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All rings considered in this talk are commutative with identity.

Let R be a ring with total quotient ring T (R).

• An element of R is regular if it is not a zero divisor.

• Z(R) denotes the set of zero divisors of R .

• reg(R) is the set of regular elements of R , so T (R) = Rreg(R).

• An ideal of R is regular if it contains a regular element of R .

• An ideal I of R is a Z-ideal if I ⊆ Z(R).



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

Integral domain Case

PID

UFD

Dedekind domain

π-domain Krull domain

• An integral domain D is a π-domain if each nonzero proper
principal ideal of D is a finite product of prime ideals.

• D is a Krull domain if each nonzero proper principal ideal of D is
a finite v-product (t-product) of prime ideals.
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Ring with zero divisor case

PIR

UFR

general ZPI ring

π-ring ?

• R is a principal ideal ring (PIR) if each ideal of R is principal.

• R is a (Fletcher’s) unique factorization ring (UFR) if each
element of R can be written as a finite product of prime elements.

• R is a general ZPI ring if each ideal of R can be written as a
finite product of prime ideals.

• R is a π-ring if each principal ideal of R can be written as a
finite product of prime ideals.

• (Question) What is a natural generalization of Krull domains to
rings with zero divisors ?
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Ring characterized by regular elements or ideals case

regular PIR

factorial ring

Dedekind ring

regular π-ring Krull ring

• R is a regular PIR if each regular ideal of R is principal.

• R is a factorial ring if each regular element of R can be written
as a finite product of prime elements.

• R is a Dedekind ring if each regular ideal of R can be written as
a finite product of prime ideals.

• R is a regular π-ring if each regular principal ideal of R can be
written as a finite product of prime ideals.

• R is a Krull ring if each regular principal ideal of R can be
written as a finite v-product of prime ideals.
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PID

PIR

regular PIR

UFD

UFR

Factorial ring

Dedekind domain

general ZPI ring

Dedekind Ring

π-domain

π-ring

regular π-ring

Krull domain

?

Krull ring
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Krull domains

Let D be an integral domain with quotient field K and X1(D) be
the set of nonzero minimal (i.e., height-one) prime ideals of D.
Then D is a Krull domain if

1 D =
⋂

P∈X1(D) DP ,
2 DP is a DVR for all P ∈ X1(D), and
3 each nonzero nonunit of D is contained in only a finitely many

prime ideals in X1(D).

In 1955, Nagata proved that D is a Krull domain if and only if
there exists a family ∆ of DVRs with quotient field K such that (i)
D is the intersection of all rings in ∆ and (ii) every nonzero
element of D is a unit in all but a finite number of rings in ∆.

The theory of Krull domains was originated by Krull [W. Krull,
Über die Zerlegung der Hauptideale in allgemeinen Ringen, Math.
Ann. 105 (1931), 1-14.].
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SPR, PIR and general ZPI ring

• A ring R is said to be a special primary ring (SPR) or a special
principal ideal ring (SPIR) if R is a local ring with maximal ideal
M such that M is principal and Mn = (0) for some integer n ≥ 1.

Theorem (1960, Zariski and Samuel)
R is a PIR if and only if R is a finite direct sum of PIDs and SPRs.

• In 1940, S. Mori first studied the general ZPI-ring, where the
letters ZPI stands for Zerlegung Primideale.

Theorem (1951, Asano)
R is a general ZPI-ring if and only if R is a finite direct sum of
Dedekind domains and SPRs.



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

UFR and π-ring

• In 1967, Fletcher introduced the notion of a unique factorization
ring (UFR) which is just a UFD in case of integral domains and he
showed

Theorem (1970-1971, C.R. Fletcher)
R is a UFR if and only if R is a finite direct sum of UFDs and
SPRs.

• In 1939, S. Mori gave a complete description of a π-domain.

Theorem (1940, S. Mori)
R is a π-ring if and only if R is a finite direct sum of π-domains
and SPRs.
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Introduction of a general Krull ring

• Inspired by these four types of rings and by the name of general
ZPI-rings, we will say that R is a general Krull ring if R is a finite
direct sum of Krull domains and SPRs, so we have the following
implications.

PIR

UFR

general ZPI ring

π-ring

Krull domain

general Krull ring

Krull ring



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

Counterexample

• R is a Krull ring if and only if every regular principal ideal of R
can be written as a finite v-product (or t-product) of prime ideals.

However, the next example shows that this is not true of general
Krull rings.

Example

Let R = Z×Q be the direct sum of Z and Q.
1 Z and Q are Krull domains, so R is a general Krull ring.
2 If I = (1, 0)R , then It = Iv = R . Hence, I cannot be written

as a finite t- nor v-product of prime ideals.
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Question and purpose

• It is easy to see that D is a Krull domain if and only if there is a
star operation ∗ on D such that each nonzero proper principal ideal
of D can be written as a finite ∗-product of prime ideals.

Question

Is there a star operation ∗ on a ring so that a general Krull ring
can be characterized as a ring in which each principal ideal can be
written as a finite ∗-product of prime ideals?

The purpose of this talk is to answer to Question affirmatively.
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Fractional ideals

An R-submodule of T (R) is called a Kaplansky fractional ideal. A
Kaplansky fractional ideal of R is regular if it contains a regular
element of R .

• K(R) is the set of Kaplansky fractional ideals of R .

• F (R) is the set of fractional ideals of R (i.e., I ∈ F (R) if and only
if I ∈ K(R) and dI ⊆ R for some d ∈ reg(R)), so F (R) ⊆ K(R).

• An (integral) ideal of R is a fractional ideal of R that is
contained in R .
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Definition of star operations

• A mapping ∗ : K(R) → K(R), given by I 7→ I∗, is a star operation
on R if the following four conditions are satisfied for all
I, J ∈ K(R) and a ∈ T (R):

1 R∗ = R ,
2 aI∗ ⊆ (aI)∗, and equality holds when a is regular.
3 I ⊆ I∗, and I ⊆ J implies that I∗ ⊆ J∗.
4 (I∗)∗ = I∗.

• For all I ∈ K(R), let

I∗f =
⋃

{J∗ | J ∈ K(R) is finitely generated and J ⊆ I} .

Then ∗f is also a star operation on R .

• The star operation ∗ is said to be of finite type if ∗ = ∗f , and ∗
is said to be reduced if (0)∗ = (0). Clearly, ∗f is of finite type, and
∗ is reduced if and only if ∗f is reduced.
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∗-ideals

• An I ∈ K(R) is a ∗-ideal if I∗ = I. A ∗-ideal I is of finite type if
I = J∗ for some finitely generated subideal J of I. A ∗-ideal is a
maximal ∗-ideal if it is maximal among proper integral ∗-ideals.

• If ∗ is a star operation of finite type, then
1 a prime ideal minimal over an integral ∗-ideal is a ∗-ideal,
2 a proper integral ∗-ideal is contained in a maximal ∗-ideal, and
3 a maximal ∗-ideal is a prime ideal.

• Let ∗1 and ∗2 be star operations on R . We say that ∗1 ≤ ∗2 if
I∗1 ⊆ I∗2 for all I ∈ K(R), equivalently, (I∗1)∗2 = (I∗2)∗1 = I∗2 .
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The d-, v - and t-operation

• The identity function d : K(R) → K(R) is a star operation.

• For I ∈ K(R), let

I−1 = (R :T (R) I) = {x ∈ T (R) | xI ⊆ R} ,

then I−1 ∈ K(R). The v- and t-operation are defined by

Iv = (I−1)−1 for all I ∈ K(R) , and t = vf .

• It is known that d ≤ ∗f ≤ ∗, ∗f ≤ t ≤ v , and ∗ ≤ v for any star
operation ∗ on R .
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∗-invertibility

• An I ∈ K(R) is said to be invertible if II−1 = R .

• As the ∗-operation analog, I ∈ K(R) is said to be ∗-invertible if
(II−1)∗ = R .

Proposition

If ∗ is a star operation of finite type, then
1 every ∗-invertible Kaplansky fractional ∗-ideal is of finite type

and a t-invertible t-ideal,
2 every ∗-invertible prime ∗-ideal is a maximal t-ideal.

• It is well known that an invertible ideal is regular, while a
∗-invertible ideal need not be regular.
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Valuation rings

A valuation on a ring R is a mapping v from R onto a totally
ordered abelian group G with ∞ adjoined such that
(i) v(ab) = v(a) + v(b),
(ii) v(x + y) ≥ min{v(a), v(b)} for all a, b ∈ R , and
(iii) v(1) = 0 and v(0) = ∞.

• If Rv = {x ∈ R | v(x) ≥ 0} and Pv = {x ∈ R | v(x) > 0}, then Rv
is a subring of R , Pv is a prime ideal of Rv , and (Rv ,Pv ) is called a
valuation pair of R .

• The valuation v on R was first studied by Manis when R is a
ring with zero divisors [Valuations on a commutative ring, Proc.
Amer. Math. Soc. 20 (1969), 193-198].

• If G = Z is the additive group of integers, then the valuation on
R is called a rank-one discrete valuation on R .
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Rank-one discrete valuation rings

Let v be a rank-one discrete valuation on T (R) such that

R = {x ∈ T (R) | v(x) ≥ 0} and P = {x ∈ T (R) | v(x) > 0}.

1 R is called a rank-one discrete valuation ring (rank-one DVR).

2 If P is regular (i.e., P contains a regular element), then
reg-htP = 1 (i.e., P is a minimal regular prime ideal).

3 If T (R) is a field, then P is the maximal ideal of R , but this is
not true in general.



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

Definition of Krull rings

We say that R is a Krull ring if there exists a family
{(Vα,Pα) | α ∈ Λ} of rank-one discrete valuation pairs of T (R)
with associated valuations {vα | α ∈ Λ} such that
(i) R =

⋂
{Vα | α ∈ Λ},

(ii) for each regular a ∈ T (R), vα(a) = 0 for almost all α ∈ Λ

and Pα is a regular ideal for all α ∈ Λ.

• Krull ring was introduced by J. Marot (1968), J. Huckaba
[Integral closure of a Noetherian ring, Trans. Amer. Math. Soc.
220 (1976), 159-666], and Kennedy [Krull Rings, Pacific J. Math.
89 (1980), 131-136].
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Marot rings
R is a Marot ring if each regular ideal of R is generated by a set of
regular elements in R , which was introduced by J. Marot (1969).

Example
A ring R is a Marot ring if R is one of the followings.

1 R is an integral domain.
2 R is a Noetherian ring.
3 dimT (R) = 0.
4 R is an overring of a Marot ring.
5 R is a general Krull ring.

D. Portelli and W. Spangher also studied Krull rings with
additional assumption that the rings are Marot [Krull rings with
zero divisors, Comm. Algebra 11 (1983), 1817-1851].
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Characterizations of Krull rings

• X1
r (R) is the set of minimal regular prime ideals of R .

• R[P ] = {z ∈ T (R) | zx ∈ R for some x ∈ R \ P}.

Theorem
R is a Krull ring if and only if R satisfies the followings;

1 R =
⋂

P∈X1
r (R)

R[P ],

2 (R[P ], [P ]R[P ]) is a rank-one DVR for all P ∈ X1
r (R), and

3 each regular element of R is contained in only finitely many
prime ideals in X1

r (R).

This was proved by D. Portelli and W. Spangher in Marot Krull
ring case (1983) and by Alajbegović and Osmanagić, in general
case [Essential valuations of Krull rings with zero divisors, Comm.
Algebra 18 (1990), 2007-2020].
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Prime factorization of ideals I

1 In 1935, Krull stated (without proof) that D is a Krull domain
if and only if each v-ideal I of D is a unique finite v-product
of height-one prime ideals of D, i.e., I = (Pe1

1 · · ·Pen
n )v for

some distinct height-one prime ideals P1, . . . ,Pn and positive
integers e1, . . . , en such that the expression I = (Pe1

1 · · ·Pen
n )v

is unique [Idealtheorie, Ergebnisse der Math. und ihrer Grenz.
vol.4, No.3, Berlin, Julius Splinger, 1935].

2 In 1963, Nishimura showed that D is a Krull domain if and
only if each v-ideal of D is a unique finite v-product of
height-one prime ideals of D, if and only if D is a completely
integrally closed Mori domain [Unique factorization of ideals
in the sense of quasi-equality, J. Math. Kyoto Univ. 3 (1963),
115-125].
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Prime factorization of ideals II

1 In 1968, Tramel showed that D is a Krull domain if and only
if each proper principal ideal of D can be written as a finite
v-product of prime ideals [Factorization of principal ideals in
the sense of quasi-equality, Doctoral Dissertation, Louisiana
State University, 1968], which also shows that the uniqueness
of Nishimura’s result is superfluous.

2 In 1972, Levitz showed that D is a Krull domain if and only if
each nonzero proper principal ideal of D can be written as a
finite t-product of prime ideals, if and only if each nonzero
t-ideal of D is a finite t-product of height one prime ideals of
D [A characterization of general Z.P.I.-rings, Proc. Amer.
Math. Soc. 32 (1972), 376-380].
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Prime factorization of ideals IV

Theorem
The following statements are equivalent for a ring R.

1 R is a Krull ring.
2 Every regular v-ideal I of R is a v-product of prime ideals, i.e.,

I = (P1 · · ·Pn)t for some prime ideals P1, . . . ,Pn.
3 Every regular t-ideal is a t-product of prime ideals.
4 Every regular principal ideal is a v-product of prime ideals.
5 Every regular principal ideal is a t-product of prime ideals.

This was proved by Kang for Marot ring case in [A characterization
of Krull rings with zero divisors, J. Pure Appl. Algebra 72 (1991),
33-38] and for general case in [Characterizations of Krull rings with
zero divisors, J. Pure Appl. Algebra 146 (2000), 283-290].
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The w -operation I

• Let R be an integral domain. A nonzero finitely generated ideal I
of R is called a GV-ideal if I−1 = R , where GV stands for Glaz and
Vasconselos, and we denote by GV (R) the set of GV -ideals of R .
• The w-operation on R is a star operation defined by

Iw = {x ∈ T (R) | xJ ⊆ I for some J ∈ GV (R)}

for all I ∈ K(R). Then w is of finite type, t-Max(R) = w-Max(R),
w ≤ t, (0)w = (0), and Iw =

⋂
P∈t-Max(R) IRP for all I ∈ F (R).

• The w-operation was introduced by Hedstrom and Houston
[Some remarks on star operations, J. Pure Appl. Algebra 18
(1980), 37-44] under the name of an F∞-operation.

• The notation of w-operation was first used by R. McCasland and
F.Wang [On w-modules over strong Mori domains, Comm.
Algebra 25 (1997), 1285-1306].
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The w -operation II
• The w-operation was generalized to rings with zero divisors by
Yin, Wang, Zhu, and Chen [w-modules over commutative rings, J.
Korean Math. Soc. 48 (2011), 207-222].

• A finitely generated ideal J of R is called a GV-ideal if the
homomorphism ϕ : R → HomR(J ,R) given by ϕ(r)(a) = ra is an
isomorphism.

• If J is regular, then HomR(J ,R) = J−1, so ϕ is an isomorphism
if and only if J−1 = R .

• The w-operation on R defined by, for all A ∈ K(R),

Aw = {x ∈ T (R) | xJ ⊆ A for some J ∈ GV (R)}

is a reduced star operation of finite type.

• F.G. Wang and H. Kim, Foundations of Commutative Rings and
Their Modules, Algebra and Applications, vol.22, Singapore,
Springer, 2016.
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The u-operation I

• Let rGV(R) = {J ∈ GV (R) | J is regular}. Then rGV (R) is a
multiplicative set of regular ideals of R .

• For each I ∈ K(R), let

Iu = {x ∈ T (R) | xJ ⊆ I for some J ∈ rGV (R)} .

Then Iu ∈ K(R) and the map u : K(R) → K(R), given by I 7→ Iu,
is a reduced star operation of finite type on R .
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The u-operation II

Theorem

The following conditions hold for all a ∈ T (R) and I, J ∈ K(R):
1 Ru = R.
2 aIu ⊆ (aI)u, and equality holds when a is regular.
3 I ⊆ Iu, and I ⊆ J implies Iu ⊆ Ju.
4 (Iu)u = Iu.

5 (0)u = (0).

6 Iu =
⋃
{(I0)u | I0 ∈ K(R), I0 ⊆ I, and I0 is finitely generated}.

Thus, the map u : K(R) → K(R), given by I 7→ Iu, is a reduced star
operation of finite type on R.



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

The u-operation III

• A ring R satisfies Property(A) if each finitely generated Z-ideal
I ⊆ Z(R) has a nonzero annihilator. Then R has Property(A) if
and only if T (R) has Property(A).

• The class of rings with Property(A) includes Noetherian rings,
the polynomial ring, integral domains, and general Krull rings.

Proposition

1 u ≤ w.
2 Iu = Iw for all regular I ∈ K(R).
3 If R satisfies Property(A), then u = w on R.
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Characterizations of general Krull rings I

Theorem

The following statements are equivalent for a ring R.
1 R is a general Krull ring.

2 Each principal ideal of R is a finite u-product of prime ideals.

3 Each integral u-ideal of R is a finite u-product of prime ideals.

4 R is a Krull ring, dim(T (R)) = 0, and each minimal prime
ideal of R is a principal ideal.

5 R is a Krull ring, dim(T (R)) = 0, and the zero element of R
is a finite product of prime elements.
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Characterizations of general Krull rings II

• Let R be a general Krull ring. Then u = w on R because R
satisfies Property(A). Hence, each principal ideal of R is a finite
w-product of prime ideals.

Corollay

The following statements are equivalent for a ring R.
1 R is a general Krull ring.
2 Each principal ideal of R is a finite w-product of prime ideals.
3 Each integral w-ideal of R is a finite w-product of prime

ideals.

Corollay

If R is a general Krull ring, then T (R) is a zero-dimensional PIR.
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When is a Krull ring a general Krull ring ?

Question: If R is a Krull ring such that T (R) is a zero-dimensional
PIR, then R is a general Krull ring ?

Example

Let V be a rank-two discrete valuation ring, Q be a primary ideal
of V such that ht(

√
Q) = 1 and Q (

√
Q, and R = V /Q be the

factor ring of V modulo Q. Then the following conditions hold.
1 T (R) is an SPR.
2 R is a Krull ring but not a general Krull ring.

Theorem

Let R be a Krull ring such that T (R) is a zero-dimensional PIR.
Then R is a general Krull ring if and only if RP is a DVR for all
P ∈ X1

r (R).
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Mori-Nagata Theorem I

Theorem
The integral closure of a Noetherian domain is a Krull domain.

Proof.
1 This was conjectured by Krull [Idealtheorie, Ergebnisse der

Math. und ihrer Grenz. vol.4, No.3, Berlin, Julius Splinger,
1935].

2 The local case was proved by Mori [On the integral closure of
an integral domain, Mem. Coll. Sci. Univ. Kyoto Ser. A.
Math. 27 (1953), 249-256].

3 The general case was proved by Nagata [On the derived
normal rings of Noetherian integral domains, Mem. Coll. Sci.
Univ. Kyoto Ser. A. Math. 29 (1955), 293-303].
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Mori-Nagata Theorem II
• Krull-Akizuki theorem says that every overring of a
one-dimensional Noetherian domain is Noetherian.
• In 1953, Nagata constructed

1 a two-dimensional Noetherian domain R such that there is a
non-Noetherian ring between R and its integral closure and

2 a three-dimensional Noetherian domain whose integral closure
is not Noetherian.

Theorem
The integral closure of a two-dimensional Noetherian domain is
Noetherian.

This was proved by Mori for local rings [On the integral closure of
an integral domain, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.
27 (1953), 249-256], and generalized by Nagata [On the derived
normal rings of Noetherian integral domains, Mem. Coll. Sci.
Univ. Kyoto Ser. A. Math. 29 (1955), 293-303].
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Mori-Nagata theorem III

• R is r-Noetherian if each regular ideal of R is finitely generated.

• In [The integral closure of a Noetherian ring, Trans. Amer.
Math. Soc. 220 (1976), 159-166], Huckaba constructed an
n-dimensional Noetherian ring whose integral closure is not
Noetherian for any integer n ≥ 1, and he showed

Theorem
1 The integral closure of a Noetherian ring is a Krull ring.
2 If R is a Noetherian ring with dim(R) ≤ 2, then the integral

closure of R is r-Noetherian.
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Mori-Nagata theorem IV

• Mori-Nagata theorem has been generalized to Non-Noetherian
rings with zero divisors.

Theorem
Let R̄ be the integral closure of an r-Noetherian ring R.

1 R̄ is a Krull ring.
2 If r-dim(R) ≤ 2, then R̄ is an r-Noetherian ring.

This theorem has been proved by a series of papers by Kang and
Chang (1993, 1999, 2002, and 2023).
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Mori-Nagata theorem V

The next example shows that the integral closure of a Noetherian
ring R need not be general Krull even though T (R) is an SPR.

Example

Let Q be the field of rational numbers, Q[X ] be the polynomial ring
over Q, and A = Q[X ]/(X2); so A is an SPR. Let m = (X)/(X2),
Y be an indeterminate over A, and R = A[Y ]. Then R is a
one-dimensional Noetherian ring and T (R) = A(Y ), so T (R) is an
SPR. But, note that N(A) = m and N(R) = N(A)[Y ], so
N(R) = m[Y ] is a prime ideal of R . Hence, if R is the integral
closure of R , then N(R) = mT (R), which is a nonzero prime ideal
of R , but since N(R) ∩ R = m[Y ], N(R) is not a maximal ideal of
R . Thus, R is a Krull ring but R is not a general Krull ring.
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Mori-Nagata theorem VI

• R is a Noetherian ring and R is the integral closure of R .

Theorem

If R is integrally closed, then R is a general Krull ring if and only if
T (R) is a PIR.

Corollay
If dim R ≤ 2, then R is a general Krull ring if and only if R is a
Noetherian ring and T (R) is a PIR.



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

Nagata ring I

• Let R be a ring, X be an indeterminate over R , R [X ] be the
polynomial ring over R , and

N∗ = {f ∈ R [X ] | c(f )∗ = R}

for ∗ = d , u,w , v , so Nd ⊆ Nu ⊆ Nw ⊆ Nv .

Proposition
1 Nu is a saturated multiplicative set of R [X ].
2 Each element of Nu is regular. Hence, R [X ]Nu is an overring

of R [X ].
3 Max(R [X ]Nu) = {P [X ]Nu | P ∈u-Max(R)}.

• It is clear that if R is an integral domain, then Nu = Nw = Nv
and R [X ]Nu is the (t-)Nagata ring of R .
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Nagata ring II

Theorem

The following are equivalent for a ring R with Property(A).
1 R is a Krull ring.
2 R [X ]Nu is a Krull ring.
3 R [X ]Nu is a regular π-ring.
4 R [X ]Nu is a factorial ring.
5 R [X ]Nu is a Dedekind ring.
6 R [X ]Nu is a regular PIR.

Corollay
If R is the integral closure of a Noetherian ring, then R [X ]Nu is a
regular PIR.
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Nagata ring III

• Let R(X) = R [X ]Nd . Then R(X) is called the Nagata ring of R
and R(X) ⊆ R [X ]Nu .

Theorem

The following statements are equivalent for a ring R.
1 R is a general Krull ring.
2 R [X ]Nu is a general Krull ring.
3 R [X ]Nu is a π-ring.
4 R [X ]Nu is a UFR.
5 R [X ]Nu is a general ZPI-ring.
6 R [X ]Nu is a PIR.
7 R(X) is a general Krull ring.



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

u-Almost Dedekind rings and general Krull rings I

• A ring is a u-Noetherian ring if it satisfies the ascending chain
condition on its integral u-ideals.

• An integral domain D is a Krull domain if and only if D is a
u-Noetherian domain (strong Mori domain) and RP is a DVR for
all maximal u-ideals P of R .

Theorem

The following statements are equivalent for a ring R.
1 R is a general Krull ring.
2 R is a u-Noetherian ring such that RP is a DVR or an SPR for

all maximal u-ideals P of R.
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u-Almost Dedekind rings and general Krull rings II

Corollay

A ring R is a general ZPI-ring if and only if R is Noetherian and
RM is a DVR or an SPR for all M ∈ Max(R).

• We will say that R is an almost Dedekind ring (resp., a u-almost
Dedekind ring) if RM is a DVR or an SPR for all maximal ideals
(resp., maximal u-ideals) M of R .

• Hence, R is a general ZPI-ring (resp., general Krull ring) if and
only if R is a Noetherian almost Dedekind ring (resp., a u-almost
Dedekind u-Noetherian ring).



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

u-Almost Dedekind rings and general Krull rings III

Corollary

The following statements are equivalent for a ring R.
1 R is a general Krull ring.
2 R satisfies the following conditions.

1 R =
⋂

P∈X1
r (R)

R[P].

2 RP is a DVR for all P ∈ X1
r (R) and RP is an SPR for all prime

Z-ideals P of R.
3 Each principal ideal of R has a finite number of minimal prime

ideals.
3 R is a u-almost Dedekind ring in which each principal ideal

has a finite number of minimal prime ideals.
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Juett’s general w -ZPI ring I

• In [General w-ZPI-rings and a tool for characterizing certain
classes of monoid rings, Comm. Algebra 51 (2023), 1117-1134],
Juett introduced the notion of general w-ZPI rings.

• Juett called R a general w-ZPI ring if every proper w-ideal of R
is a finite w-product of prime w-ideals. Then, among other things,
he proved

Theorem (J.R. Juett, 2023, Comm. Algebra)
The following statements are equivalent.

1 R is a general w-ZPI ring.
2 R is a finite direct product of Krull domains and SPRs.
3 R [X ]Nw is an Euclidean ring.

Therefore, Juett’s general w-ZPI ring is exactly the general Krull
ring of this talk.
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Juett’s general w -ZPI ring II

• Let S be a commutative cancellative additive monoid and R [S]
be the semigroup ring of S over R . Juett has studied several
factorization properties of R [S] including Dedekind rings, π-rings,
UFRs, and general w-ZPI rings [J1, J2, J3].

[J1] J.R. Juett, General w-ZPI-rings and a tool for characterizing
certain classes of monoid rings, Comm. Algebra 51 (2023),
1117-1134.

[J2] J.R. Juett, C.P. Mooney, and L.W. Ndungu, Unique
factorization of ideals in commutative rings with zero divisors,
Comm. Algebra 49 (2021), 2101-2125.

[J3] J.R. Juett, C.P. Mooney, and R.D. Roberts, Unique
factorization properties in commutative monoid rings with zero
divisors, Semigroup Forum 102 (2021), 674-696.



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

Outline

1 Motivation
2 Star operations
3 Krull rings

Krull rings with zero divisors
Prime factorization of ideals in Krull rings

4 Chang and Oh’s Results
A new star operation
Prime u-factorization of ideals
Mori-Nagata theorem
Nagata rings
u-Almost Dedekind rings

5 Juett’s general w -ZPI ring
6 Personal opinion



Motivation Star operations Krull rings Chang and Oh’s Results Juett’s general w-ZPI ring Personal opinion

Renaming ?

PID

PIR

regular PIR

UFD

UFR

regular UFR

Dedekind domain

Dedekind ring

regular Dedekind Ring

π-domain

π-ring

regular π-ring

Krull domain

Krull ring

regular Krull ring
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What is a star operation ?

• The idea of localization comes from algebraic geometry. The
localization at a point p allows us to focus on only rational
functions that are well-defined at the point p.

• A star operation is a similar tool for studying the ideal
factorization properties of commutative rings in the sense that we
are just interested in ideals that we certainly have in mind.

• For example, in Krull domains, every nonzero proper principal
ideal is a unique finite v-product of height-one prime ideals.
Hence, when we study the ideal factorization of Krull domains, it is
enough to look into the height-one prime ideals.

• Localization.
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All of the results in this talk appear in

G.W. Chang and J.S. Oh, Prime factorization of ideals in
commutative rings, with a focus on Krull rings. J. Korean Math.
Soc. 60 (2023), no. 2, 407–464.

Thank you !!
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