals s1s
∗
1 + · · ·+ sℓs

∗
ℓ for some sj ∈ C<x>.

Theorem (Helton-Klep-V22)

Let f , g ∈ C<x>. If f = f ∗ is irreducible and unsignatured, then

Z re(f ) ⊆ Z re(g) iff f is stably associated to a factor of g .
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Some applications

▶ Helton-Klep-McCullough-V21: poly-time algorithm deciding

whether a free semialgebraic set is convex

▶ Augat-Helton-Klep-McCullough18: classification of bianalytic

maps between convex free semialgebraic sets

▶ V19,20: stability and quasi-convexity of nc polynomials

▶ Jury-Martin-Shamovich21: Blaschke–singular–outer

factorization, Clarke measures in free analysis

▶ Arvind-Joglekar22: factorization in free algebra

▶ Arora-Augat-Jury-Sargent22: optimal approximants in Fock

space



Bertini’s theorem
The simplest case - level sets of a polynomial

(x31 − 2x22 + 4
3 )(x

3
1 − 2x22 ) +

1
2 (x

2
1 − x2) (x31 − 2x22 + 4

3 )(x
3
1 − 2x22 )

Bertini: let f ∈ C[x ]. Then either the level sets {f = λ} are

irreducible hypersurfaces for all but finitely many λ ∈ C, or
f = p ◦ q for some q ∈ C[x ] and p ∈ C[t] of degree at least 2.
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Eigenlevel sets and free Bertini’s theorem

f ∈ C<x> is composite if there are g ∈ C<x> and p ∈ C[t] with
deg p > 1 such that f = p ◦ g .

An eigenlevel set of f ∈ C<x> for λ ∈ C and n ∈ N is{
X ∈ Mn(C)d : λ is an eigenvalue of f (X )

}
= Zn(f − λ).

Theorem (V20)

For f ∈ C<x>, the following are equivalent:

(i) f is not composite;

(ii) all but finitely many eigenlevel sets of f are irreducible.

......... how many n, λ?
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Polynomials with the same eigenvalues

Theorem (V20)

Let f , g ∈ C<x>. Then the spectra of f (X ) and g(X ) coincide

for every matrix tuple X if and only if

fa = ag

for some nonzero a ∈ C<x>.

......... deg a?

E.g.

f = x1 + x2 + x1x
2
2

g = x1 + x2 + x22x1

a = 1 + x21 + x1x2 + x2x1 + x1x
2
2x1

satisfy fa = ag .
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Some open questions

▶ Bounds

If f is irreducible, for which n is Zn(f ) irreducible?

If f − λ factors for deg(f ) different λ, is f composite?

▶ Equivalence relation ∃a ̸= 0 : fa = ag

Bounds on deg a?

Are equivalence classes finite?

How to construct whole classes?

▶ Low-rank values of nc polynomials

If rk f = rk g pointwise, are f and g stably associated?

Geometry of {X : rk f (X ) is small}

▶ Bertini for nc rational expressions
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End credits
Things to take home

▶ nc polynomial inequalities and equations

from control, quantum, operator algebras, optimization...

▶ free locus of an nc polynomial: {det f = 0}

▶ “persistent” irreducible components↭ irreducible factors

▶ inclusion of free loci↭ factorization in free algebra

▶ Bertini: eigenlevel sets detect composition

Thank you!


