Polynomial Dedekind Domains

Giulio Peruginelli

Department of Mathematics "Tullio Levi-Civita", University of Padova, Italy
gperugin@math.unipd.it

July 11, 2023
Conference on Rings and Factorizations 2023 Institute of Mathematics and Scientific Computing, University of Graz in Graz, Austria

Polynomial Dedekind domains

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian $\operatorname{group} \mathrm{Cl}(D)=\operatorname{Fr}(D) / \mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since $D \mathrm{UFD} \Leftrightarrow \mathrm{Cl}(D)=(0)$.
Example: The ring of integers O_{K} of a number field K is Dedekind with $\mathrm{Cl}\left(O_{K}\right)$ finite.

Polynomial Dedekind domains

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian $\operatorname{group} \mathrm{Cl}(D)=\operatorname{Fr}(D) / \mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since $D \mathrm{UFD} \Leftrightarrow \mathrm{Cl}(D)=(0)$.
Example: The ring of integers O_{K} of a number field K is Dedekind with $\mathrm{Cl}\left(O_{K}\right)$ finite.

Theorem (Claborn 1966)

Every abelian group is the class group of a Dedekind domain.

Polynomial Dedekind domains

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian group $\mathrm{Cl}(D)=\operatorname{Fr}(D) / \mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since $D \mathrm{UFD} \Leftrightarrow \mathrm{Cl}(D)=(0)$.
Example: The ring of integers O_{K} of a number field K is Dedekind with $\mathrm{Cl}\left(O_{K}\right)$ finite.

Theorem (Claborn 1966)

Every abelian group is the class group of a Dedekind domain.
We are interested in Dedekind domains D such that $\mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ (Polynomial Dedekind Domains). We show that such a D :

- can be realized as a ring of integer-valued polynomials;
- $\mathrm{Cl}(D)=\bigoplus_{n \in \mathbb{N}} G_{n}, G_{n}$ finitely generated abelian groups.

Polynomial Dedekind domains

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian $\operatorname{group} \mathrm{Cl}(D)=\operatorname{Fr}(D) / \mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since $D \mathrm{UFD} \Leftrightarrow \mathrm{Cl}(D)=(0)$.
Example: The ring of integers O_{K} of a number field K is Dedekind with $\mathrm{Cl}\left(O_{K}\right)$ finite.

Theorem (Claborn 1966)

Every abelian group is the class group of a Dedekind domain.
We are interested in Dedekind domains D such that $\mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ (Polynomial Dedekind Domains). We show that such a D :

- can be realized as a ring of integer-valued polynomials;
- $\mathrm{Cl}(D)=\bigoplus_{n \in \mathbb{N}} G_{n}, G_{n}$ finitely generated abelian groups.

Conversely, every such a group occurs as the class group of a Polynomial Dedekind domain.

Example: We may represent $\mathbb{Q}[X]$ as follows:

$$
\mathbb{Q}[X]=\bigcap_{q \in \mathcal{P i r r}} \mathbb{Q}[X]_{(q)}
$$

where $\mathcal{P}^{\text {irr }}$ is the set of irreducible polynomials over \mathbb{Q}. It is well-known that $\mathbb{Q}[X]_{(q)}, q \in \mathcal{P}^{\text {irr }}$, are the DVRs of $\mathbb{Q}(X)$ containing $\mathbb{Q}\left(+\mathbb{Q}\left[\frac{1}{X}\right]_{\left(\frac{1}{X}\right)}\right)$.

Example: We may represent $\mathbb{Q}[X]$ as follows:

$$
\mathbb{Q}[X]=\bigcap_{q \in \mathcal{P}^{\text {irr }}} \mathbb{Q}[X]_{(q)}
$$

where $\mathcal{P}^{\text {irr }}$ is the set of irreducible polynomials over \mathbb{Q}. It is well-known that $\mathbb{Q}[X]_{(q)}, q \in \mathcal{P}^{\text {irr }}$, are the DVRs of $\mathbb{Q}(X)$ containing $\mathbb{Q}\left(+\mathbb{Q}\left[\frac{1}{X}\right]_{\left(\frac{1}{X}\right)}\right)$. Idea: Find non-trivial Polynomial Dedekind domains by intersecting $\mathbb{Q}[X]$ with DVRs which are residually algebraic over $\mathbb{Z}_{(p)}$ (that is, the extension of the residue fields is algebraic) for some prime $p \in \mathbb{Z}$; it is well-known that we may disregard residually transcendental extensions of $\mathbb{Z}_{(p)}$.

Problem

Describe the DVRs W of $\mathbb{Q}(X)$ which are residually algebraic extensions of $\mathbb{Z}_{(p)}, p \in \mathbb{Z}$ prime.

Non-trivial example of Polynomial Dedekind domain

Theorem (Eakin-Heinzer, 1973)

Let $p_{1}, \ldots, p_{n} \in \mathbb{Z}$ be primes and for each $i=1, \ldots, n$, let $\left\{W_{i, j}\right\}_{j=1}^{m_{i}}$ be finitely many $D V R s$ of $\mathbb{Q}(X)$ which are residually algebraic extensions of $\mathbb{Z}_{\left(p_{i}\right)}$.
Then the following is a Dedekind domain:

$$
D=\bigcap_{i=1}^{n} \bigcap_{j=1}^{m_{i}} W_{i, j} \cap \mathbb{Q}[X] .
$$

Non-trivial example of Polynomial Dedekind domain

Theorem (Eakin-Heinzer, 1973)

Let $p_{1}, \ldots, p_{n} \in \mathbb{Z}$ be primes and for each $i=1, \ldots, n$, let $\left\{W_{i, j}\right\}_{j=1}^{m_{i}}$ be finitely many DVRs of $\mathbb{Q}(X)$ which are residually algebraic extensions of $\mathbb{Z}_{\left(p_{i}\right)}$.
Then the following is a Dedekind domain:

$$
D=\bigcap_{i=1}^{n} \bigcap_{j=1}^{m_{i}} W_{i, j} \cap \mathbb{Q}[X] .
$$

Corollary (E.-H., 1973)

Let G be a finitely generated abelian group. Then there exists a Dedekind domain $D, \mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ with class group G.

Notation

For $p \in \mathbb{P}$, we set:

- $\mathbb{Z}_{(p)}$: the localization of \mathbb{Z} at $p \mathbb{Z}$.
- $\mathbb{Q}_{p}, \mathbb{Z}_{p}$: the field of p-adic numbers and the ring of p-adic integers, respectively.
- $\overline{\mathbb{Q}_{p}}, \overline{\mathbb{Z}_{p}}$: a fixed algebraic closure of \mathbb{Q}_{p} and the absolute integral closure of \mathbb{Z}_{p}, respectively.
- $\mathbb{C}_{p}, \mathbb{O}_{p}$: the completion of $\overline{\mathbb{Q}_{p}}$ and $\overline{\mathbb{Z}_{p}}$, respectively.
- $v=v_{p}$ denotes the unique extension of the p-adic valuation on \mathbb{Q}_{p} to \mathbb{C}_{p}.

DVRs of $\mathbb{Q}(X)$ r.a. over $\mathbb{Z}_{(p)}$

Theorem (P. 2023)

If W is a DVR of $\mathbb{Q}(X)$ which is a residually algebraic extension of $\mathbb{Z}_{(p)}$ for some $p \in \mathbb{P}$; then there exists $\alpha \in \mathbb{C}_{p}$, transcendental over \mathbb{Q}, such that

$$
W=\mathbb{Z}_{(p), \alpha}=\left\{\phi \in \mathbb{Q}(X) \mid \phi(\alpha) \in \mathbb{O}_{p}\right\}
$$

$\alpha \in \overline{\mathbb{Q}_{p}}$ if and only if the residue field extension $W / M \supseteq \mathbb{Z} / p \mathbb{Z}$ is finite.

DVRs of $\mathbb{Q}(X)$ r.a. over $\mathbb{Z}_{(p)}$

Theorem (P. 2023)

If W is a DVR of $\mathbb{Q}(X)$ which is a residually algebraic extension of $\mathbb{Z}_{(p)}$ for some $p \in \mathbb{P}$; then there exists $\alpha \in \mathbb{C}_{p}$, transcendental over \mathbb{Q}, such that

$$
W=\mathbb{Z}_{(p), \alpha}=\left\{\phi \in \mathbb{Q}(X) \mid \phi(\alpha) \in \mathbb{O}_{p}\right\}
$$

$\alpha \in \overline{\mathbb{Q}_{p}}$ if and only if the residue field extension $W / M \supseteq \mathbb{Z} / p \mathbb{Z}$ is finite.
For $\alpha \in \mathbb{C}_{p}$, it is not true in general that $\mathbb{Z}_{(p), \alpha}$ is a DVR!

Theorem (P. 2023)

Let k be an algebraic extension of \mathbb{F}_{p} and Γ a totally ordered group such that $\mathbb{Z} \subseteq \Gamma \subseteq \mathbb{Q}$. Then there exists $\alpha \in \mathbb{C}_{p}$, transcendental over \mathbb{Q}, such that $\mathbb{Z}_{(p), \alpha}$ has residue field k and value group Γ.

Elements of \mathbb{C}_{p} of bounded ramification

For $\alpha \in \mathbb{C}_{p}$ we consider the extension $\mathbb{Q}_{p}(\alpha)$ of \mathbb{Q}_{p}, which is transcendental precisely when $\alpha \notin \overline{\mathbb{Q}_{p}}$.
We set e_{α} to be the ramification index of $\mathbb{O}_{p} \cap \mathbb{Q}_{p}(\alpha)$ over \mathbb{Z}_{p}. We consider

$$
\mathbb{C}_{p}^{\mathrm{br}} \doteqdot\left\{\alpha \in \mathbb{C}_{p} \mid e_{\alpha} \in \mathbb{N}\right\}
$$

Theorem (P. 2023)
$\mathbb{C}_{p}^{b r}$ is a field, $\overline{\mathbb{Q}_{p}} \subset \mathbb{C}_{p}^{b r} \subset \mathbb{C}_{p}$ and we have

$$
\mathbb{C}_{p}^{b r}=\bigcup_{\left[K: \mathbb{Q}_{p}\right]<\infty} \widehat{K^{u n r}}
$$

where the union is over the set of all the finite extensions K of \mathbb{Q}_{p} and $K^{u n r}$ is the maximal unramified extension of K inside $\overline{\mathbb{Q}_{p}}$.

Eakin-Heinzer's construction revisited

In Eakin-Heinzer's construction, for each i, j there exists some $\alpha_{i, j} \in \mathbb{C}_{p_{i}}^{\mathrm{br}}$ such that

$$
W_{i, j}=\mathbb{Z}_{\left(p_{i}\right), \alpha_{i, j}}=\left\{\phi \in \mathbb{Q}(X) \mid \phi\left(\alpha_{i, j}\right) \in \mathbb{O}_{p_{i}}\right\}
$$

and so their Dedekind domain is equal to:

$$
\begin{aligned}
D= & \bigcap_{\substack{i=1, \ldots, n \\
j=1, \ldots, m_{i}}} \mathbb{Z}_{\left(p_{i}\right), \alpha_{i, j}} \cap \mathbb{Q}[X]= \\
& =\left\{f \in \mathbb{Q}[X] \mid v_{p_{i}}\left(f\left(\alpha_{i, j}\right)\right) \geq 0, \forall i=1, \ldots, n, j=1, \ldots, m_{i}\right\}= \\
& =\operatorname{lnt}(\mathbb{Q}(\underline{E}, \mathcal{O})
\end{aligned}
$$

where $\underline{E}=\prod_{i=1}^{n} E_{i}, E_{i}=\left\{\alpha_{i, j} \mid j=1, \ldots, m_{i}\right\} \subset \mathbb{O}_{p_{i}}^{\mathrm{br}}$ and $\mathcal{O}=\prod_{p} \mathbb{O}_{p}$. These are polynomials which are simultaneously integer-valued on different finite subsets of $\mathbb{C}_{p_{i}}$, for $i=1, \ldots, n$.

Representation as intersection of DVRs

Given a subset $E=\Pi_{p} E_{p}$ of $\mathcal{O}=\Pi_{p} \mathbb{O}_{p}$ we have:

$$
\operatorname{lnt} \mathbb{Q}_{\mathbb{Q}}(\underline{E}, \mathcal{O})=\bigcap_{p \in \mathbb{P} \alpha_{p} \in E_{p}} \mathbb{Z}_{(p), \alpha_{p}} \cap \bigcap_{q \in \mathcal{P i r r}} \mathbb{Q}[X]_{(q)}
$$

where we recall that

$$
\mathbb{Z}_{(p), \alpha_{p}}=\left\{\phi \in \mathbb{Q}(X) \mid \phi\left(\alpha_{p}\right) \in \mathbb{O}_{p}\right\}
$$

Lemma

$\mathbb{Z}_{(p), \alpha_{p}}$ is a DVR if and only if $\alpha_{p} \in \mathbb{C}_{p}^{b r}$ and α_{p} is transcendental over \mathbb{Q}.
Lemma
Let $p \in \mathbb{P}$ and $\operatorname{lnt}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)=\left\{f \in \mathbb{Q}[X] \mid f\left(E_{p}\right) \subseteq \mathbb{O}_{p}\right\}$. Then

$$
(\mathbb{Z} \backslash p \mathbb{Z})^{-1} \ln t_{\mathbb{Q}}(\underline{E}, \mathcal{O})=\operatorname{lnt}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)
$$

Local case

For $E_{p} \subseteq \mathbb{O}_{p}$,
$\operatorname{lnt}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)=\left\{f \in \mathbb{Q}[X] \mid f\left(E_{p}\right) \subseteq \mathbb{O}_{p}\right\}=\bigcap_{\alpha_{p} \in E_{p}} \mathbb{Z}_{(p), \alpha_{p}} \cap \mathbb{Q}[X]$.

Proposition

Let E_{p} be a subset of \mathbb{O}_{p}. Then $\operatorname{Int}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is a Dedekind domain if and only if E_{p} is a finite subset of $\mathbb{O}_{p}^{b r}$ of transcendental elements over \mathbb{Q}.
Moreover, if $E_{p}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with the α_{i} 's pairwise non-conjugate over \mathbb{Q}_{p} and e is the g.c.d. of the ramification indexes of $\mathbb{Q}_{p}\left(\alpha_{i}\right) / \mathbb{Q}_{p}$ for $i=1, \ldots, n$, then $C l\left(\operatorname{lnt}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)\right)$ is isomorphic to $\mathbb{Z} / e \mathbb{Z} \oplus \mathbb{Z}^{n-1}$.

Local case

For $E_{p} \subseteq \mathbb{O}_{p}$,
$\operatorname{lnt}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)=\left\{f \in \mathbb{Q}[X] \mid f\left(E_{p}\right) \subseteq \mathbb{O}_{p}\right\}=\bigcap_{\alpha_{p} \in E_{p}} \mathbb{Z}_{(p), \alpha_{p}} \cap \mathbb{Q}[X]$.

Proposition

Let E_{p} be a subset of \mathbb{O}_{p}. Then $\operatorname{Int}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is a Dedekind domain if and only if E_{p} is a finite subset of $\mathbb{O}_{p}^{b r}$ of transcendental elements over \mathbb{Q}. Moreover, if $E_{p}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with the α_{i} 's pairwise non-conjugate over \mathbb{Q}_{p} and e is the g.c.d. of the ramification indexes of $\mathbb{Q}_{p}\left(\alpha_{i}\right) / \mathbb{Q}_{p}$ for $i=1, \ldots, n$, then $C /\left(\operatorname{lnt}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)\right)$ is isomorphic to $\mathbb{Z} / e \mathbb{Z} \oplus \mathbb{Z}^{n-1}$. In particular, $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is a PID if and only if E_{p} contains at most one element which is transcendental over \mathbb{Q} and unramified over \mathbb{Q}_{p}.

Note that $E_{p}=\emptyset \Leftrightarrow \operatorname{Int}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)=\mathbb{Q}[X]$.

Towards the global case

In general, if $\operatorname{lnt} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is Dedekind for each $p \in \mathbb{P}$ and $E=\prod_{p} E_{p}$, the ring $R=\operatorname{lnt} \mathbb{Q}_{\mathbb{Q}}(\underline{E}, \mathcal{O})=\bigcap_{p \in \mathbb{P}} \operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ may not be Dedekind!

Towards the global case

In general, if $\operatorname{Int}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is Dedekind for each $p \in \mathbb{P}$ and $\underline{E}=\prod_{p} E_{p}$, the ring $R=\operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O})=\bigcap_{p \in \mathbb{P}} \operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ may not be Dedekind!
Example: $E_{p}=\left\{\alpha_{p}\right\}$ with $v_{p}\left(\alpha_{p}\right)>0, \forall p \in \mathbb{P} \Rightarrow X \in p R, \forall p \in \mathbb{P}$

Towards the global case

In general, if $\operatorname{Int}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is Dedekind for each $p \in \mathbb{P}$ and $\underline{E}=\prod_{p} E_{p}$, the ring $R=\operatorname{lnt}_{\mathbb{Q}}(\underline{E}, \mathcal{O})=\bigcap_{p \in \mathbb{P}} \operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ may not be Dedekind! Example: $E_{p}=\left\{\alpha_{p}\right\}$ with $v_{p}\left(\alpha_{p}\right)>0, \forall p \in \mathbb{P} \Rightarrow X \in p R, \forall p \in \mathbb{P}$

Definition

We say that $\underline{E}=\prod_{p} E_{p} \subset \mathcal{O}=\prod_{p} \mathbb{O}_{p}$ is polynomially factorizable if, for each $g \in \mathbb{Z}[X]$ and $\alpha=\left(\alpha_{p}\right) \in \underline{E}$, there exist $n, d \in \mathbb{Z}, n, d \geq 1$ such that $\frac{g(\alpha)^{n}}{d}$ is a unit of \mathcal{O}, that is, $v_{p}\left(\frac{g\left(\alpha_{p}\right)^{n}}{d}\right)=0, \forall p \in \mathbb{P}$.

Towards the global case

In general, if $\operatorname{lnt} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ is Dedekind for each $p \in \mathbb{P}$ and $\underline{E}=\prod_{p} E_{p}$, the ring $R=\operatorname{lnt}_{\mathbb{Q}}(\underline{E}, \mathcal{O})=\bigcap_{p \in \mathbb{P}} \operatorname{Int} \mathbb{Q}_{\mathbb{Q}}\left(E_{p}, \mathbb{O}_{p}\right)$ may not be Dedekind!
Example: $E_{p}=\left\{\alpha_{p}\right\}$ with $v_{p}\left(\alpha_{p}\right)>0, \forall p \in \mathbb{P} \Rightarrow X \in p R, \forall p \in \mathbb{P}$

Definition

We say that $\underline{E}=\prod_{p} E_{p} \subset \mathcal{O}=\prod_{p} \mathbb{O}_{p}$ is polynomially factorizable if, for each $g \in \mathbb{Z}[X]$ and $\alpha=\left(\alpha_{p}\right) \in \underline{E}$, there exist $n, d \in \mathbb{Z}, n, d \geq 1$ such that $\frac{g(\alpha)^{n}}{d}$ is a unit of \mathcal{O}, that is, $v_{p}\left(\frac{g\left(\alpha_{p}\right)^{n}}{d}\right)=0, \forall p \in \mathbb{P}$.

Example

$\widehat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}$ is not polynomially factorizable: for each $q \in \mathbb{Z}[X]$, there exist infinitely many $p \in \mathbb{P}$ for which there exists $n \in \mathbb{Z}$ such that $q(n)$ is divisible by p.

Polynomially factorizable sets

Lemma

Let $E=\prod_{p} E_{p} \subset \mathcal{O}$, where E_{p} is a finite subset of \mathbb{O}_{p} of transcendental elements over \mathbb{Q}.
Then E is polynomially factorizable if and only if, for each (irreducible) $g \in \mathbb{Z}[X]$ the following set is finite:

$$
\mathbb{P}_{g, \underline{E}}=\left\{p \in \mathbb{P} \mid \exists \alpha_{p} \in E_{p}, v_{p}\left(g\left(\alpha_{p}\right)\right)>0\right\}
$$

Global case

```
Theorem
Let }\underline{E}=\mp@subsup{\prod}{p}{}\mp@subsup{E}{p}{}\subset\mathcal{O}=\mp@subsup{\prod}{p}{}\mp@subsup{\mathbb{O}}{p}{}\mathrm{ be a subset. Then
Int}(\mathbb{E}(\underline{E},\mathcal{O})={f\in\mathbb{Q}[X]|f(\alpha)\in\mathcal{O},\forall\alpha\in\underline{E}}\mathrm{ is a Dedekind domain if and only if \(E_{p} \subset \mathbb{O}_{p}^{b r}\) is a finite set of transcendental elements over \(\mathbb{Q}\) for each prime \(p\) and \(\underline{E}\) is polynomially factorizable. In this case, \(C /\left(\operatorname{lnt}_{\mathbb{Q}}(\underline{E}, \mathcal{O})\right)\) is the direct sum of a countable family of finitely generated abelian groups.
```


Polynomial Dedekind domains

Recall that $\mathcal{O}=\prod_{p} \mathbb{O}_{p}, \mathbb{O}_{p}$ completion of $\overline{\mathbb{Z}_{p}} ; \mathbb{C}_{p}^{\mathrm{br}}=$ elements of \mathbb{C}_{p} of bounded ramification.

Theorem

Let R be a Dedekind domain such that $\mathbb{Z}[X] \subset R \subseteq \mathbb{Q}[X]$.
Then $R=\operatorname{lnt} \mathbb{Q}(\underline{E}, \mathcal{O})$, for some subset $\underline{E}=\prod_{p} E_{p} \subset \mathcal{O}^{\text {br }}$ such that E_{p} is a finite set of transcendental elements over \mathbb{Q} for each prime p and \underline{E} is polynomially factorizable.

Corollary

Let R be a PID such that $\mathbb{Z}[X] \subset R \subset \mathbb{Q}[X]$.
Then $R=\operatorname{lnt}_{\mathbb{Q}}(\{\alpha\}, \mathcal{O})$, for some $\alpha=\left(\alpha_{p}\right) \in \mathcal{O}^{\text {br }}$ such that, for each $p \in \mathbb{P}, \alpha_{p}$ is transcendental over \mathbb{Q}, α_{p} is unramified over \mathbb{Q}_{p} and $\{\alpha\}$ is polynomially factorizable.

We get "finite residue fields of prime characteristic" if $E_{p} \subset \overline{\mathbb{Z}_{p}}, \forall p \in \mathbb{P}$.

Chang's construction revisited

Let $\left\{G_{i}\right\}_{i \in I}$ be a countable family of finitely generated abelian groups. For each $i \in I$ we have

$$
G_{i} \cong \mathbb{Z}^{m_{i}} \oplus \mathbb{Z} / n_{i, 1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / n_{i, k_{i}} \mathbb{Z}
$$

We partition $\mathbb{P}=\bigcup_{i \in I} \mathbb{P}_{i}$ where $\mathbb{P}_{i}=\left\{p_{i}, q_{i, 1}, \ldots, q_{i, k_{i}}\right\}$ and for each $i \in I$ we fix the following $1+k_{i}$ sets:
i) $E_{p_{i}}=\left\{\alpha_{p_{i}, 1}, \ldots, \alpha_{p_{i}, m_{i}+1}\right\} \subset \mathbb{Z}_{p_{i}}, \alpha_{p_{i, j}}$ transcendental over \mathbb{Q}.
ii) $E_{q_{i, j}}=\left\{\alpha_{q_{i, j}}\right\} \subset \overline{\mathbb{Z}_{q_{i, j}}}$ such that $\alpha_{q_{i, j}}$ is transcendental over \mathbb{Q} and satisfies $\alpha_{q_{i, j}}^{n_{i, j}}=\tilde{q}_{i, j}$, where $v_{q_{i, j}}\left(\tilde{q}_{i, j}\right)=1$.
We set $\underline{E}_{i}=E_{p_{i}} \times \prod_{j=1}^{k_{i}} E_{q_{i, j}}$ and

$$
R_{i}=\operatorname{lnt}_{\mathbb{Q}}\left(E_{p_{i}}, \mathbb{Z}_{p_{i}}\right) \cap \bigcap_{j=1}^{k_{i}} \operatorname{lnt}_{\mathbb{Q}}\left(E_{q_{i, j}}, \overline{\mathbb{Z}}_{q_{i, j}}\right)=\operatorname{lnt}_{\mathbb{Q}}\left(\underline{E}_{i}, \overline{\widehat{\mathbb{Z}}}\right)
$$

By Eakin-Heinzer's result, R_{i} is a Dedekind domain with class group isomorphic to G_{i}.

Realization Theorem for Polynomial Dedekind domains

We set

$$
R=\bigcap_{i \in I} R_{i}=\ln t_{\mathbb{Q}}(\underline{E}, \overline{\mathbb{Z}})
$$

where $\underline{E}=\prod_{i} \underline{E}_{i}$. In order for R to be Dedekind, \underline{E} must be polynomially factorizable, that is, $\mathbb{P}_{g, E}=\left\{p \in \mathbb{P} \mid \exists \alpha_{p} \in E_{p}, v_{p}\left(g\left(\alpha_{p}\right)\right)>0\right\}$ finite for each $g \in \mathbb{Z}[X]$.
By a suitable alteration of $\alpha_{p} \in E_{p}$, as $p \in \mathbb{P}$, we may achieve this property.

Theorem (P. 2023)

Let G be a direct sum of a countable family $\left\{G_{i}\right\}_{i \in I}$ of finitely generated abelian groups.
Then there exists a Dedekind domain $D, \mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ with class group isomorphic to G.

Thank you!

E. G. Chang, The ideal class group of polynomial overrings of the ring of integers, J. Korean Math. Soc. 59 (2022), No. 3, pp. 571-594.
E. W. Chang, A. Geroldinger, On Dedekind domains whose class groups are direct sums of cyclic groups, J. Pure Appl. Algebra 228 (2024), no. 1, 107470.
E. L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222.
E. Eakin, W. Heinzer, More noneuclidian PID's and Dedekind domains with prescribed class group. Proc. Amer. Math. Soc. 40 (1973), 66-68.
E. G. P. Polynomial Dedekind domains with finite residue fields of prime characteristic, to appear in the Pacific Journal of Math. (2023), arXiv: https://arxiv.org/abs/2207.04280.

E G. P. Stacked Pseudo-Convergent Sequences and Polynomial Dedekind Domains, 2023 preprint, https://arxiv.org/abs/2303.11740.

