Prime factorization of ideals in commutative rings, with a focus on Krull rings

Gyu Whan Chang

Incheon National University

Conference on Rings and Factorizations 2023 in Graz July 10–14, 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of Contents

- Motivation
- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- 4 Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - *u*-Almost Dedekind rings
- Juett's general w-ZPI ring
 - Personal opinion

Outline

- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- ④ Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - u-Almost Dedekind rings
- 5 Juett's general w-ZPI ring
- 6 Personal opinion

All rings considered in this talk are commutative with identity.

Let *R* be a ring with total quotient ring T(R).

- An element of R is regular if it is not a zero divisor.
- Z(R) denotes the set of zero divisors of R.
- reg(R) is the set of regular elements of R, so $T(R) = R_{reg(R)}$.
- An ideal of R is regular if it contains a regular element of R.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• An ideal I of R is a Z-ideal if $I \subseteq Z(R)$.

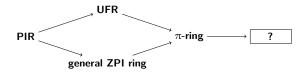
Integral domain Case



• An integral domain D is a π -domain if each nonzero proper principal ideal of D is a finite product of prime ideals.

• *D* is a Krull domain if each nonzero proper principal ideal of *D* is a finite *v*-product (*t*-product) of prime ideals.

Ring with zero divisor case



• *R* is a principal ideal ring (PIR) if each ideal of *R* is principal.

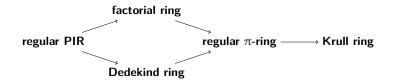
• R is a (Fletcher's) unique factorization ring (UFR) if each element of R can be written as a finite product of prime elements.

• *R* is a general ZPI ring if each ideal of *R* can be written as a finite product of prime ideals.

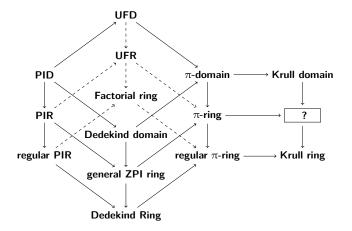
• *R* is a π -ring if each principal ideal of *R* can be written as a finite product of prime ideals.

• (Question) What is a natural generalization of Krull domains to rings with zero divisors ?

Ring characterized by regular elements or ideals case



- *R* is a regular PIR if each regular ideal of *R* is principal.
- R is a factorial ring if each regular element of R can be written as a finite product of prime elements.
- *R* is a Dedekind ring if each regular ideal of *R* can be written as a finite product of prime ideals.
- *R* is a regular π -ring if each regular principal ideal of *R* can be written as a finite product of prime ideals.
- *R* is a Krull ring if each regular principal ideal of *R* can be written as a finite *v*-product of prime ideals.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Krull domains

Let *D* be an integral domain with quotient field *K* and $X^1(D)$ be the set of nonzero minimal (i.e., height-one) prime ideals of *D*. Then *D* is a Krull domain if

$$D = \bigcap_{P \in X^1(D)} D_P,$$

2 D_P is a DVR for all $P \in X^1(D)$, and

(a) each nonzero nonunit of *D* is contained in only a finitely many prime ideals in $X^1(D)$.

In 1955, Nagata proved that D is a Krull domain if and only if there exists a family Δ of DVRs with quotient field K such that (i) D is the intersection of all rings in Δ and (ii) every nonzero element of D is a unit in all but a finite number of rings in Δ .

The theory of Krull domains was originated by Krull [W. Krull, Über die Zerlegung der Hauptideale in allgemeinen Ringen, Math. Ann. **105** (1931), 1-14.].

SPR, PIR and general ZPI ring

• A ring *R* is said to be a special primary ring (SPR) or a special principal ideal ring (SPIR) if *R* is a local ring with maximal ideal *M* such that *M* is principal and $M^n = (0)$ for some integer $n \ge 1$.

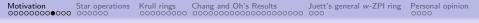
Theorem (1960, Zariski and Samuel)

R is a PIR if and only if R is a finite direct sum of PIDs and SPRs.

• In 1940, S. Mori first studied the general ZPI-ring, where the letters ZPI stands for Zerlegung Primideale.

Theorem (1951, Asano)

R is a general ZPI-ring if and only if *R* is a finite direct sum of Dedekind domains and SPRs.



UFR and π -ring

 \bullet In 1967, Fletcher introduced the notion of a unique factorization ring (UFR) which is just a UFD in case of integral domains and he showed

Theorem (1970-1971, C.R. Fletcher)

R is a UFR if and only if *R* is a finite direct sum of UFDs and SPRs.

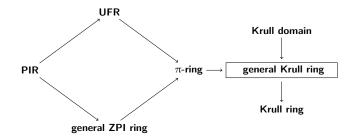
• In 1939, S. Mori gave a complete description of a π -domain.

Theorem (1940, S. Mori)

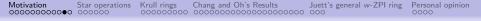
R is a π -ring if and only if *R* is a finite direct sum of π -domains and SPRs.

Introduction of a general Krull ring

• Inspired by these four types of rings and by the name of general ZPI-rings, we will say that R is a general Krull ring if R is a finite direct sum of Krull domains and SPRs, so we have the following implications.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Counterexample

• R is a Krull ring if and only if every regular principal ideal of R can be written as a finite *v*-product (or *t*-product) of prime ideals.

However, the next example shows that this is not true of general Krull rings.

Example

- Let $R = \mathbb{Z} \times \mathbb{Q}$ be the direct sum of \mathbb{Z} and \mathbb{Q} .
 - **①** \mathbb{Z} and \mathbb{Q} are Krull domains, so R is a general Krull ring.
 - If I = (1,0)R, then $I_t = I_v = R$. Hence, I cannot be written as a finite t- nor v-product of prime ideals.

Question and purpose

• It is easy to see that D is a Krull domain if and only if there is a star operation * on D such that each nonzero proper principal ideal of D can be written as a finite *-product of prime ideals.

Question

Is there a star operation * on a ring so that a general Krull ring can be characterized as a ring in which each principal ideal can be written as a finite *-product of prime ideals?

The purpose of this talk is to answer to Question affirmatively.

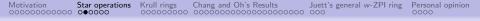
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation Star operations Full rings Chang and Oh's Results Juett's general w-ZPI ring Personal opinion

Outline

Motivation

- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- ④ Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - u-Almost Dedekind rings
- 5 Juett's general w-ZPI ring
- 6 Personal opinion



Fractional ideals

An *R*-submodule of T(R) is called a *Kaplansky fractional ideal*. A Kaplansky fractional ideal of *R* is regular if it contains a regular element of *R*.

- K(R) is the set of Kaplansky fractional ideals of R.
- F(R) is the set of fractional ideals of R (i.e., $I \in F(R)$ if and only if $I \in K(R)$ and $dI \subseteq R$ for some $d \in reg(R)$), so $F(R) \subseteq K(R)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• An (integral) ideal of R is a fractional ideal of R that is contained in R.

Definition of star operations

• A mapping $*: K(R) \to K(R)$, given by $I \mapsto I_*$, is a *star operation* on R if the following four conditions are satisfied for all $I, J \in K(R)$ and $a \in T(R)$:

$$R_* = R,$$

2 $al_* \subseteq (al)_*$, and equality holds when *a* is regular.

$${f S}$$
 $I\subseteq I_*$, and $I\subseteq J$ implies that $I_*\subseteq J_*$.

$$(I_*)_* = I_*.$$

(

• For all $I \in K(R)$, let

 $I_{*_f} = \bigcup \{J_* \mid J \in \mathsf{K}(R) \text{ is finitely generated and } J \subseteq I\}.$

Then $*_f$ is also a star operation on R.

• The star operation * is said to be *of finite type* if $* = *_f$, and * is said to be *reduced* if $(0)_* = (0)$. Clearly, $*_f$ is of finite type, and * is reduced if and only if $*_f$ is reduced.

*-ideals

- An $I \in K(R)$ is a *-*ideal* if $I_* = I$. A *-ideal I is *of finite type* if $I = J_*$ for some finitely generated subideal J of I. A *-ideal is a *maximal* *-*ideal* if it is maximal among proper integral *-ideals.
- If * is a star operation of finite type, then
 - a prime ideal minimal over an integral *-ideal is a *-ideal,
 - a proper integral *-ideal is contained in a maximal *-ideal, and

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- a maximal *-ideal is a prime ideal.
- Let $*_1$ and $*_2$ be star operations on R. We say that $*_1 \leq *_2$ if $I_{*_1} \subseteq I_{*_2}$ for all $I \in K(R)$, equivalently, $(I_{*_1})_{*_2} = (I_{*_2})_{*_1} = I_{*_2}$.

Motivation Star operations Ocoooco Krull rings Chang and Oh's Results Juett's general w-ZPI ring Personal opinion

The d-, v- and t-operation

- The identity function $d: K(R) \rightarrow K(R)$ is a star operation.
- For $I \in K(R)$, let

$$I^{-1} = (R :_{T(R)} I) = \{ x \in T(R) \mid xI \subseteq R \},\$$

then $I^{-1} \in K(R)$. The *v*- and *t*-operation are defined by

$$I_v = (I^{-1})^{-1}$$
 for all $I \in \mathsf{K}(R)$, and $t = v_f$.

• It is known that $d \leq *_f \leq *, *_f \leq t \leq v$, and $* \leq v$ for any star operation * on R.

*-invertibility

- An $I \in K(R)$ is said to be *invertible* if $II^{-1} = R$.
- As the *-operation analog, $I \in K(R)$ is said to be *-invertible if $(II^{-1})_* = R$.

Proposition

If * is a star operation of finite type, then

- every *-invertible Kaplansky fractional *-ideal is of finite type and a t-invertible t-ideal,
- *every* *-*invertible* prime *-*ideal* is a maximal t-*ideal*.
- It is well known that an invertible ideal is regular, while a *-invertible ideal need not be regular.

Outline

- Motivation
- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- 4 Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - u-Almost Dedekind rings
- Juett's general w-ZPI ring
- 6 Personal opinion

Valuation rings

A valuation on a ring R is a mapping v from R onto a totally ordered abelian group G with ∞ adjoined such that

(i) v(ab) = v(a) + v(b), (ii) $v(x + y) \ge \min\{v(a), v(b)\}$ for all $a, b \in R$, and (iii) v(1) = 0 and $v(0) = \infty$.

• If $R_v = \{x \in R \mid v(x) \ge 0\}$ and $P_v = \{x \in R \mid v(x) > 0\}$, then R_v is a subring of R, P_v is a prime ideal of R_v , and (R_v, P_v) is called a valuation pair of R.

• The valuation v on R was first studied by Manis when R is a ring with zero divisors [*Valuations on a commutative ring*, Proc. Amer. Math. Soc. 20 (1969), 193-198].

• If $G = \mathbb{Z}$ is the additive group of integers, then the valuation on R is called a *rank-one discrete valuation* on R.

Rank-one discrete valuation rings

Let v be a rank-one discrete valuation on T(R) such that

 $R = \{x \in T(R) \mid v(x) \ge 0\} \text{ and } P = \{x \in T(R) \mid v(x) > 0\}.$

- **1** *R* is called a *rank-one discrete valuation ring* (rank-one DVR).
- If P is regular (i.e., P contains a regular element), then reg-htP = 1 (i.e., P is a minimal regular prime ideal).
- If T(R) is a field, then P is the maximal ideal of R, but this is not true in general.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

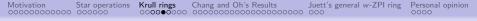
Definition of Krull rings

We say that *R* is a *Krull ring* if there exists a family $\{(V_{\alpha}, P_{\alpha}) \mid \alpha \in \Lambda\}$ of rank-one discrete valuation pairs of T(R) with associated valuations $\{v_{\alpha} \mid \alpha \in \Lambda\}$ such that

(i)
$$R = \bigcap \{ V_{\alpha} \mid \alpha \in \Lambda \},\$$

(ii) for each regular $a \in T(R)$, $v_{\alpha}(a) = 0$ for almost all $\alpha \in \Lambda$ and P_{α} is a regular ideal for all $\alpha \in \Lambda$.

• Krull ring was introduced by J. Marot (1968), J. Huckaba [Integral closure of a Noetherian ring, Trans. Amer. Math. Soc. 220 (1976), 159-666], and Kennedy [*Krull Rings*, Pacific J. Math. **89** (1980), 131-136].



Marot rings

R is a Marot ring if each regular ideal of R is generated by a set of regular elements in R, which was introduced by J. Marot (1969).

Example

A ring R is a Marot ring if R is one of the followings.

- Q R is a Noetherian ring.
- Im T(R) = 0.
- R is an overring of a Marot ring.
- **\bigcirc** R is a general Krull ring.

D. Portelli and W. Spangher also studied Krull rings with additional assumption that the rings are Marot [*Krull rings with zero divisors*, Comm. Algebra **11** (1983), 1817-1851].

Characterizations of Krull rings

Star operations Krull rings

• $X_r^1(R)$ is the set of minimal regular prime ideals of R.

Chang and Oh's Results

• $R_{[P]} = \{z \in T(R) \mid zx \in R \text{ for some } x \in R \setminus P\}.$

000

Theorem

R is a Krull ring if and only if R satisfies the followings;

- $R = \bigcap_{P \in X^1_r(R)} R_{[P]},$
- **2** $(R_{[P]}, [P]R_{[P]})$ is a rank-one DVR for all $P \in X_r^1(R)$, and
- each regular element of R is contained in only finitely many prime ideals in X¹_r(R).

This was proved by D. Portelli and W. Spangher in Marot Krull ring case (1983) and by Alajbegović and Osmanagić, in general case [*Essential valuations of Krull rings with zero divisors*, Comm. Algebra **18** (1990), 2007-2020].

Juett's general w-ZPI ring

Personal opinion

Prime factorization of ideals I

Krull rings

00**00**00

Star operations

In 1935, Krull stated (without proof) that *D* is a Krull domain if and only if each *v*-ideal *I* of *D* is a unique finite *v*-product of height-one prime ideals of *D*, i.e., *I* = (*P*₁^{e₁} ··· *P*_n^{e_n})_v for some distinct height-one prime ideals *P*₁,..., *P_n* and positive integers *e*₁,..., *e_n* such that the expression *I* = (*P*₁^{e₁} ··· *P_n^{e_n*)_v is unique [*Idealtheorie*, Ergebnisse der Math. und ihrer Grenz. vol.4, No.3, Berlin, Julius Splinger, 1935].}

Chang and Oh's Results

In 1963, Nishimura showed that D is a Krull domain if and only if each v-ideal of D is a unique finite v-product of height-one prime ideals of D, if and only if D is a completely integrally closed Mori domain [Unique factorization of ideals in the sense of quasi-equality, J. Math. Kyoto Univ. 3 (1963), 115-125].

Juett's general w-ZPI ring

Personal opinion

Prime factorization of ideals II

Krull rings

<u>____</u>

Star operations

In 1968, Tramel showed that D is a Krull domain if and only if each proper principal ideal of D can be written as a finite v-product of prime ideals [Factorization of principal ideals in the sense of quasi-equality, Doctoral Dissertation, Louisiana State University, 1968], which also shows that the uniqueness of Nishimura's result is superfluous.

Chang and Oh's Results

In 1972, Levitz showed that D is a Krull domain if and only if each nonzero proper principal ideal of D can be written as a finite t-product of prime ideals, if and only if each nonzero t-ideal of D is a finite t-product of height one prime ideals of D [A characterization of general Z.P.I.-rings, Proc. Amer. Math. Soc. 32 (1972), 376-380].

Juett's general w-ZPI ring

Personal opinion

Prime factorization of ideals IV

Theorem

The following statements are equivalent for a ring R.

- R is a Krull ring.
- 2 Every regular v-ideal I of R is a v-product of prime ideals, i.e., $I = (P_1 \cdots P_n)_t$ for some prime ideals P_1, \ldots, P_n .
- Severy regular t-ideal is a t-product of prime ideals.
- Severy regular principal ideal is a v-product of prime ideals.
- S Every regular principal ideal is a t-product of prime ideals.

This was proved by Kang for Marot ring case in [*A characterization of Krull rings with zero divisors*, J. Pure Appl. Algebra **72** (1991), 33-38] and for general case in [*Characterizations of Krull rings with zero divisors*, J. Pure Appl. Algebra **146** (2000), 283-290].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

- Motivation
- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - *u*-Almost Dedekind rings
- 5 Juett's general w-ZPI ring
- 6 Personal opinion

The w-operation I

• Let *R* be an integral domain. A nonzero finitely generated ideal *I* of *R* is called a *GV-ideal* if $I^{-1} = R$, where *GV* stands for Glaz and Vasconselos, and we denote by GV(R) the set of *GV*-ideals of *R*.

• The w-operation on R is a star operation defined by

 $I_w = \{x \in T(R) \mid xJ \subseteq I \text{ for some } J \in GV(R)\}$

for all $I \in K(R)$. Then w is of finite type, t-Max(R) = w-Max(R), $w \le t$, $(0)_w = (0)$, and $I_w = \bigcap_{P \in t-Max(R)} IR_P$ for all $I \in F(R)$.

• The *w*-operation was introduced by Hedstrom and Houston [Some remarks on star operations, J. Pure Appl. Algebra 18 (1980), 37-44] under the name of an F_{∞} -operation.

• The notation of *w*-operation was first used by R. McCasland and F.Wang [On *w*-modules over strong Mori domains, Comm. Algebra 25 (1997), 1285-1306].

The w-operation II

• The *w*-operation was generalized to rings with zero divisors by Yin, Wang, Zhu, and Chen [*w*-modules over commutative rings, J. Korean Math. Soc. 48 (2011), 207-222].

• A finitely generated ideal J of R is called a *GV-ideal* if the homomorphism $\varphi: R \to Hom_R(J, R)$ given by $\varphi(r)(a) = ra$ is an isomorphism.

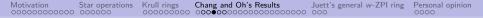
• If J is regular, then $Hom_R(J, R) = J^{-1}$, so φ is an isomorphism if and only if $J^{-1} = R$.

• The *w*-operation on *R* defined by, for all $A \in K(R)$,

 $A_w = \{x \in T(R) \mid xJ \subseteq A \text{ for some } J \in GV(R)\}$

is a reduced star operation of finite type.

• F.G. Wang and H. Kim, *Foundations of Commutative Rings and Their Modules*, Algebra and Applications, vol.22, Singapore, Springer, 2016.



The *u*-operation I

- Let $rGV(R) = \{J \in GV(R) \mid J \text{ is regular}\}$. Then rGV(R) is a multiplicative set of regular ideals of R.
- For each $I \in K(R)$, let

 $I_u = \{x \in T(R) \mid xJ \subseteq I \text{ for some } J \in rGV(R)\}.$

Then $I_u \in K(R)$ and the map $u: K(R) \to K(R)$, given by $I \mapsto I_u$, is a reduced star operation of finite type on R.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The *u*-operation II

Theorem

The following conditions hold for all $a \in T(R)$ and $I, J \in K(R)$:

- **2** $aI_u \subseteq (aI)_u$, and equality holds when a is regular.
- **3** $I \subseteq I_u$, and $I \subseteq J$ implies $I_u \subseteq J_u$.
- $(I_u)_u = I_u.$

($0)_u = (0).$

• $I_u = \bigcup \{ (I_0)_u \mid I_0 \in K(R), I_0 \subseteq I, and I_0 \text{ is finitely generated} \}.$

Thus, the map $u: K(R) \to K(R)$, given by $I \mapsto I_u$, is a reduced star operation of finite type on R.

Motivation Star operations Krull rings Chang and Oh's Results Juett's general w-ZPI ring Personal opinion 00000000000 00000 00000 0000<

The *u*-operation III

• A ring *R* satisfies Property(A) if each finitely generated Z-ideal $I \subseteq Z(R)$ has a nonzero annihilator. Then *R* has Property(A) if and only if T(R) has Property(A).

• The class of rings with Property(A) includes Noetherian rings, the polynomial ring, integral domains, and general Krull rings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

- $\mathbf{0} \quad u \leq w.$
- $I_u = I_w \text{ for all regular } I \in K(R).$
- **(3)** If R satisfies Property(A), then u = w on R.

Characterizations of general Krull rings I

Theorem

The following statements are equivalent for a ring R.

- **1** *R* is a general Krull ring.
- **2** Each principal ideal of R is a finite u-product of prime ideals.
- Seach integral u-ideal of R is a finite u-product of prime ideals.
- *R* is a Krull ring, dim(T(R)) = 0, and each minimal prime ideal of *R* is a principal ideal.
- R is a Krull ring, dim(T(R)) = 0, and the zero element of R is a finite product of prime elements.

Characterizations of general Krull rings II

• Let *R* be a general Krull ring. Then u = w on *R* because *R* satisfies Property(A). Hence, each principal ideal of *R* is a finite *w*-product of prime ideals.

Corollay

The following statements are equivalent for a ring R.

- R is a general Krull ring.
- 2 Each principal ideal of R is a finite w-product of prime ideals.
- Seach integral w-ideal of R is a finite w-product of prime ideals.

Corollay

If R is a general Krull ring, then T(R) is a zero-dimensional PIR.

Motivation Star operations Krull rings Chang and Oh's Results Juett's general w-ZPI ring Personal opinion

When is a Krull ring a general Krull ring ?

Question: If R is a Krull ring such that T(R) is a zero-dimensional PIR, then R is a general Krull ring ?

Example

Let V be a rank-two discrete valuation ring, Q be a primary ideal of V such that $ht(\sqrt{Q}) = 1$ and $Q \subsetneq \sqrt{Q}$, and R = V/Q be the factor ring of V modulo Q. Then the following conditions hold.

- T(R) is an SPR.
- R is a Krull ring but not a general Krull ring.

Theorem

Let R be a Krull ring such that T(R) is a zero-dimensional PIR. Then R is a general Krull ring if and only if R_P is a DVR for all $P \in X_r^1(R)$.

Mori-Nagata Theorem I

Theorem

The integral closure of a Noetherian domain is a Krull domain.

Proof.

- This was conjectured by Krull [*Idealtheorie*, Ergebnisse der Math. und ihrer Grenz. vol.4, No.3, Berlin, Julius Splinger, 1935].
- The local case was proved by Mori [On the integral closure of an integral domain, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 27 (1953), 249-256].
- The general case was proved by Nagata [On the derived normal rings of Noetherian integral domains, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 29 (1955), 293-303].

Mori-Nagata Theorem II

- Krull-Akizuki theorem says that every overring of a one-dimensional Noetherian domain is Noetherian.
- In 1953, Nagata constructed
 - a two-dimensional Noetherian domain R such that there is a non-Noetherian ring between R and its integral closure and
 - a three-dimensional Noetherian domain whose integral closure is not Noetherian.

Theorem

The integral closure of a two-dimensional Noetherian domain is Noetherian.

This was proved by Mori for local rings [*On the integral closure of an integral domain*, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. **27** (1953), 249-256], and generalized by Nagata [*On the derived normal rings of Noetherian integral domains*, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. **29** (1955), 293-303].

Mori-Nagata theorem III

Star operations Krull rings

• *R* is r-Noetherian if each regular ideal of *R* is finitely generated.

Chang and Oh's Results

Juett's general w-ZPI ring

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Personal opinion

• In [*The integral closure of a Noetherian ring*, Trans. Amer. Math. Soc. **220** (1976), 159-166], Huckaba constructed an *n*-dimensional Noetherian ring whose integral closure is not Noetherian for any integer $n \ge 1$, and he showed

Theorem

- The integral closure of a Noetherian ring is a Krull ring.
- ② If *R* is a Noetherian ring with dim(*R*) ≤ 2, then the integral closure of *R* is *r*-Noetherian.

Mori-Nagata theorem IV

• Mori-Nagata theorem has been generalized to Non-Noetherian rings with zero divisors.

Theorem

Let \overline{R} be the integral closure of an r-Noetherian ring R.

- \overline{R} is a Krull ring.
- 2 If r-dim $(R) \le 2$, then \overline{R} is an r-Noetherian ring.

This theorem has been proved by a series of papers by Kang and Chang (1993, 1999, 2002, and 2023).

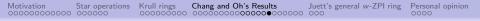
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mori-Nagata theorem V

The next example shows that the integral closure of a Noetherian ring R need not be general Krull even though T(R) is an SPR.

Example

Let \mathbb{Q} be the field of rational numbers, $\mathbb{Q}[X]$ be the polynomial ring over \mathbb{Q} , and $A = \mathbb{Q}[X]/(X^2)$; so A is an SPR. Let $\mathbf{m} = (X)/(X^2)$, Y be an indeterminate over A, and R = A[Y]. Then R is a one-dimensional Noetherian ring and T(R) = A(Y), so T(R) is an SPR. But, note that $N(A) = \mathbf{m}$ and N(R) = N(A)[Y], so $N(R) = \mathbf{m}[Y]$ is a prime ideal of R. Hence, if \overline{R} is the integral closure of R, then $N(\overline{R}) = \mathbf{m}T(R)$, which is a nonzero prime ideal of \overline{R} , but since $N(\overline{R}) \cap R = \mathbf{m}[Y]$, $N(\overline{R})$ is not a maximal ideal of \overline{R} . Thus, \overline{R} is a Krull ring but \overline{R} is not a general Krull ring.



Mori-Nagata theorem VI

• R is a Noetherian ring and \overline{R} is the integral closure of R.

Theorem

If R is integrally closed, then R is a general Krull ring if and only if T(R) is a PIR.

Corollay

If dim $R \leq 2$, then \overline{R} is a general Krull ring if and only if \overline{R} is a Noetherian ring and T(R) is a PIR.

人口 医水黄 医水黄 医水黄素 化甘油

Nagata ring I

• Let R be a ring, X be an indeterminate over R, R[X] be the polynomial ring over R, and

$$N_* = \{ f \in R[X] \mid c(f)_* = R \}$$

for * = d, u, w, v, so $N_d \subseteq N_u \subseteq N_w \subseteq N_v$.

Proposition

- **1** N_u is a saturated multiplicative set of R[X].
- Each element of N_u is regular. Hence, R[X]_{N_u} is an overring of R[X].

3
$$Max(R[X]_{N_u}) = \{P[X]_{N_u} \mid P \in u\text{-}Max(R)\}.$$

• It is clear that if R is an integral domain, then $N_u = N_w = N_v$ and $R[X]_{N_u}$ is the (t-)Nagata ring of R.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nagata ring II

Theorem

The following are equivalent for a ring R with Property(A).

- R is a Krull ring.
- 2 $R[X]_{N_u}$ is a Krull ring.
- **3** $R[X]_{N_u}$ is a regular π -ring.
- $R[X]_{N_u}$ is a factorial ring.
- **(a)** $R[X]_{N_u}$ is a Dedekind ring.
- $R[X]_{N_u}$ is a regular PIR.

Corollay

If R is the integral closure of a Noetherian ring, then $R[X]_{N_u}$ is a regular PIR.

Nagata ring III

• Let $R(X) = R[X]_{N_d}$. Then R(X) is called the Nagata ring of R and $R(X) \subseteq R[X]_{N_d}$.

Theorem

The following statements are equivalent for a ring R.

- R is a general Krull ring.
- **2** $R[X]_{N_u}$ is a general Krull ring.
- \bigcirc $R[X]_{N_u}$ is a π -ring.
- $R[X]_{N_u}$ is a UFR.
- **(a)** $R[X]_{N_u}$ is a general ZPI-ring.
- $R[X]_{N_u}$ is a PIR.
- R(X) is a general Krull ring.

u-Almost Dedekind rings and general Krull rings I

• A ring is a *u-Noetherian ring* if it satisfies the ascending chain condition on its integral *u*-ideals.

• An integral domain D is a Krull domain if and only if D is a u-Noetherian domain (strong Mori domain) and R_P is a DVR for all maximal u-ideals P of R.

Theorem

The following statements are equivalent for a ring R.

- R is a general Krull ring.
- R is a u-Noetherian ring such that R_P is a DVR or an SPR for all maximal u-ideals P of R.

u-Almost Dedekind rings and general Krull rings II

Corollay

A ring R is a general ZPI-ring if and only if R is Noetherian and R_M is a DVR or an SPR for all $M \in Max(R)$.

• We will say that R is an almost Dedekind ring (resp., a *u*-almost Dedekind ring) if R_M is a DVR or an SPR for all maximal ideals (resp., maximal *u*-ideals) M of R.

• Hence, *R* is a general ZPI-ring (resp., general Krull ring) if and only if *R* is a Noetherian almost Dedekind ring (resp., a *u*-almost Dedekind *u*-Noetherian ring).

u-Almost Dedekind rings and general Krull rings III

Corollary

The following statements are equivalent for a ring R.

- R is a general Krull ring.
- **2** *R* satisfies the following conditions.

$$\mathbf{0} \ R = \bigcap_{P \in X^1_r(R)} R_{[P]}.$$

- **2** R_P is a DVR for all $P \in X_r^1(R)$ and R_P is an SPR for all prime Z-ideals P of R.
- Each principal ideal of R has a finite number of minimal prime ideals.
- R is a u-almost Dedekind ring in which each principal ideal has a finite number of minimal prime ideals.

Outline

- Motivation
- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- ④ Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - u-Almost Dedekind rings
- 5 Juett's general w-ZPI ring
- 6 Personal opinion

Juett's general w-ZPI ring I

• In [General *w*-ZPI-rings and a tool for characterizing certain classes of monoid rings, Comm. Algebra 51 (2023), 1117-1134], Juett introduced the notion of general *w*-ZPI rings.

• Juett called R a general w-ZPI ring if every proper w-ideal of R is a finite w-product of prime w-ideals. Then, among other things, he proved

Theorem (J.R. Juett, 2023, Comm. Algebra)

The following statements are equivalent.

- **1** *R* is a general w-ZPI ring.
- **2** *R* is a finite direct product of Krull domains and SPRs.

3 $R[X]_{N_w}$ is an Euclidean ring.

Therefore, Juett's general *w*-ZPI ring is exactly the general Krull ring of this talk.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Juett's general w-ZPI ring II

• Let S be a commutative cancellative additive monoid and R[S] be the semigroup ring of S over R. Juett has studied several factorization properties of R[S] including Dedekind rings, π -rings, UFRs, and general w-ZPI rings [J1, J2, J3].

[J1] J.R. Juett, *General w-ZPI-rings and a tool for characterizing certain classes of monoid rings*, Comm. Algebra 51 (2023), 1117-1134.

[J2] J.R. Juett, C.P. Mooney, and L.W. Ndungu, *Unique factorization of ideals in commutative rings with zero divisors*, Comm. Algebra 49 (2021), 2101-2125.

[J3] J.R. Juett, C.P. Mooney, and R.D. Roberts, *Unique factorization properties in commutative monoid rings with zero divisors*, Semigroup Forum 102 (2021), 674-696.

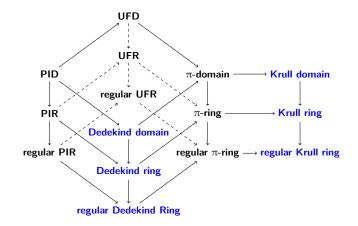
 Motivation
 Star operations
 Krull rings
 Chang and Oh's Results
 Juett's general w-ZPI ring
 Personal opinion

 ••••••
 •••••
 •••••
 •••••
 •••••
 •••••

Outline

- Motivation
- 2 Star operations
- 3 Krull rings
 - Krull rings with zero divisors
 - Prime factorization of ideals in Krull rings
- ④ Chang and Oh's Results
 - A new star operation
 - Prime *u*-factorization of ideals
 - Mori-Nagata theorem
 - Nagata rings
 - u-Almost Dedekind rings
- 5 Juett's general w-ZPI ring
- 6 Personal opinion

Renaming ?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

What is a star operation ?

• The idea of localization comes from algebraic geometry. The localization at a point p allows us to focus on only rational functions that are well-defined at the point p.

• A star operation is a similar tool for studying the ideal factorization properties of commutative rings in the sense that we are just interested in ideals that we certainly have in mind.

• For example, in Krull domains, every nonzero proper principal ideal is a unique finite *v*-product of height-one prime ideals. Hence, when we study the ideal factorization of Krull domains, it is enough to look into the height-one prime ideals.

• Localization.

All of the results in this talk appear in

G.W. Chang and J.S. Oh, Prime factorization of ideals in commutative rings, with a focus on Krull rings. J. Korean Math. Soc. 60 (2023), no. 2, 407–464.

Thank you !!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @