Giulio Peruginelli

Department of Mathematics "Tullio Levi-Civita", University of Padova, Italy

gperugin@math.unipd.it

July 11, 2023 Conference on Rings and Factorizations 2023 Institute of Mathematics and Scientific Computing, University of Graz in Graz, Austria

G. Peruginelli gperugin@math.unipd.it Polynomial Dedekind Domains

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian group $Cl(D) = Fr(D)/\mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since D UFD \Leftrightarrow Cl(D) = (0).

Example: The ring of integers O_K of a number field K is Dedekind with $Cl(O_K)$ finite.

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian group $Cl(D) = Fr(D)/\mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since D UFD \Leftrightarrow Cl(D) = (0).

Example: The ring of integers O_K of a number field K is Dedekind with $Cl(O_K)$ finite.

Theorem (Claborn 1966)

Every abelian group is the class group of a Dedekind domain.

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian group $Cl(D) = Fr(D)/\mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since D UFD \Leftrightarrow Cl(D) = (0).

Example: The ring of integers O_K of a number field K is Dedekind with $Cl(O_K)$ finite.

Theorem (Claborn 1966)

Every abelian group is the class group of a Dedekind domain.

We are interested in Dedekind domains D such that $\mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ (Polynomial Dedekind Domains). We show that such a D:

- can be realized as a ring of integer-valued polynomials;
- $\mathsf{Cl}(D) = \bigoplus_{n \in \mathbb{N}} G_n$, G_n finitely generated abelian groups.

A Dedekind domain D is a one dimensional, integrally closed Noetherian domain. The class group of D is the abelian group $Cl(D) = Fr(D)/\mathcal{P}(D)$: it measures how far is D from being a UFD (or, equivalently, a PID), since D UFD \Leftrightarrow Cl(D) = (0).

Example: The ring of integers O_K of a number field K is Dedekind with $Cl(O_K)$ finite.

Theorem (Claborn 1966)

Every abelian group is the class group of a Dedekind domain.

We are interested in Dedekind domains D such that $\mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ (Polynomial Dedekind Domains). We show that such a D:

- can be realized as a ring of integer-valued polynomials;
- $Cl(D) = \bigoplus_{n \in \mathbb{N}} G_n$, G_n finitely generated abelian groups.

Conversely, every such a group occurs as the class group of a Polynomial Dedekind domain.

Example: We may represent $\mathbb{Q}[X]$ as follows:

$$\mathbb{Q}[X] = igcap_{q\in\mathcal{P}^{\operatorname{irr}}} \mathbb{Q}[X]_{(q)}$$

where \mathcal{P}^{irr} is the set of irreducible polynomials over \mathbb{Q} . It is well-known that $\mathbb{Q}[X]_{(q)}, q \in \mathcal{P}^{\text{irr}}$, are the DVRs of $\mathbb{Q}(X)$ containing $\mathbb{Q}(+\mathbb{Q}[\frac{1}{X}]_{(\frac{1}{Y})})$.

Example: We may represent $\mathbb{Q}[X]$ as follows:

$$\mathbb{Q}[X] = igcap_{q\in\mathcal{P}^{\operatorname{irr}}} \mathbb{Q}[X]_{(q)}$$

where \mathcal{P}^{irr} is the set of irreducible polynomials over \mathbb{Q} . It is well-known that $\mathbb{Q}[X]_{(q)}, q \in \mathcal{P}^{\text{irr}}$, are the DVRs of $\mathbb{Q}(X)$ containing $\mathbb{Q}(+\mathbb{Q}[\frac{1}{X}]_{(\frac{1}{X})})$. **Idea**: Find non-trivial Polynomial Dedekind domains by intersecting $\mathbb{Q}[X]$ with DVRs which are residually algebraic over $\mathbb{Z}_{(p)}$ (that is, the extension of the residue fields is algebraic) for some prime $p \in \mathbb{Z}$; it is well-known that we may disregard residually transcendental extensions of $\mathbb{Z}_{(p)}$.

Problem

Describe the DVRs W of $\mathbb{Q}(X)$ which are residually algebraic extensions of $\mathbb{Z}_{(p)}$, $p \in \mathbb{Z}$ prime.

Theorem (Eakin-Heinzer, 1973)

Let $p_1, \ldots, p_n \in \mathbb{Z}$ be primes and for each $i = 1, \ldots, n$, let $\{W_{i,j}\}_{j=1}^{m_i}$ be finitely many DVRs of $\mathbb{Q}(X)$ which are residually algebraic extensions of $\mathbb{Z}_{(p_i)}$. Then the following is a Dedekind domain:

$$D = \bigcap_{i=1}^{n} \bigcap_{j=1}^{m_i} W_{i,j} \cap \mathbb{Q}[X].$$

Theorem (Eakin-Heinzer, 1973)

Let $p_1, \ldots, p_n \in \mathbb{Z}$ be primes and for each $i = 1, \ldots, n$, let $\{W_{i,j}\}_{j=1}^{m_i}$ be finitely many DVRs of $\mathbb{Q}(X)$ which are residually algebraic extensions of $\mathbb{Z}_{(p_i)}$. Then the following is a Dedekind domain:

$$D=\bigcap_{i=1}^n\bigcap_{j=1}^{m_i}W_{i,j}\cap\mathbb{Q}[X].$$

Corollary (E.-H., 1973)

Let G be a finitely generated abelian group. Then there exists a Dedekind domain D, $\mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ with class group G.

For $p \in \mathbb{P}$, we set:

- $\mathbb{Z}_{(p)}$: the localization of \mathbb{Z} at $p\mathbb{Z}$.
- $\mathbb{Q}_p, \mathbb{Z}_p$: the field of *p*-adic numbers and the ring of *p*-adic integers, respectively.
- $\overline{\mathbb{Q}_p}, \overline{\mathbb{Z}_p}$: a fixed algebraic closure of \mathbb{Q}_p and the absolute integral closure of \mathbb{Z}_p , respectively.
- \mathbb{C}_{p} , \mathbb{O}_{p} : the completion of $\overline{\mathbb{Q}_{p}}$ and $\overline{\mathbb{Z}_{p}}$, respectively.
- $v = v_p$ denotes the unique extension of the *p*-adic valuation on \mathbb{Q}_p to \mathbb{C}_p .

Theorem (P. 2023)

If W is a DVR of $\overline{\mathbb{Q}}(X)$ which is a residually algebraic extension of $\mathbb{Z}_{(p)}$ for some $p \in \mathbb{P}$; then there exists $\alpha \in \mathbb{C}_p$, transcendental over \mathbb{Q} , such that

$$W = \mathbb{Z}_{(p), \alpha} = \{ \phi \in \mathbb{Q}(X) \mid \phi(\alpha) \in \mathbb{O}_p \}$$

 $\alpha \in \overline{\mathbb{Q}_p}$ if and only if the residue field extension $W/M \supseteq \mathbb{Z}/p\mathbb{Z}$ is finite.

Theorem (P. 2023)

If W is a DVR of $\mathbb{Q}(X)$ which is a residually algebraic extension of $\mathbb{Z}_{(p)}$ for some $p \in \mathbb{P}$; then there exists $\alpha \in \mathbb{C}_p$, transcendental over \mathbb{Q} , such that

$$W = \mathbb{Z}_{(p), \alpha} = \{ \phi \in \mathbb{Q}(X) \mid \phi(\alpha) \in \mathbb{O}_p \}$$

 $\alpha \in \overline{\mathbb{Q}_p}$ if and only if the residue field extension $W/M \supseteq \mathbb{Z}/p\mathbb{Z}$ is finite.

For $\alpha \in \mathbb{C}_p$, it is not true in general that $\mathbb{Z}_{(p),\alpha}$ is a DVR!

Theorem (P. 2023)

Let k be an algebraic extension of \mathbb{F}_p and Γ a totally ordered group such that $\mathbb{Z} \subseteq \Gamma \subseteq \mathbb{Q}$. Then there exists $\alpha \in \mathbb{C}_p$, transcendental over \mathbb{Q} , such that $\mathbb{Z}_{(p),\alpha}$ has residue field k and value group Γ .

Elements of \mathbb{C}_p of bounded ramification

For $\alpha \in \mathbb{C}_p$ we consider the extension $\mathbb{Q}_p(\alpha)$ of \mathbb{Q}_p , which is transcendental precisely when $\alpha \notin \overline{\mathbb{Q}_p}$. We set e_α to be the ramification index of $\mathbb{O}_p \cap \mathbb{Q}_p(\alpha)$ over \mathbb{Z}_p . We consider

$$\mathbb{C}_{p}^{\mathsf{br}} \doteq \{ \alpha \in \mathbb{C}_{p} \mid e_{\alpha} \in \mathbb{N} \}$$

Theorem (P. 2023)

 \mathbb{C}_p^{br} is a field, $\overline{\mathbb{Q}_p} \subset \mathbb{C}_p^{br} \subset \mathbb{C}_p$ and we have

$$\mathbb{C}_p^{br} = \bigcup_{[K:\mathbb{Q}_p] < \infty} \widehat{K^{unr}}$$

where the union is over the set of all the finite extensions K of \mathbb{Q}_p and K^{unr} is the maximal unramified extension of K inside $\overline{\mathbb{Q}_p}$.

In Eakin-Heinzer's construction, for each i, j there exists some $\alpha_{i,j} \in \mathbb{C}_{p_i}^{br}$ such that

$$W_{i,j} = \mathbb{Z}_{(p_i),\alpha_{i,j}} = \{\phi \in \mathbb{Q}(X) \mid \phi(\alpha_{i,j}) \in \mathbb{O}_{p_i}\}$$

and so their Dedekind domain is equal to:

$$D = \bigcap_{\substack{i=1,\dots,n\\j=1,\dots,m_i}} \mathbb{Z}_{(p_i),\alpha_{i,j}} \cap \mathbb{Q}[X] =$$

= $\{f \in \mathbb{Q}[X] \mid v_{p_i}(f(\alpha_{i,j})) \ge 0, \forall i = 1,\dots,n, j = 1,\dots,m_i\} =$
= $\operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O})$

where $\underline{E} = \prod_{i=1}^{n} \overline{E}_i$, $E_i = \{\alpha_{i,j} \mid j = 1, ..., m_i\} \subset \mathbb{O}_{p_i}^{\text{br}}$ and $\mathcal{O} = \prod_p \mathbb{O}_p$. These are polynomials which are simultaneously integer-valued on different finite subsets of \mathbb{C}_{p_i} , for i = 1, ..., n.

Representation as intersection of DVRs

Given a subset $\underline{E} = \prod_{p} E_{p}$ of $\mathcal{O} = \prod_{p} \mathbb{O}_{p}$ we have: $\operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \bigcap_{p \in \mathbb{P}} \bigcap_{\alpha_{p} \in E_{p}} \mathbb{Z}_{(p), \alpha_{p}} \cap \bigcap_{q \in \mathcal{P}^{\operatorname{irr}}} \mathbb{Q}[X]_{(q)}$

where we recall that

$$\mathbb{Z}_{(p), \alpha_p} = \{ \phi \in \mathbb{Q}(X) \mid \phi(\alpha_p) \in \mathbb{O}_p \}$$

Lemma

$$\mathbb{Z}_{(p),\alpha_p}$$
 is a DVR if and only if $\alpha_p \in \mathbb{C}_p^{br}$ and α_p is transcendental over \mathbb{Q} .

Lemma

Let
$$p \in \mathbb{P}$$
 and $\operatorname{Int}_{\mathbb{Q}}(E_p, \mathbb{O}_p) = \{f \in \mathbb{Q}[X] \mid f(E_p) \subseteq \mathbb{O}_p\}$. Then

$$(\mathbb{Z} \setminus p\mathbb{Z})^{-1} \operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho})$$

G. Peruginelli gperugin@math.unipd.it

Polynomial Dedekind Domains

Local case

For $E_{\rho} \subseteq \mathbb{O}_{\rho}$, $\operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho}) = \{f \in \mathbb{Q}[X] \mid f(E_{\rho}) \subseteq \mathbb{O}_{\rho}\} = \bigcap_{\alpha_{\rho} \in E_{\rho}} \mathbb{Z}_{(\rho), \alpha_{\rho}} \cap \mathbb{Q}[X].$

Proposition

Let E_p be a subset of \mathbb{O}_p . Then $\operatorname{Int}_{\mathbb{Q}}(E_p, \mathbb{O}_p)$ is a Dedekind domain if and only if E_p is a finite subset of \mathbb{O}_p^{br} of transcendental elements over \mathbb{Q} . Moreover, if $E_p = \{\alpha_1, \ldots, \alpha_n\}$ with the α_i 's pairwise non-conjugate over \mathbb{Q}_p and e is the g.c.d. of the ramification indexes of $\mathbb{Q}_p(\alpha_i)/\mathbb{Q}_p$ for $i = 1, \ldots, n$, then $Cl(\operatorname{Int}_{\mathbb{Q}}(E_p, \mathbb{O}_p))$ is isomorphic to $\mathbb{Z}/e\mathbb{Z} \oplus \mathbb{Z}^{n-1}$.

Local case

For $E_{\rho} \subseteq \mathbb{O}_{\rho}$, $\operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho}) = \{f \in \mathbb{Q}[X] \mid f(E_{\rho}) \subseteq \mathbb{O}_{\rho}\} = \bigcap_{\alpha_{\rho} \in E_{\rho}} \mathbb{Z}_{(\rho), \alpha_{\rho}} \cap \mathbb{Q}[X].$

Proposition

Let E_p be a subset of \mathbb{O}_p . Then $\operatorname{Int}_{\mathbb{Q}}(E_p, \mathbb{O}_p)$ is a Dedekind domain if and only if E_p is a finite subset of \mathbb{O}_p^{br} of transcendental elements over \mathbb{Q} . Moreover, if $E_p = \{\alpha_1, \ldots, \alpha_n\}$ with the α_i 's pairwise non-conjugate over \mathbb{Q}_p and e is the g.c.d. of the ramification indexes of $\mathbb{Q}_p(\alpha_i)/\mathbb{Q}_p$ for $i = 1, \ldots, n$, then $Cl(\operatorname{Int}_{\mathbb{Q}}(E_p, \mathbb{O}_p))$ is isomorphic to $\mathbb{Z}/e\mathbb{Z} \oplus \mathbb{Z}^{n-1}$. In particular, $\operatorname{Int}_{\mathbb{Q}}(E_p, \mathbb{O}_p)$ is a PID if and only if E_p contains at most one element which is transcendental over \mathbb{Q} and unramified over \mathbb{Q}_p .

Note that $E_{\rho} = \emptyset \Leftrightarrow \operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho}) = \mathbb{Q}[X].$

G. Peruginelli gperugin@math.unipd.it

Polynomial Dedekind Domains

Towards the global case

In general, if $\operatorname{Int}_{\mathbb{Q}}(E_{p}, \mathbb{O}_{p})$ is Dedekind for each $p \in \mathbb{P}$ and $\underline{E} = \prod_{p} E_{p}$, the ring $R = \operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \bigcap_{p \in \mathbb{P}} \operatorname{Int}_{\mathbb{Q}}(E_{p}, \mathbb{O}_{p})$ may not be Dedekind!

In general, if $\operatorname{Int}_{\mathbb{Q}}(E_{p}, \mathbb{O}_{p})$ is Dedekind for each $p \in \mathbb{P}$ and $\underline{E} = \prod_{p} E_{p}$, the ring $R = \operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \bigcap_{p \in \mathbb{P}} \operatorname{Int}_{\mathbb{Q}}(E_{p}, \mathbb{O}_{p})$ may not be Dedekind! Example: $E_{p} = \{\alpha_{p}\}$ with $v_{p}(\alpha_{p}) > 0, \forall p \in \mathbb{P} \Rightarrow X \in pR, \forall p \in \mathbb{P}$ In general, if $\operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho})$ is Dedekind for each $\rho \in \mathbb{P}$ and $\underline{E} = \prod_{p} E_{\rho}$, the ring $R = \operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \bigcap_{p \in \mathbb{P}} \operatorname{Int}_{\mathbb{Q}}(E_{p}, \mathbb{O}_{p})$ may not be Dedekind! Example: $E_{\rho} = \{\alpha_{\rho}\}$ with $v_{\rho}(\alpha_{\rho}) > 0, \forall \rho \in \mathbb{P} \Rightarrow X \in \rho R, \forall \rho \in \mathbb{P}$

Definition

We say that $\underline{E} = \prod_{p} E_{p} \subset \mathcal{O} = \prod_{p} \mathbb{O}_{p}$ is polynomially factorizable if, for each $g \in \mathbb{Z}[X]$ and $\alpha = (\alpha_{p}) \in \underline{E}$, there exist $n, d \in \mathbb{Z}$, $n, d \geq 1$ such that $\frac{g(\alpha)^{n}}{d}$ is a unit of \mathcal{O} , that is, $v_{p}(\frac{g(\alpha_{p})^{n}}{d}) = 0$, $\forall p \in \mathbb{P}$. In general, if $\operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho})$ is Dedekind for each $\rho \in \mathbb{P}$ and $\underline{E} = \prod_{\rho} E_{\rho}$, the ring $R = \operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \bigcap_{\rho \in \mathbb{P}} \operatorname{Int}_{\mathbb{Q}}(E_{\rho}, \mathbb{O}_{\rho})$ may not be Dedekind! Example: $E_{\rho} = \{\alpha_{\rho}\}$ with $v_{\rho}(\alpha_{\rho}) > 0, \forall \rho \in \mathbb{P} \Rightarrow X \in \rho R, \forall \rho \in \mathbb{P}$

Definition

We say that $\underline{E} = \prod_p E_p \subset \mathcal{O} = \prod_p \mathbb{O}_p$ is polynomially factorizable if, for each $g \in \mathbb{Z}[X]$ and $\alpha = (\alpha_p) \in \underline{E}$, there exist $n, d \in \mathbb{Z}$, $n, d \ge 1$ such that $\frac{g(\alpha)^n}{d}$ is a unit of \mathcal{O} , that is, $v_p(\frac{g(\alpha_p)^n}{d}) = 0$, $\forall p \in \mathbb{P}$.

Example

 $\widehat{\mathbb{Z}} = \prod_{p} \mathbb{Z}_{p}$ is not polynomially factorizable: for each $q \in \mathbb{Z}[X]$, there exist infinitely many $p \in \mathbb{P}$ for which there exists $n \in \mathbb{Z}$ such that q(n) is divisible by p.

Lemma

Let $\underline{E} = \prod_{p} E_{p} \subset \mathcal{O}$, where E_{p} is a finite subset of \mathbb{O}_{p} of transcendental elements over \mathbb{Q} . Then \underline{E} is polynomially factorizable if and only if, for each (irreducible) $g \in \mathbb{Z}[X]$ the following set is finite:

$$\mathbb{P}_{g,\underline{E}} = \{ p \in \mathbb{P} \mid \exists \alpha_p \in E_p, v_p(g(\alpha_p)) > 0 \}$$

Theorem

Let $\underline{E} = \prod_p E_p \subset \mathcal{O} = \prod_p \mathbb{O}_p$ be a subset. Then $\operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}) = \{f \in \mathbb{Q}[X] \mid f(\alpha) \in \mathcal{O}, \forall \alpha \in \underline{E}\}\$ is a Dedekind domain if and only if $E_p \subset \mathbb{O}_p^{br}$ is a finite set of transcendental elements over \mathbb{Q} for each prime p and \underline{E} is polynomially factorizable. In this case, $\operatorname{Cl}(\operatorname{Int}_{\mathbb{Q}}(\underline{E}, \mathcal{O}))$ is the direct sum of a countable family of finitely generated abelian groups.

Recall that $\mathcal{O} = \prod_{p} \mathbb{O}_{p}$, \mathbb{O}_{p} completion of $\overline{\mathbb{Z}_{p}}$; $\mathbb{C}_{p}^{\mathsf{br}}$ =elements of \mathbb{C}_{p} of bounded ramification.

Theorem

Let R be a Dedekind domain such that $\mathbb{Z}[X] \subset R \subseteq \mathbb{Q}[X]$. Then $R = Int_{\mathbb{Q}}(\underline{E}, \mathcal{O})$, for some subset $\underline{E} = \prod_{p} E_{p} \subset \mathcal{O}^{br}$ such that E_{p} is a finite set of transcendental elements over \mathbb{Q} for each prime p and \underline{E} is polynomially factorizable.

Corollary

Let R be a PID such that $\mathbb{Z}[X] \subset R \subset \mathbb{Q}[X]$. Then $R = Int_{\mathbb{Q}}(\{\alpha\}, \mathcal{O})$, for some $\alpha = (\alpha_p) \in \mathcal{O}^{br}$ such that, for each $p \in \mathbb{P}$, α_p is transcendental over \mathbb{Q} , α_p is unramified over \mathbb{Q}_p and $\{\alpha\}$ is polynomially factorizable.

We get "finite residue fields of prime characteristic" if $E_p \subset \overline{\mathbb{Z}_p}, \forall p \in \mathbb{P}$.

Chang's construction revisited

Let $\{G_i\}_{i \in I}$ be a countable family of finitely generated abelian groups. For each $i \in I$ we have

$$G_i \cong \mathbb{Z}^{m_i} \oplus \mathbb{Z}/n_{i,1}\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/n_{i,k_i}\mathbb{Z}$$

We partition $\mathbb{P} = \bigcup_{i \in I} \mathbb{P}_i$ where $\mathbb{P}_i = \{p_i, q_{i,1}, \dots, q_{i,k_i}\}$ and for each $i \in I$ we fix the following $1 + k_i$ sets:

- i) $E_{p_i} = \{\alpha_{p_i,1}, \dots, \alpha_{p_i,m_i+1}\} \subset \mathbb{Z}_{p_i}, \ \alpha_{p_{i,j}} \text{ transcendental over } \mathbb{Q}.$
- ii) $E_{q_{i,j}} = \{\alpha_{q_{i,j}}\} \subset \overline{\mathbb{Z}_{q_{i,j}}}$ such that $\alpha_{q_{i,j}}$ is transcendental over \mathbb{Q} and satisfies $\alpha_{q_{i,j}}^{n_{i,j}} = \tilde{q}_{i,j}$, where $v_{q_{i,j}}(\tilde{q}_{i,j}) = 1$.

We set $\underline{E}_i = E_{p_i} imes \prod_{j=1}^{k_i} E_{q_{i,j}}$ and

$$R_i = \operatorname{Int}_{\mathbb{Q}}(E_{p_i}, \mathbb{Z}_{p_i}) \cap igcap_{j=1}^{k_i} \operatorname{Int}_{\mathbb{Q}}(E_{q_{i,j}}, \overline{\mathbb{Z}}_{q_{i,j}}) = \operatorname{Int}_{\mathbb{Q}}(\underline{E}_i, \overline{\widehat{\mathbb{Z}}})$$

By Eakin-Heinzer's result, R_i is a Dedekind domain with class group isomorphic to G_i .

G. Peruginelli gperugin@math.unipd.it Polynomial Dedekind Domains

Realization Theorem for Polynomial Dedekind domains

We set

$$R = \bigcap_{i \in I} R_i = \operatorname{Int}_{\mathbb{Q}}(\underline{E}, \overline{\widehat{\mathbb{Z}}})$$

where $\underline{E} = \prod_i \underline{E}_i$. In order for R to be Dedekind, \underline{E} must be polynomially factorizable, that is, $\mathbb{P}_{g,\underline{E}} = \{p \in \mathbb{P} \mid \exists \alpha_p \in E_p, v_p(g(\alpha_p)) > 0\}$ finite for each $g \in \mathbb{Z}[X]$. By a suitable alteration of $\alpha_p \in E_p$, as $p \in \mathbb{P}$, we may achieve this property.

Theorem (P. 2023)

Let G be a direct sum of a countable family $\{G_i\}_{i \in I}$ of finitely generated abelian groups. Then there exists a Dedekind domain D, $\mathbb{Z}[X] \subset D \subseteq \mathbb{Q}[X]$ with class group isomorphic to G.

Thank you!

- G. W. Chang, The ideal class group of polynomial overrings of the ring of integers, J. Korean Math. Soc. 59 (2022), No. 3, pp. 571-594.
- G. W. Chang, A. Geroldinger, On Dedekind domains whose class groups are direct sums of cyclic groups, J. Pure Appl. Algebra 228 (2024), no. 1, 107470.
- L. Claborn, *Every abelian group is a class group*, Pacific J. Math. 18 (1966), 219-222.
- P. Eakin, W. Heinzer, *More noneuclidian PID's and Dedekind domains with prescribed class group.* Proc. Amer. Math. Soc. 40 (1973), 66-68.
- G. P. Polynomial Dedekind domains with finite residue fields of prime characteristic, to appear in the Pacific Journal of Math. (2023), arXiv: https://arxiv.org/abs/2207.04280.
- G. P. Stacked Pseudo-Convergent Sequences and Polynomial Dedekind Domains, 2023 preprint, https://arxiv.org/abs/2303.11740.