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The nearring M0(G )

I Let (G ,+) be a group, not necessarily abelian.

I M0(G ) = {f : G → G | f (0) = 0} is a nearring under pointwise
addition and function composition.

I While M0(G ) is a simple near-ring, it does contain rings of
functions.

I For example, if G is abelian, End(G ), under the same operations, is
a ring contained in M0(G ).
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Rings determined by Covers of Groups

I Let C := {Aα | α ∈ A} be an abelian cover of G , i.e., each cell Aα is
an abelian subgroup of G and ∪α∈AAα = G .

I C determines a ring R(C ), of zero preserving functions on G ,
defined by R(C ) := {f ∈ M0(G ) | f |Aα ∈ End(Aα) for all α ∈ A}.
We call R(C ) the ring determined by the cover C . Note that the
zero function, 0, and the identity function, id, are in R(C ).

I On the other hand, let S be a ring in M0(G ). Then C(S) := {B ⊆
G | B is an abelian subgroup of G and S |B ⊆ End(B)} is an abelian
cover of G , called the cover of G determined by the ring S.
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A Galois Connection

I Theorem 1.1 (Cannon, Maxson, Neuerburg, 2008) Let G be a
group, let Γ denote the collection of abelian covers of G and let Λ
denote the collection of rings in M0(G ). Then the maps
R : Γ → Λ, C 7→ R(C ) and C : Λ→ Γ, S 7→ C(S), determine a
Galois connection between Γ and Λ.

I For any abelian cover C , CR(C ) ⊇ C . Moreover,
RCR(C ) = R(C ). We call CR(C ) the closure of C and denote this
by C . The cover C is closed if C = C .

I Also, for any ring T in M0(G ), T ⊆ RC(T ), so when T is a
maximal ring, T = RC(T ). Hence T is determined by some abelian
cover of G .

I When M0(G ) contains a unique maximal ring, we say G ∈ UMR.
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Some Basic Results

I Theorem 1.2 (Kreuzer, Maxson, 2006) Let A be an abelian
group. If A is a torsion group or finitely generated, then End(A) is a
maximal ring in M0(A).

I Theorem 1.3 If G is a finite group then R(Mc) is a maximal ring
in M0(G ), where Mc denotes the cover by maximal cyclic subgroups.

I Corollary 1.4 Let G be a finite group. If there exists an abelian
cover D of G such that R(D) * R(Mc) then G /∈ UMR.

I Corollary 1.5 If G is a finite group and every maximal cyclic
subgroup is also maximal as an abelian subgroup, then G ∈ UMR.
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Abelian Groups

I Lemma 2.1 If G is a cyclic group, then G ∈ UMR and End(G ) is
the unique maximal ring in M0(G ).

I Lemma 2.2 Let A be a torsion abelian group, A = ⊕pAp. If each
Ap is cyclic then A ∈ UMR and End(A) is the unique maximal ring
in M0(A).

I Lemma 2.3 If A is a torsion abelian group, A = ⊕pAp, such that
each Ap is a bounded group. Then A ∈ UMR if and only if each Ap

is cyclic. In this case, End(A) is the unique maximal ring in M0(A).

I Theorem 2.4 Let A be a finitely generated abelian group. Then
A ∈ UMR if and only if A is cyclic.



Abelian Groups

I Lemma 2.1 If G is a cyclic group, then G ∈ UMR and End(G ) is
the unique maximal ring in M0(G ).

I Lemma 2.2 Let A be a torsion abelian group, A = ⊕pAp. If each
Ap is cyclic then A ∈ UMR and End(A) is the unique maximal ring
in M0(A).

I Lemma 2.3 If A is a torsion abelian group, A = ⊕pAp, such that
each Ap is a bounded group. Then A ∈ UMR if and only if each Ap

is cyclic. In this case, End(A) is the unique maximal ring in M0(A).

I Theorem 2.4 Let A be a finitely generated abelian group. Then
A ∈ UMR if and only if A is cyclic.



Abelian Groups

I Lemma 2.1 If G is a cyclic group, then G ∈ UMR and End(G ) is
the unique maximal ring in M0(G ).

I Lemma 2.2 Let A be a torsion abelian group, A = ⊕pAp. If each
Ap is cyclic then A ∈ UMR and End(A) is the unique maximal ring
in M0(A).

I Lemma 2.3 If A is a torsion abelian group, A = ⊕pAp, such that
each Ap is a bounded group. Then A ∈ UMR if and only if each Ap

is cyclic. In this case, End(A) is the unique maximal ring in M0(A).

I Theorem 2.4 Let A be a finitely generated abelian group. Then
A ∈ UMR if and only if A is cyclic.



Abelian Groups

I Lemma 2.1 If G is a cyclic group, then G ∈ UMR and End(G ) is
the unique maximal ring in M0(G ).

I Lemma 2.2 Let A be a torsion abelian group, A = ⊕pAp. If each
Ap is cyclic then A ∈ UMR and End(A) is the unique maximal ring
in M0(A).

I Lemma 2.3 If A is a torsion abelian group, A = ⊕pAp, such that
each Ap is a bounded group. Then A ∈ UMR if and only if each Ap

is cyclic. In this case, End(A) is the unique maximal ring in M0(A).

I Theorem 2.4 Let A be a finitely generated abelian group. Then
A ∈ UMR if and only if A is cyclic.



Finite Nilpotent Groups

I If G is finite and nilpotent, then G = S(p1)⊕ · · · ⊕ S(pt), the
decomposition of G into the direct sum of its Sylow subgroups
S(pi ), i = 1, . . . , t. It is known that if R is a maximal ring in
M0(G ), then R ∼= R1 ⊕ · · · ⊕ Rt where Ri is a maximal ring in
M0(S(pi )) for each i = 1, . . . , t.

I Theorem 3.1 Let G be a finite p-group. Then G ∈ UMR if and
only if p = 2 and G is cyclic or a generalized quaternion group, or
p ≥ 3 and G is cyclic.

I Corollary 3.2 Let G be a finite nilpotent group. Then G ∈ UMR
if and only if its 2-Sylow subgroup is cyclic or a generalized
quaternion group, and its p-Sylow subgroups for odd p are cyclic.
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The symmetric groups Sn

I For n = 3, S3 has a unique abelian cover by maximal cyclic
subgroups which are also maximal subgroups, hence by Corollary
1.5, S3 ∈ UMR.

I Theorem 4.1 Let σ = t1[k1] + t2[k2] + · · ·+ tr [kr ] ∈ Sn, where the
ki are all different and the integers ti ≥ 1 for all i = 1, . . . , r . Then
〈σ〉 is not maximal cyclic in Sn if and only if there exist partitions
ti = si,1 + · · ·+ si,yi for each i (where the si,j are positive integers),
with at least one si,j ≥ 2, and an integer q such that si,j |q and

gcd
(

q
si,j
, ki

)
= 1 for all i and j.

I Example: In S12, 〈σ〉 = 〈[2] + [2] + [4] + [4]〉 is not maximal cyclic.
In S16, 〈σ〉 = 〈[3] + [3] + [4] + [6]〉 is maximal cyclic.
In Sn, an n − 4 cycle generates a maximal cyclic subgroup if and
only if n ≡ 4 (mod 6).
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The symmetric groups Sn

I Let P be a partition of M = {1, 2, . . . , n}. For K ∈ P, define +K

such that (K ,+K ) is an abelian group. Consider the sequence

a = (aK )K∈P , aK ∈ K . Define fa : M → M by fa(b) = aK +K b,

(b ∈ K ). Then H = {fa} is an abelian subgroup of Sn.

I Theorem 4.2 (Winkler, 1993) H is a maximal abelian subgroup
of Sn if and only if P contains at most one singleton.

I Theorem 4.3 Sn ∈ UMR if and only if n ∈ {3, 5, 7, 9}.
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An Application

I Theorem 5.1 Let G be a finite non-abelian group, a finitely
generated abelian group, or a torsion abelian group with bounded
p-components. Then every subring of M0(G ) is commutative if and
only if G ∈ UMR.

I Corollary 5.2 For a finite group G, every subring of M0(G ) is
commutative if and only if G ∈ UMR.
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