Arithmetics of Flatness for Monoids

Gerhard Angermiiller

Conference on Rings and Factorizations 2023



Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group.
Then there is a flat overdomain S of R (thatis R C S C g(R)), such that
S # T~ IR for every multiplicatively closed subset T of R.



Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group.
Then there is a flat overdomain S of R (thatis R C S C g(R)), such that
S # T~ IR for every multiplicatively closed subset T of R.

e Flat overmonoids in the category of monoids behave different: they
are always monoids of fractions.



Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group.
Then there is a flat overdomain S of R (thatis R C S C g(R)), such that
S # T~ IR for every multiplicatively closed subset T of R.

e Flat overmonoids in the category of monoids behave different: they
are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put R* := R\ {0},
M* = M\ {0}.



Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group.
Then there is a flat overdomain S of R (thatis R C S C g(R)), such that
S # T~ IR for every multiplicatively closed subset T of R.

e Flat overmonoids in the category of monoids behave different: they
are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put R* := R\ {0},
M* = M\ {0}.

@ M is a factorable R-module if and only if M*® is a flat R®*-act and M is
atomic.



Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group.
Then there is a flat overdomain S of R (thatis R C S C g(R)), such that
S # T~ IR for every multiplicatively closed subset T of R.

e Flat overmonoids in the category of monoids behave different: they
are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put R* := R\ {0},
M* = M\ {0}.

@ M is a factorable R-module if and only if M*® is a flat R®*-act and M is
atomic.

o If M is a pre-Schreier R-module, then M* is a flat R®*-act; conversely,
if R is a pre-Schreier domain and M* is a flat R*-act, then M is a
pre-Schreier R-module.



Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group.
Then there is a flat overdomain S of R (thatis R C S C g(R)), such that
S # T~ IR for every multiplicatively closed subset T of R.

e Flat overmonoids in the category of monoids behave different: they
are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put R* := R\ {0},
M* = M\ {0}.

@ M is a factorable R-module if and only if M*® is a flat R®*-act and M is
atomic.

o If M is a pre-Schreier R-module, then M* is a flat R®*-act; conversely,
if R is a pre-Schreier domain and M* is a flat R*-act, then M is a
pre-Schreier R-module.

@ If R is a pre-Schreier domain and M a flat R-module, then M*® is a
flat R*-act.



Flatness for Monoids
Acts

In this talk, a monoid H is a multiplicatively written commutative and
cancellative semigroup with unit element 1.



Flatness for Monoids
Acts

In this talk, a monoid H is a multiplicatively written commutative and
cancellative semigroup with unit element 1.

A non-empty set A is called an H-act, if there is a map Hx A — A,

(s,a) + sa such that 1a= a and (st)a=s(ta) for all s,t € Hand a€ A; a
map ¢ : A — B with H-acts A, B is a morphism of H-acts, if

¢(sa) =s@(a) for all se H and a€ A.



Flatness for Monoids
Acts

In this talk, a monoid H is a multiplicatively written commutative and
cancellative semigroup with unit element 1.

A non-empty set A is called an H-act, if there is a map Hx A — A,

(s,a) + sa such that 1a= a and (st)a=s(ta) for all s,t € Hand a€ A; a
map ¢ : A — B with H-acts A, B is a morphism of H-acts, if

¢(sa) =s@(a) for all se H and a€ A.

Let A, B be H-acts. Amap p: Ax B— X to a set X is called
H-balanced, if p(sa,b) = p(a,sb) forallse H, ac Aand be B. Aset T
together with an H-balanced map 7: Ax B — T is called (the) tensor
product of A and B if for every set X every H-balanced map

p : Ax B — X factors uniquely through 7; it is denoted by A® B.



Flatness for Monoids
Acts

In this talk, a monoid H is a multiplicatively written commutative and
cancellative semigroup with unit element 1.

A non-empty set A is called an H-act, if there is a map Hx A — A,

(s,a) + sa such that 1a= a and (st)a=s(ta) for all s,t € Hand a€ A; a
map ¢ : A — B with H-acts A, B is a morphism of H-acts, if

¢(sa) =s@(a) for all se H and a€ A.

Let A, B be H-acts. Amap p: Ax B— X to a set X is called
H-balanced, if p(sa,b) = p(a,sb) forallse H, ac Aand be B. Aset T
together with an H-balanced map 7: Ax B — T is called (the) tensor
product of A and B if for every set X every H-balanced map

p : Ax B — X factors uniquely through 7; it is denoted by A® B.

FACT: For all a,a’ € A, b,b' € B: a®@ b=a' ® b’ if and only if there are
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Definition

Any H-act A defines a covariant functor A® — from the category of
H-acts to the category of sets; A is called

o flat if A® — preserves monomorphisms,
@ weakly flat if A® — preserves all embeddings of ideals into H,

@ principally weakly flat if A® — preserves all embeddings of principal
ideals into H.

Further, A is said to be torsion-free if for all s € H and a,b € A the
equality sa = sb implies a = b.
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Then for all u,v € H such that @(u)|p@(v) there are w € ¢~1(D*)
such that u|yvw.

e In particular, if g(¢): g(H) — q(D) denotes the canonical morphism
induced in the quotient monoids, then g(¢)~1(D) = ¢~ 1(D*)~1H.

@ Let H, D be monoids such that H C D C q(H). The following
conditions are equivalent:

(1) D is a flat H-act,

(2) D=(HND*)7tH,

(3) for every x € D there are u € HN D* such that ux € H,
(4) (H:y x)D = D for every x € D.
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