Regular t-ideals of Polynomial Rings and Semigroup Rings with Zero Divisors

Jason Juett ${ }^{1}$

${ }^{1}$ University of Dubuque

July 10, 2023

Introduction and Motivation

This talk is based on my paper "Regular t-ideals of polynomial rings and semigroup rings," currently in preparation.

Theorem (D.D. Anderson et al., 1995; cf. Querré, 1980)
If D is integrally closed with quotient field K, then each t-ideal of $D[X]$ has the form $h l[X]$ with $h \in K[X]$ and I a t-ideal of D.

Corollary (Folklore)
A domain D is a UFD, Krull domain, π-domain, (generalized) GCD domain, or PVMD if and only if the same holds for $D[X]$.

Question (Anderson et al., 1985; Glaz, 2000; Lucas, 2005)
When do analogous properties ascend to polynomial/semigroup rings with zero divisors? Are there forms of the above theorem that hold for polynomial/semigroup rings with zero divisors?

A Tale of Two t-operations

Throughout, let R be a commutative ring.
Definition (Folklore; Lucas 1989-2005)
(1) $\operatorname{Reg}(R):=\{r \in R \mid((0): R(r))=(0)\}$. An ideal $/$ is regular if $I \cap \operatorname{Reg}(R) \neq \emptyset$ and semiregular if it has a f.g. faithful subideal.
(2) $T(R):=\{a / r \mid a \in R, r \in \operatorname{Reg}(R)\}$ is R 's total quotient ring.
(3) $Q_{0}(R):=\bigcup\left\{\left(R:_{T(R[X])} I\right) \mid I\right.$ is a semiregular ideal of $\left.R\right\}$ is the ring of finite fractions of R [Lucas]. Note: $T(R) \subseteq Q_{0}(R)$, with equality if R has Property A (i.e., semiregular ideals are regular).
(4) Set $I^{-1}:=\left(R:_{T(R)} I\right), I^{t}:=\bigcup\left\{\left(J^{-1}\right)^{-1} \mid J\right.$ is a f.g. R-submodule of $\left.I\right\}$ for $I \in \operatorname{Mod}_{R}(T(R))$. Similarly define $I_{0}^{-1_{0}}, I_{0}^{t_{0}}$ for $I_{0} \in \operatorname{Mod}_{R}\left(Q_{0}(R)\right)$.
(5) I is fractional if I^{-1} is regular; I_{0} is Q_{0}-fractional if $I_{0}^{-1_{0}}$ is semiregular.

Note: $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ has Property A and is Marot (i.e., regular ideals are regularly generated) and $Q_{0}(R)\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ is an overring of $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$.

Proposition (Juett, 2023; cf. Lucas, 2005)
$I_{0}\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ is a regular fractional ideal of $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ if and only if I_{0} is a semiregular Q_{0}-fractional ideal of R, in which case $I_{0}\left[\left\{X_{\lambda}\right\}_{\lambda}\right]^{t}=I_{0}^{t_{0}}\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$.

Regular t-ideals and Divisibility Properties

(1) A (fractional) ideal I of R is a (fractional) t-ideal if $I=I^{t}, t$-finite if $I^{t}=J^{t}$ for some finitely generated (fractional) ideal J, invertible if $I^{-1}=R$, and t-invertible if $\left(I^{-1}\right)^{t}=R$.
(2) R is factorial if every regular nonunit is a unique up to order and associates product of irreducibles [D.D. Anderson \& Markanda, 1985]. A Marot ring is factorial if and only if every regular t-ideal is principal.
(3) R is a regular π-ring if regular proper principal ideals are products of prime ideals, or equivalently regular t-ideals are invertible [Kang, 1991].
(4) R is a GCD ring if every pair of regular elements has a GCD [D.D. Anderson \& Markanda, 1985]. A Marot ring is a GCD ring if and only if every t-finite regular t-ideal is principal [Elliott, 2019].
(5) R is a G-GCD ring if every pair of invertible ideals has a GCD [Juett, 2023; cf. D.D. \& D.F. Anderson, 1980]. A Marot ring is a G-GCD ring if and only if every t-finite regular t-ideal is invertible.
(6) A Glaz (G-)GCD ring is a (G-)GCD p.p. ring [Glaz, 2000].
(7) R is Krull if every regular t-ideal is t-invertible [Elliott, 2019].
(8) R is a Prüfer v-multiplication ring (PVMR) if every t-finite regular t-ideal is t-invertible.

Regular t-ideals of Polynomial Rings

Theorem (Juett, 2023)

(1) Every regular t-ideal of $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ has the form $h /\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ with $h \in T(R)\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ and I a (regular t-)ideal of R if and only if R is a finite direct product of integrally closed domains.
(2) Every t-finite regular t-ideal of $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ has the form $h l\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ with $h \in T(R)\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ and I a (t-finite regular t-)ideal of R if and only if R is integrally closed and $T(R)$ is von Neumann regular.

Divisibility Properties of Polynomial Rings

Corollary

(1) $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ is Krull (resp., a regular π-ring, factorial) if and only if R is a finite direct product of Krull domains (resp., π-domains, UFDs) [D.D. Anderson et al., 1985].
(2) $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ is a PVMR if and only if R is a PVMR and $T(R)$ is von Neumann regular [Juett, 2023; cf. Lucas 2005].
(3) $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ is a (G-)GCD ring if and only if R is a (G-)GCD ring and $T(R)$ is von Neumann regular [Juett, 2023].
(9) $R\left[\left\{X_{\lambda}\right\}_{\lambda}\right]$ is a Glaz (G-)GCD ring if and only if R is a Glaz (G-)GCD ring [Juett, 2023].

Basic Properties of $R[S]$

Throughout, let $(S,+)$ be a nontrivial torsion-free cancellative monoid with difference group G.

Proposition (Folklore)

(1) $\operatorname{Reg}(R[S])=\{f \in R[S] \mid$ af $\neq 0$ for all $0 \neq a \in R\}$, so $Q_{0}(R)[S]$ is an overring of $R[S]$.
(2) $R[S]$ is Marot with Property A.
(3) If $R=\prod_{i=1}^{n} R_{i}$, then $T(R)=\prod_{i=1}^{n} T\left(R_{i}\right)$, $Q_{0}(R)=\prod_{i=1}^{n} Q_{0}\left(R_{i}\right)$, and $R[S]=\prod_{i=1}^{n} R_{i}[S]$.

Proposition (Juett, 2023)

$I_{0}[J]$ is a regular fractional ideal of $R[S]$ if and only if I_{0} is a semiregular Q_{0}-fractional ideal of R and J is a nonempty fractional ideal of S, in which case $I_{0}[J]^{t}=I_{0}^{t_{0}}\left[J^{t}\right]$.

Regular t-ideals of Semigroup Rings

Theorem (Juett, 2023; cf. Chang, 2011)
The following are equivalent.
(1) Every regular t-ideal A of $R[S]$ has the form $A=\prod_{i=1}^{n} h_{i} l_{i}\left[J_{i}\right]$, where $R=\prod_{i=1}^{n} R_{i}$, each $h_{i} \in T\left(R_{i}\right)[G]$, each I_{i} is a regular t-ideal of R_{i}, each J_{i} is a nonempty t-ideal of S, and we can take each $h_{i}=1$ if the monomials of A generate a regular ideal.
(2) R is a finite direct product of integrally closed domains, S is root closed, and G satisfies the ascending chain condition on cyclic subgroups.
(3) $R[S]$ is i.c. and $T(R)[G]$ is Krull (or equivalently factorial).

Theorem (Juett, 2023)
The following are equivalent.
(1) Every t-finite regular t-ideal A of $R[S] \ldots$
(2) R is integrally closed, $T(R)$ is VNR, and S is root closed.
(3) $R[S]$ is i.c. and $T(R)[G]$ is a $P V M R$ (or equiv. a Glaz GCD ring).

Divisibility Properties of Semigroup Rings

Corollary (Juett et al., 2021-2023)

(1) $R[S]$ is Krull if and only if R is a finite direct product of Krull domains, S is Krull, and G satisfies the ascending chain condition on cyclic subgroups.
(2) $R[S]$ is a regular π-ring (resp., factorial) if and only if R is a finite direct product of π-domains (resp., UFDs), S is factorial, and G satisfies the ACC on cyclic subgroups.
(3) $R[S]$ is a $P V M R$ if and only if R is a PVMR, $T(R)$ is von Neumann regular, and S is a PVMS.
(9) $R[S]$ is a (G-)GCD ring if and only if R is a (G-)GCD ring, $T(R)$ is von Neumann regular, and S is a GCD monoid.
(5) $R[S]$ is a Glaz (G-)GCD ring if and only if R is a Glaz (G-)GCD ring and S is a GCD monoid.

Conclusion and Summary

- I extended the classic result about t-ideals of polynomial domains to polynomial/semigroup rings with zero divisors.
- Application: I determined when polynomial/semigroup rings with zero divisors satisfy several different divisibility properties.
- Thank you for your attention. Any questions?

