Associated primes of powers of monomial ideals Bounding the copersistence index

Jutta Rath

$$180 = 2^2 \cdot 3^2 \cdot 5 \qquad \cdots \qquad 2 \qquad 3 \qquad 5$$

$$(x^3 - XY^3) \qquad (x^2 - Y^3) \qquad x$$

$$\mathsf{Ass}(\mathbb{Z}/180\mathbb{Z}) = \{2\mathbb{Z}, 3\mathbb{Z}, 5\mathbb{Z}\}$$
$$\mathsf{Ass}(\mathcal{K}[X, Y]/(X^3 - XY^3)) = \{(X^2 - Y^3), (X)\}$$

edge ideals -- > vertex covers

$$Ass(R/I) = \{(x_2), (x_1, x_3, x_4)\}$$

Definition

R ring, $I \subseteq R$ ideal

 $\mathsf{Ass}(R/I) := \{ P \in \mathsf{Spec}(R) \mid P = I : w \text{ for some } w \in R \}.$

"associated primes of I in R"

Definition

R Noetherian ring, $I \subseteq R$ ideal. Let $I = Q_1 \cap \cdots \cap Q_m$ be an irredundant primary decomposition of *I*. Then

$$\mathsf{Ass}(R/I) \coloneqq \left\{\sqrt{Q_1}, \ldots, \sqrt{Q_m}\right\}.$$

In the following: I monomial ideal in $R = K[X_1, ..., X_r]$.

For $P \in Ass(R/I)$ it holds that

P is a monomial ideal,

• there exists a monomial $X^a := X_1^{a_1} \cdots X_r^{a_r}$ such that

$$P = I : X^a$$
.

$$I = (xy, yz, xz)$$

$$I : x = (y, z)$$

$$I : y = (x, z)$$

$$I : z = (x, y)$$

Ass
$$(R/I) \subseteq \{$$
 (x) (y) (z)
(x,y) (x,z) (y,z)
(x,y,z) $\}$

$$I^{2} = (x^{2}y^{2}, xy^{2}z, x^{2}yz, y^{2}z^{2}, xyz^{2}, x^{2}z^{2})$$

$$I^{2} : x^{2}y = (y, z)$$

$$I^{2} : y^{2}x = (x, z)$$

$$I^{2} : z^{2}y = (x, y)$$

$$I^{2} : xyz = (x, y, z)$$
Ass $(R/I^{2}) \subseteq \{$ (x) (y) (z)
(x, y) (x, z) (y, z)
(x, y, z) \}

The set of associated primes of an ideal changes when looking at its powers.

$$\mathsf{Ass}(R/J^3) = \mathsf{Ass}(R/J^2) \cup \\ \left\{ (x_1, x_2, x_3, x_4, x_5, x_6) \right\}$$

$$\operatorname{Ass}(R/J^4) = \operatorname{Ass}(R/J^3)$$

 $\operatorname{Ass}(R/J^n) = \operatorname{Ass}(R/J^3)$

for all $n \ge 3$

Proposition (Francisco, Ha, Tuyl, 2011)

If $(Ass(R/J^n))_{n\in\mathbb{N}}$ is constant after $N\in\mathbb{N}$, then $\chi(G)\leq N+1$

 $\operatorname{Ass}(R/J^n) = \operatorname{Ass}(R/J^3)$

for all $n \ge 3$

Proposition (Francisco, Ha, Tuyl, 2011)

If $(Ass(R/J^n))_{n\in\mathbb{N}}$ is constant after $N\in\mathbb{N}$, then $\chi(G)\leq N+1$

Changes of $Ass(R/I^n)$ in n?

▶ Brodmann, 1979: $(Ass(R/I^n))_{n \in \mathbb{N}}$ stabilizes

Definition

stability index of *I*: smallest $B'_{=} \in \mathbb{N}$ such that for all $n \geq B'_{=}$

$$\mathsf{Ass}(R/I^n) = \mathsf{Ass}(R/I^{\mathsf{B}_{=}^{\prime}})$$

Some known results about the changes of $Ass(R/I^n)$

- edge ideals [Martínez-Bernal, Morey, Villarreal, 2012]
- cover ideals of perfect graphs [Francisco, Hà, Tuyl, 2011]
- ideals with all powers integrally closed [Ratliff, 1984]

$(Ass(R/I^n))_{n\in\mathbb{N}}$ is increasing

- ideals can be constructed with
 - (Ass(R/Iⁿ))_{n∈ℕ} not increasing [Kaiser, Stehlík, Škrekovski, 2012]
 - $(\operatorname{Ass}(R/I^n))_{n\in\mathbb{N}}$ not monotone [McAdam, Eakin, 1979]
 - B[/]₌ arbitrarily large [Hà, Nguyen, Trung, Trung, 2021]
- conjecture [J. Herzog]: if I square-free, $B_{=}^{I} \leq r 1$
- upper bound for $B'_{=}$ of monomial ideals

I monomial ideal in $K[X_1, \ldots, X_r]$

- ► *r* − number of variables
- ▶ *s* − number of generators
- d maximal total degree of the generators

Theorem (Hoa, 2006)

 $(\operatorname{Ass}(R/I^n))_{n\in\mathbb{N}}$ is

- increasing for $n \ge s^{r+3}(s+r)^4 d^2 (2d^2)^{s^2-s+1}$,
- decreasing for $n \ge d(rs + s + d) (\sqrt{r})^{r+1} (\sqrt{2}d)^{(r+1)(s-1)}$.

Example

$$I = (a^6, b^6, a^5b, ab^5, ca^4b^4, a^4xy^2, b^4x^2y) \subseteq K[a, b, c, x, y]$$

- upper bound $\approx 10^{108}$
- stability index: 4

persistence index of *I*: smallest integer B_{\subseteq}^{I} such that Ass $(R/I^{n}) \subseteq Ass(R/I^{n+1})$ for all $n \ge B_{\subseteq}^{I}$.

copersistence index of *I*: smallest integer B_{\supset}^{I} such that

$$\operatorname{Ass}(R/I^n) \supseteq \operatorname{Ass}(R/I^{n+1})$$
 for all $n \ge \mathsf{B}'_{\supseteq}$.

$$\mathsf{B}_{=}^{\prime}=\mathsf{max}\{\mathsf{B}_{\subseteq}^{\prime},\mathsf{B}_{\supseteq}^{\prime}\}$$

Theorem (Heuberger, R., Rissner, 2023)

I monomial ideal in $K[X_1, \ldots, X_r]$

r – number of variables

d – maximal total degree of the generators

 $Ax \leq b$ system of inequalities (fulfilling properties explained on the next slides);

 $\sigma : \mathbb{N}^3 \to \mathbb{N} \text{ such that}$ $\bullet \ \sigma(\mathbf{d}, \mathbf{r}, \mathbf{s}) \ge \Delta(A \mid \mathbf{b})(\operatorname{size}(A) + 1) \text{ and}$ $\bullet \ \sigma \text{ is non-decreasing in } \mathbf{d}, \mathbf{r} \text{ and } \mathbf{s};$

Then

$$\mathsf{B}_{\supseteq}^{I} \leq \sigma(d, r, s).$$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

 $\alpha_{11} + \cdots + \alpha_{1r} = n, \ \alpha_{11}a_1 + \cdots + \alpha_{1r}a_r \leq (1, 0, \dots, 0) + h$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

 $\alpha_{11} + \cdots + \alpha_{1r} = n$, $\alpha_{11}a_1 + \cdots + \alpha_{1r}a_r \le (1, 0, \dots, 0) + h$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

 $\alpha_{11} + \cdots + \alpha_{1r} = n$, $\alpha_{11}a_1 + \cdots + \alpha_{1r}a_r \leq (1, 0, \dots, 0) + h$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

 $\alpha_{11} + \cdots + \alpha_{1r} = n, \quad \alpha_{11}a_1 + \cdots + \alpha_{1r}a_r \leq (1, 0, \ldots, 0) + h$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

$$\alpha_{11} + \cdots + \alpha_{1r} = n, \ \alpha_{11}a_1 + \cdots + \alpha_{1r}a_r \leq (1,0,\ldots,0) + h$$

$$I = (X^{a_1}, \dots, X^{a_s})$$

$$\alpha_{11} + \cdots + \alpha_{1r} = n, X^{\alpha_{11}a_1 + \cdots + \alpha_{1r}a_r} \mid X_1 \cdot X^h$$

 $I = (X^{a_1}, \ldots, X^{a_s})$

 $X_1 \cdot X^h \in I^n$,

$$I = (X^{a_1}, \ldots, X^{a_s})$$

 $X_1 \cdot X^h \in I^n, \ldots, X_r \cdot X^h \in I^n$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

 $X_1 \cdot X^h \in I^n, \ldots, X_r \cdot X^h \in I^n \implies X^h \in I^n: (X_1, \ldots, X_r)$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

$$X_1 \cdot X^h \in I^n, \ldots, X_r \cdot X^h \in I^n \implies X^h \in I^n: (X_1, \ldots, X_r)$$

Proposition (Folklore)

 $(X_1,\ldots,X_r)\in \mathsf{Ass}(R/I^n)$ if and only if $\exists X^h\in I^n:(X_1,\ldots,X_r)\setminus I^n$

$$I = (X^{a_1}, \ldots, X^{a_s})$$

$$X_1 \cdot X^h \in I^n, \ldots, X_r \cdot X^h \in I^n \implies X^h \in I^n: (X_1, \ldots, X_r)$$

Proposition (Folklore)

 $(X_1,\ldots,X_r)\in \mathsf{Ass}(R/I^n)$ if and only if $\exists X^h\in I^n:(X_1,\ldots,X_r)\setminus I^n$

Theorem (Hoa, 2006)

$$\mathsf{B}'_{\supseteq} \leq d(rs + s + d) \left(\sqrt{r}\right)^{r+1} \left(\sqrt{2}d\right)^{(r+1)(s-1)}$$

=: $\sigma_1(d, s, r)$

$$\blacktriangleright (X_1,\ldots,X_r) \in \mathsf{Ass}(R/I^n) \Longleftrightarrow I^n : (X_1,\ldots,X_r)/I^n \neq 0$$

Theorem (Heuberger, R., Rissner, 2023)

$$\mathsf{B}_{\supseteq}^{l} \leq (rs + r + 2)(\sqrt{r})^{r+2}(d+1)^{rs}$$

=: $\sigma_{2}(d, s, r)$

Todo's and open questions

Can the bound be further reduced by

- ▶ using a different characterization of $(X_1, ..., X_r) \in Ass(R/I^n)$?
- changing the structure of the matrix?
- finding better estimates on $\Delta(A \mid b)$?

Square-free monomial ideals:

- A has entries in $\{0, 1, -1\}$
- Can we get close to known bounds for edge ideals?
- If yes, can this be adapted to general square-free ideals (edge ideals of hypergraphs)?

Thank you!