Arithmetics of Flatness for Monoids

Gerhard Angermüller

Conference on Rings and Factorizations 2023

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.
- Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.
 - *M* is a factorable *R*-module if and only if *M*[•] is a flat *R*[•]-act and *M* is atomic.
 - If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
 - If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R.

• Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

- *M* is a factorable *R*-module if and only if *M*[•] is a flat *R*[•]-act and *M* is atomic.
- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.
- Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.
 - *M* is a factorable *R*-module if and only if *M*[•] is a flat *R*[•]-act and *M* is atomic.
 - If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
 - If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R.

• Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

- *M* is a factorable *R*-module if and only if *M*[•] is a flat *R*[•]-act and *M* is atomic.
- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R.

• Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

- *M* is a factorable *R*-module if and only if *M*[•] is a flat *R*[•]-act and *M* is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet} -act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet} -act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1}R$ for every multiplicatively closed subset T of R.

• Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

- *M* is a factorable *R*-module if and only if *M*[•] is a flat *R*[•]-act and *M* is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet} -act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet} -act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Acts

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

Acts

In this talk, a *monoid* H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$; a map $\varphi : A \rightarrow B$ with *H*-acts A, B is a morphism of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$.

Let A, B be H-acts. A map $\rho: A \times B \to X$ to a set X is called H-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$. A set T together with an H-balanced map $\tau: A \times B \to T$ is called (the) *tensor* product of A and B if for every set X every H-balanced map $\rho: A \times B \to X$ factors uniquely through τ ; it is denoted by $A \otimes B$. FACT: For all $a, a' \in A, b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}, a_1, \ldots, a_n \in A, b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = a_1s_1, s_1b = t_1b_1, a_it_i = a_{i+1}s_{i+1}, s_{i+1}b_i = t_{i+1}b_{i+1}$ for $i = 1, \ldots, n-1$, and $a_nt_n = a's_{n+1}, s_{n+1}b_n = b'$.

Acts

In this talk, a *monoid* H is a multiplicatively written commutative and cancellative semigroup with unit element 1. A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s,a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$; a map $\varphi : A \rightarrow B$ with *H*-acts *A*, *B* is a *morphism* of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$. Let A, B be H-acts. A map $\rho: A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$. A set T together with an H-balanced map $\tau: A \times B \to T$ is called (the) *tensor* product of A and B if for every set X every H-balanced map $\rho: A \times B \to X$ factors uniquely through τ ; it is denoted by $A \otimes B$.

Acts

In this talk, a *monoid* H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

A non-empty set A is called an *H*-act, if there is a map $H \times A \rightarrow A$, $(s,a) \mapsto sa$ such that 1a = a and (st)a = s(ta) for all $s, t \in H$ and $a \in A$; a map $\varphi : A \rightarrow B$ with *H*-acts *A*, *B* is a *morphism* of *H*-acts, if $\varphi(sa) = s\varphi(a)$ for all $s \in H$ and $a \in A$. Let A, B be H-acts. A map $\rho: A \times B \to X$ to a set X is called *H*-balanced, if $\rho(sa, b) = \rho(a, sb)$ for all $s \in H$, $a \in A$ and $b \in B$. A set T together with an H-balanced map $\tau: A \times B \to T$ is called (the) *tensor* product of A and B if for every set X every H-balanced map $\rho: A \times B \to X$ factors uniquely through τ ; it is denoted by $A \otimes B$. FACT: For all $a, a' \in A$, $b, b' \in B$: $a \otimes b = a' \otimes b'$ if and only if there are $n \in \mathbb{N}$, $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ and $s_1, \ldots, s_{n+1}, t_1, \ldots, t_n \in H$ such that $a = a_1 s_1$, $s_1 b = t_1 b_1$, $a_i t_i = a_{i+1} s_{i+1}$, $s_{i+1} b_i = t_{i+1} b_{i+1}$ for $i = 1, \dots, n-1$, and $a_n t_n = a' s_{n+1}, s_{n+1} b_n = b'$.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

• *flat* if $A \otimes -$ preserves monomorphisms,

- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if *A*⊗− preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if *A*⊗− preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,

• *principally weakly flat* if A ⊗ − preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if *A*⊗− preserves all embeddings of principal ideals into *H*.

Definition

Any *H*-act *A* defines a covariant functor $A \otimes -$ from the category of *H*-acts to the category of sets; *A* is called

- *flat* if $A \otimes -$ preserves monomorphisms,
- weakly flat if $A \otimes -$ preserves all embeddings of ideals into H,
- *principally weakly flat* if A ⊗ − preserves all embeddings of principal ideals into *H*.

Properties

Theorem

Let H be a monoid and A an H-Act. Then the following conditions are equivalent: (1) A is flat, (2) A is weakly flat, (3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc, (4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that sa = tbthere exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc, (5) A is torsion-free and for all ideals I and J of H: $(I \cap J)A = IA \cap JA$. (6) For all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc, b = vc and us = vt.

• Let T be a submonoid of a monoid H. Then $T^{-1}H$ is a flat H-act.

• Let *H* be a discrete valuation monoid and *A* a torsion-free *H*-Act. Then *A* is flat.

Properties

Theorem

Let H be a monoid and A an H-Act. Then the following conditions are equivalent: (1) A is flat, (2) A is weakly flat, (3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc. (4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that sa = tbthere exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc, (5) A is torsion-free and for all ideals I and J of H: $(I \cap J)A = IA \cap JA$. (6) For all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc, b = vc and us = vt.

• Let T be a submonoid of a monoid H. Then $T^{-1}H$ is a flat H-act.

• Let *H* be a discrete valuation monoid and *A* a torsion-free *H*-Act. Then *A* is flat.

Properties

Theorem

Let H be a monoid and A an H-Act. Then the following conditions are equivalent: (1) A is flat, (2) A is weakly flat, (3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc. (4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that sa = tbthere exist $c \in A$ and $u \in Hs \cap Ht$ such that sa = tb = uc. (5) A is torsion-free and for all ideals I and J of H: $(I \cap J)A = IA \cap JA$. (6) For all $a, b \in A$ and $s, t \in H$ such that sa = tb there exist $c \in A$ and $u, v \in H$ such that a = uc, b = vc and us = vt.

- Let T be a submonoid of a monoid H. Then $T^{-1}H$ is a flat H-act.
- Let *H* be a discrete valuation monoid and *A* a torsion-free *H*-Act. Then *A* is flat.

Properties

- Let $\varphi: H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.
- In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

- Let H, D be monoids such that H ⊆ D ⊆ q(H). The following conditions are equivalent:
- (1) D is a flat H-act, (2) $D = (H \cap D^{\times})^{-1}H$, (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$, (4) $(H:_H x)D = D$ for every $x \in D$.

Properties

- Let $\varphi: H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.
- In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

- Let H, D be monoids such that H ⊆ D ⊆ q(H). The following conditions are equivalent:
- (1) D is a flat H-act, (2) $D = (H \cap D^{\times})^{-1}H$, (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$, (4) $(H:_H x)D = D$ for every $x \in D$.

Properties

- Let $\varphi: H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.
- In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

- Let H, D be monoids such that H ⊆ D ⊆ q(H). The following conditions are equivalent:
- (1) *D* is a flat *H*-act, (2) $D = (H \cap D^{\times})^{-1}H$,
 - (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$,
 - (4) $(H:_H x)D = D$ for every $x \in D$.

Properties

- Let $\varphi: H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.
- In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

- Let H, D be monoids such that H ⊆ D ⊆ q(H). The following conditions are equivalent:
- (1) D is a flat H-act,
- (2) $D = (H \cap D^{\times})^{-1}H$,

(3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$, (4) $(H:_H x)D = D$ for every $x \in D$.

Properties

- Let $\varphi: H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.
- In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let H, D be monoids such that H ⊆ D ⊆ q(H). The following conditions are equivalent:
- (1) D is a flat H-act,
- (2) $D = (H \cap D^{\times})^{-1}H$,
- (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$,

 $(4) (H:_H x)D = D \text{ for every } x \in D.$

Properties

- Let $\varphi: H \to D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\varphi(u)|_D \varphi(v)$ there are $w \in \varphi^{-1}(D^{\times})$ such that $u|_H vw$.
- In particular, if $q(\varphi) : q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D) = \varphi^{-1}(D^{\times})^{-1}H$.

(日)(1)

- Let H, D be monoids such that H ⊆ D ⊆ q(H). The following conditions are equivalent:
- (1) D is a flat H-act, (2) $D = (H \cap D^{\times})^{-1}H$, (3) for every $x \in D$ there are $u \in H \cap D^{\times}$ such that $ux \in H$, (4) $(H:_H x)D = D$ for every $x \in D$.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of x is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of x.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of x is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of x.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of x is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of x.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of *x* is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of *x*.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of x is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of x.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If *M* is a pre-Schreier *R*-module, then *M*[•] is a flat *R*[•]-act; conversely, if *R* is a pre-Schreier domain and *M*[•] is a flat *R*[•]-act, then *M* is a pre-Schreier *R*-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of x is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of x.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet} -act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet} -act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet} := R \setminus \{0\}$, $M^{\bullet} := M \setminus \{0\}$.

For all $r \in R$ and $x, y \in M$ such that x = ry, r is called an R-divisor of x and y an M-divisor of x.

 $x \in M^{\bullet}$ is *irreducible* if every *R*-divisor of x is a unit of *R*. *M* is *factorable* if every $x \in M^{\bullet}$ has an *M*-divisor dividing every *M*-divisor of x.

 M is a factorable R-module if and only if M[●] is a flat R[●]-act and every x ∈ M[●] has an irreducible M-divisor.

- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet} -act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet} -act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M[•] is a flat R[•]-act.

References

- Stenström, B.; *Flatness and localization of monoids*, Mathematische Nachrichten 48 (1971) 315-333
- Howie, J. M.; *Fundamentals of Semigroup Theory*, Oxford University Press (1995)
- Bulman-Fleming, S., McDowell, K., Renshaw, J.; *Some observations* on left absolutely flat monoids, Semigroup Forum 41 (1990) 165-171
- Geroldinger, A., Halter-Koch, F.; *Arithmetical Theory of Monoid Homomorphisms*, Semigroup Forum 48 (1994) 333-362
- Angermüller, G.; *Unique factorization in torsion-free modules*. In: Rings, Polynomials and Modules, 13-31 (2017) Springer
- Dumitrescu, T., Epure, M.; A Schreier Type Property for Modules, Journal of Algebra and Its Applications (2023) https://doi.org/10.1142/S0219498824501251