The $D+M$ Construction in Semidomains

Harold Polo

University of California, Irvine
(joint work with F. Gotti)

Conference on Rings and Factorizations 2023
July 10-14, Graz, Austria.

Structure

1. Background
2. Semidomains
3. Subtractive retracts of semidomains
4. The $K+M$ representation
5. The $D+M$ construction
6. References

Background: Monoids

Throughout this talk, a monoid is a semigroup with identity that is cancellative and commutative.

We denote by $\mathcal{U}(M)$ the set of invertible elements of M, and M is reduced if $\mathcal{U}(M)=\{0\}$.

Given a monoid M, we denote by $\mathcal{G}(M)$ the group of differences of M.

Background: Semirings

A commutative semiring S is a nonempty set endowed with two binary operations denoted by ' + ' and ' \cdot ' and called addition and multiplication, respectively, such that the following conditions hold:

- $(S,+)$ is a monoid with its identity element denoted by 0 ;
- (S, \cdot) is a commutative semigroup with an identity element denoted by 1 ;
- $b \cdot(c+d)=b \cdot c+b \cdot d$ for all $b, c, d \in S$;
- $0 \cdot b=0$ for all $b \in S$.

Background: Semirings

A commutative semiring S is a nonempty set endowed with two binary operations denoted by ' + ' and ' \cdot ' and called addition and multiplication, respectively, such that the following conditions hold:

- $(S,+)$ is a monoid with its identity element denoted by 0 ;
- (S, \cdot) is a commutative semigroup with an identity element denoted by 1 ;
- $b \cdot(c+d)=b \cdot c+b \cdot d$ for all $b, c, d \in S$;
- $0 \cdot b=0$ for all $b \in S$.

A subset S^{\prime} of a semiring S is a subsemiring of S if $\left(S^{\prime},+\right)$ is a submonoid of $(S,+)$ that contains 1 and is closed under multiplication.

Background: Semirings

If R and S are semirings, then a function $\varphi: R \rightarrow S$ is a semiring homomorphism if the following conditions hold:

1. $\varphi\left(0_{R}\right)=0_{S}$;
2. $\varphi\left(1_{R}\right)=1_{S}$;
3. $\varphi(x+y)=\varphi(x)+\varphi(y)$;
4. $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)$.

Background: Semirings

If R and S are semirings, then a function $\varphi: R \rightarrow S$ is a semiring homomorphism if the following conditions hold:

1. $\varphi\left(0_{R}\right)=0_{S}$;
2. $\varphi\left(1_{R}\right)=1_{S}$;
3. $\varphi(x+y)=\varphi(x)+\varphi(y)$;
4. $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)$.

Sometimes we will abuse notation and say that $s_{1}-s_{2} \in S$ provided that there exists $s \in S$ such that $s+s_{2}=s_{1}$.

A semiring S is yoked provided that, for every $s_{1}, s_{2} \in S$, either $s_{1}-s_{2} \in S$ or $s_{2}-s_{1} \in S$. A semifield is a semiring in which every nonzero element has a multiplicative inverse.

Background: Ideals

An ideal I of a semiring S is a nonempty subset of S satisfying the following two conditions:

1. if $x, y \in I$, then $x+y \in I$;
2. if $s \in S$ and $x \in I$, then $s x \in I$.

An ideal I is maximal provided that $I \neq S$ and, for any ideal J containing I, we have that either $J=I$ or $J=S$. An ideal I is prime provided that $I \neq S$ and if $a \cdot b \in I$, then either $a \in I$ or $b \in I$.

Ex: Observe that all multiples of $k \in \mathbb{N}_{>1}$ form an ideal of the semiring \mathbb{N}_{0}. Also note that $\mathbb{N}_{0} \backslash\{1\}$ is the only maximal ideal of \mathbb{N}_{0}.

Background: Ideals

An ideal I of a semiring S is called subtractive if $s+a \in I$ for $s \in S$ and $a \in I$, then $s \in I$. We denote by $\mathcal{I}(S)$ the set consisting of all subtractive ideals of the semiring S.

A maximal element of $\mathcal{I}(S)$ (with respect to inclusion) is called a subtractive maximal ideal of S.

Background: Ideals

An ideal I of a semiring S is called subtractive if $s+a \in I$ for $s \in S$ and $a \in I$, then $s \in I$. We denote by $\mathcal{I}(S)$ the set consisting of all subtractive ideals of the semiring S.

A maximal element of $\mathcal{I}(S)$ (with respect to inclusion) is called a subtractive maximal ideal of S.

Ex: All subtractive ideals of \mathbb{N}_{0} are principal. So, the subtractive maximal ideals are the ones generated by prime numbers.

Background: Ideals

An ideal I of a semiring S is called subtractive if $s+a \in I$ for $s \in S$ and $a \in I$, then $s \in I$. We denote by $\mathcal{I}(S)$ the set consisting of all subtractive ideals of the semiring S.

A maximal element of $\mathcal{I}(S)$ (with respect to inclusion) is called a subtractive maximal ideal of S.

Ex: All subtractive ideals of \mathbb{N}_{0} are principal. So, the subtractive maximal ideals are the ones generated by prime numbers.

Proposition (Golan, 1999)

An ideal $/$ of a semiring S is the kernel of a semiring homomorphism if and only if I is subtractive.

Background: Semimodules

Let R be a (commutative) semiring. An R-semimodule consists of an additively written commutative monoid M and a map from $R \times M$ to M satisfying the following:

1. $r(m+n)=r m+r n$;
2. $(r+s) m=r m+s m$;
3. $(\mathrm{rs}) \mathrm{m}=\mathrm{r}(\mathrm{sm})$;
4. $1 \mathrm{~m}=\mathrm{m}$;
5. $0 \mathrm{~m}=0$.

Semidomains

Definition

We say that a semiring S is a semidomain provided that S is a subsemiring of an integral domain.

Semidomains

Definition

We say that a semiring S is a semidomain provided that S is a subsemiring of an integral domain.

Examples: integral domains, $\mathbb{N}_{0}, \mathbb{N}_{0}[x], \mathbb{N}_{0} \llbracket x \rrbracket$, positive semirings (i.e., subsemirings of $\mathbb{R}_{\geq 0}$)

Semidomains

Definition

We say that a semiring S is a semidomain provided that S is a subsemiring of an integral domain.

Examples: integral domains, $\mathbb{N}_{0}, \mathbb{N}_{0}[x], \mathbb{N}_{0} \llbracket x \rrbracket$, positive semirings (i.e., subsemirings of $\mathbb{R}_{\geq 0}$)

Lemma (Gotti and P., 2023)

For a semiring S, the following conditions are equivalent.
(a) S is a semidomain.
(b) The multiplication of S extends to $\mathcal{G}(S)$ turning $\mathcal{G}(S)$ into an integral domain.

Subtractive retracts

When can we represent a semidomain T as $K+M$, where K is a yoked semifield and M is a subtractive maximal ideal of T ?

Recall: A semiring S is yoked provided that, for every $s_{1}, s_{2} \in S$, either $s_{1}-s_{2} \in S$ or $s_{2}-s_{1} \in S$. A semifield is a semiring in which every nonzero element has a multiplicative inverse.

Subtractive retracts

Definition

Let T be a semiring, and let S be a subsemiring of T. We say that S is a retract of T provided that there exists a semiring homomorphism $\varphi: T \rightarrow S$ called a retraction that is the identity mapping on S.

Subtractive retracts

Definition

Let T be a semiring, and let S be a subsemiring of T. We say that S is a retract of T provided that there exists a semiring homomorphism $\varphi: T \rightarrow S$ called a retraction that is the identity mapping on S.

Ex: Consider the semidomain

$$
S=\left\{c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{N}_{0}[x] \mid \text { either } c_{0} \neq 0 \text { or } c_{0}=c_{1}=0\right\}
$$

Note that the semiring homomorphism $\varphi: S \rightarrow \mathbb{N}_{0}$ given by $\varphi(p)=p(0)$ is a retraction. However, \mathbb{N}_{0} is not a direct summand of S as an \mathbb{N}_{0}-semimodule.

Subtractive retracts

Definition

Let T be a semiring, and let S be a subsemiring of T. We say that S is a retract of T provided that there exists a semiring homomorphism $\varphi: T \rightarrow S$ called a retraction that is the identity mapping on S.

Ex: Consider the semidomain

$$
S=\left\{c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{N}_{0}[x] \mid \text { either } c_{0} \neq 0 \text { or } c_{0}=c_{1}=0\right\} .
$$

Note that the semiring homomorphism $\varphi: S \rightarrow \mathbb{N}_{0}$ given by $\varphi(p)=p(0)$ is a retraction. However, \mathbb{N}_{0} is not a direct summand of S as an \mathbb{N}_{0}-semimodule.

Definition

Let $\varphi: T \rightarrow S$ be a semiring retraction. If $x-\varphi(x) \in T$ for all $x \in T$, then we say that the semidomain S is a subtractive retract of T.

The $K+M$ representation

Theorem (Gotti and P., 202?)

Let T be a semidomain, and let K be a yoked subsemiring of T. Then K is a semifield that is a subtractive retract of T if and only if there exists a subtractive maximal ideal M of T such that $T=K+M$.
$\mathrm{Ex}: \quad \mathbb{R}_{\geq 0}+x \mathbb{R}[x] ; \quad \mathbb{R}_{\geq 0}+x \mathbb{R}_{\geq 0}[x] ; \quad \mathbb{R}_{\geq 0}+x \mathbb{R} \llbracket x \rrbracket$
Remark: If K is a yoked semifield that is a subtractive retract of a semidomain T, then $\mathcal{G}(K)$ is a field that is a retract of the integral domain $\mathcal{G}(T)$.

The $K+M$ Representation

Proposition (Gotti and P., 202?)

An additively reduced semidomain T has at most one representation of the form $K+M$ and if $T=K+M$, then $K=\{0\} \cup T^{\times}$.

The $K+M$ Representation

Proposition (Gotti and P., 202?)

An additively reduced semidomain T has at most one representation of the form $K+M$ and if $T=K+M$, then $K=\{0\} \cup T^{\times}$.

Example

Let $T=K[x]$, where K is an ordered field. So $T=K+x K[x]$ and $T=K+M$ with $M=\left\{\sum_{i=0}^{n} d_{i} x^{i} \mid \sum_{i=0}^{n} d_{i}=0\right\}$. Observe that $M \neq x K[x]$ since $x-1 \in M$. Consequently, the integral domain $K[x]$ admits at least two representations of the form $K+M$ for an arbitrary ordered field K. However, the semidomain $K_{\geq 0}[x]=K_{\geq 0}+x K_{\geq 0}[x]$ admits exactly one representation of the form $K+M$.

The $D+M$ Construction

Let $T=K+M$ be a semidomain such that K is a yoked semifield and M is a (subtractive) maximal ideal of T. For a subsemidomain D of K, we set $R:=D+M$.

The $D+M$ Construction

Let $T=K+M$ be a semidomain such that K is a yoked semifield and M is a (subtractive) maximal ideal of T. For a subsemidomain D of K, we set $R:=D+M$.

Theorem (Gotti and P., 202?)

Let $T=K+M$ be a semidomain such that K is a yoked semifield and M is a subtractive maximal ideal of T. For a subsemidomain D of K, set $R:=D+M$. Every subtractive prime ideal of R is either the contraction of a subtractive prime ideal of T or of the form $P_{0}+M$, where P_{0} is a subtractive prime ideal of D.

References

1. J. Brewer and E. A. Rutter: $D+M$ constructions with general overrings, Michigan Math. J. 23 (1976) 33-42.
2. S. T. Chapman and H. Polo: Arithmetic of additively reduced semidomains, Semigroup Forum (to appear).
3. R. Gilmer: Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 12, Queen's Univ. Press, Kingston, Ontario, 1968.
4. J. S. Golan: Semirings and their Applications, Kluwer Academic Publishers, 1999.
5. F. Gotti and H. Polo: On the arithmetic of polynomial semidomains, Forum Math. (to appear).

Thank you!

