Arithmetics of Flatness for Monoids

Gerhard Angermüller

Conference on Rings and Factorizations 2023

Flatness for domains and monoids

Introduction
Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1} R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\circ}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and M is atomic.
 if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for domains and monoids

Introduction
Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1} R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$,
$M^{\bullet}:=M \backslash\{0\}$.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and M is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for domains and monoids

Introduction
Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1} R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and M is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1} R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and M is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1} R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and M is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for domains and monoids

Introduction

Let R be a Dedekind domain whose class group is not a torsion group. Then there is a flat overdomain S of R (that is $R \subseteq S \subseteq q(R)$), such that $S \neq T^{-1} R$ for every multiplicatively closed subset T of R.

- Flat overmonoids in the category of monoids behave different: they are always monoids of fractions.

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and M is atomic.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M^{\bullet} is a flat R^{\bullet}-act.

Flatness for Monoids

Acts
In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.

```
A non-empty set A is called an H-act, if there is a map H}\timesA->A\mathrm{ ,
(s,a)\mapstosa such that 1a=a and (st)a=s(ta) for all s,t\inH and a\inA; a
map \varphi:A->B with H-acts A,B is a morphism of H-acts, if
\varphi ( s a ) = s \varphi ( a ) ~ f o r ~ a l l ~ s \in H ~ a n d ~ a \in A .
Let A,B be H-acts. A map \rho:A\timesB->X to a set X is called
H-balanced, if }\rho(sa,b)=\rho(a,sb)\mathrm{ for all }s\inH,a\inA\mathrm{ and }b\inB\mathrm{ . A set T
together with an H-balanced map \tau:A\timesB->T is called (the) tensor
product of A and B if for every set X every H-balanced map
\rho:A\timesB->X factors uniquely through }\tau\mathrm{ ; it is denoted by }A\otimes
FACT: For all a, a}\inA,b,\mp@subsup{b}{}{\prime}\inB:a\otimesb=\mp@subsup{a}{}{\prime}\otimes\mp@subsup{b}{}{\prime}\mathrm{ if and only if there are
n\in\mathbb{N},\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}\inA,\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{n}{}\inB\mathrm{ and }\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{n+1}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{}\inH\mathrm{ such}
that }a=\mp@subsup{a}{1}{}\mp@subsup{s}{1}{},\mp@subsup{s}{1}{}b=\mp@subsup{t}{1}{}\mp@subsup{b}{1}{},\mp@subsup{a}{i}{}\mp@subsup{t}{i}{}=\mp@subsup{a}{i+1}{}\mp@subsup{s}{i+1}{},\mp@subsup{s}{i+1}{}\mp@subsup{b}{i}{}=\mp@subsup{t}{i+1}{}\mp@subsup{b}{i+1}{}\mathrm{ for
i=1,\ldots,n-1, and antm}=\mp@subsup{a}{}{\prime}\mp@subsup{s}{n+1}{},\mp@subsup{s}{n+1}{}\mp@subsup{b}{n}{}=\mp@subsup{b}{}{\prime
```


Flatness for Monoids

Acts
In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.
A non-empty set A is called an H-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto$ sa such that $1 a=a$ and $(s t) a=s(t a)$ for all $s, t \in H$ and $a \in A ; a$ map $\varphi: A \rightarrow B$ with H-acts A, B is a morphism of H-acts, if $\varphi(s a)=s \varphi(a)$ for all $s \in H$ and $a \in A$.

Flatness for Monoids

Acts

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.
A non-empty set A is called an H-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto$ sa such that $1 a=a$ and $(s t) a=s(t a)$ for all $s, t \in H$ and $a \in A$; a map $\varphi: A \rightarrow B$ with H-acts A, B is a morphism of H-acts, if $\varphi(s a)=s \varphi(a)$ for all $s \in H$ and $a \in A$.
Let A, B be H-acts. A map $\rho: A \times B \rightarrow X$ to a set X is called H-balanced, if $\rho(s a, b)=\rho(a, s b)$ for all $s \in H, a \in A$ and $b \in B$. A set T together with an H-balanced map $\tau: A \times B \rightarrow T$ is called (the) tensor product of A and B if for every set X every H-balanced map $\rho: A \times B \rightarrow X$ factors uniquely through τ; it is denoted by $A \otimes B$.

Flatness for Monoids

Acts

In this talk, a monoid H is a multiplicatively written commutative and cancellative semigroup with unit element 1.
A non-empty set A is called an H-act, if there is a map $H \times A \rightarrow A$, $(s, a) \mapsto$ sa such that $1 a=a$ and $(s t) a=s(t a)$ for all $s, t \in H$ and $a \in A$; a map $\varphi: A \rightarrow B$ with H-acts A, B is a morphism of H-acts, if $\varphi(s a)=s \varphi(a)$ for all $s \in H$ and $a \in A$.
Let A, B be H-acts. A map $\rho: A \times B \rightarrow X$ to a set X is called H-balanced, if $\rho(s a, b)=\rho(a, s b)$ for all $s \in H, a \in A$ and $b \in B$. A set T together with an H-balanced map $\tau: A \times B \rightarrow T$ is called (the) tensor product of A and B if for every set X every H-balanced map $\rho: A \times B \rightarrow X$ factors uniquely through τ; it is denoted by $A \otimes B$. FACT: For all $a, a^{\prime} \in A, b, b^{\prime} \in B: a \otimes b=a^{\prime} \otimes b^{\prime}$ if and only if there are $n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A, b_{1}, \ldots, b_{n} \in B$ and $s_{1}, \ldots, s_{n+1}, t_{1}, \ldots, t_{n} \in H$ such that $a=a_{1} s_{1}, s_{1} b=t_{1} b_{1}, a_{i} t_{i}=a_{i+1} s_{i+1}, s_{i+1} b_{i}=t_{i+1} b_{i+1}$ for $i=1, \ldots, n-1$, and $a_{n} t_{n}=a^{\prime} s_{n+1}, s_{n+1} b_{n}=b^{\prime}$.

Flatness for Monoids

Definition

Any H-act A defines a covariant functor $A \otimes$ - from the category of H-acts to the category of sets; A is called

- flat if $A \otimes-$ preserves monomorphisms,
- weakly flat if $A \otimes$ - preserves all embeddings of ideals into H,
- principally weakly flat if $A \otimes$ - preserves all embeddings of principal ideals into H.

Further, A is said to be torsion-free if for all $s \in H$ and $a, b \in A$ the equality $s a=s b$ implies $a=b$.

Flatness for Monoids

Definition

Any H-act A defines a covariant functor $A \otimes$ - from the category of H-acts to the category of sets; A is called

- flat if $A \otimes$ - preserves monomorphisms,
- weakly flat if $A \otimes$ - preserves all embeddings of ideals into H,
- principally weakly flat if $A \otimes$ - preserves all embeddings of principal ideals into H.

Further, A is said to be torsion-free if for all $s \in H$ and $a, b \in A$ the equality $s a=s b$ implies $a=b$.

Flatness for Monoids

Definition

Any H-act A defines a covariant functor $A \otimes$ - from the category of H-acts to the category of sets; A is called

- flat if $A \otimes$ - preserves monomorphisms,
- weakly flat if $A \otimes$ - preserves all embeddings of ideals into H,
- principally weakly flat if $A \otimes$ - preserves all embeddings of principal ideals into H.

Further, A is said to be torsion-free if for all $s \in H$ and $a, b \in A$ the equality $s a=s b$ implies $a=b$.

Flatness for Monoids

Definition

Any H-act A defines a covariant functor $A \otimes$ - from the category of H-acts to the category of sets; A is called

- flat if $A \otimes$ - preserves monomorphisms,
- weakly flat if $A \otimes$ - preserves all embeddings of ideals into H,
- principally weakly flat if $A \otimes$ - preserves all embeddings of principal ideals into H.

Further, A is said to be torsion-free if for all $s \in H$ and $a, b \in A$ the equality $s a=s b$ implies $a=b$.

Flatness for Monoids

Definition

Any H-act A defines a covariant functor $A \otimes$ - from the category of H-acts to the category of sets; A is called

- flat if $A \otimes$ - preserves monomorphisms,
- weakly flat if $A \otimes$ - preserves all embeddings of ideals into H,
- principally weakly flat if $A \otimes$ - preserves all embeddings of principal ideals into H.

Further, A is said to be torsion-free if for all $s \in H$ and $a, b \in A$ the equality $s a=s b$ implies $a=b$.

Flatness for Monoids

Properties

Theorem

Let H be a monoid and A an H-Act.
Then the following conditions are equivalent:
(1) A is flat,
(2) A is weakly flat,
(3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that $s a=t b$ there exist $c \in A$ and $u \in H s \cap H t$ such that $s a=t b=u c$, (4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that $s a=t b$ there exist $c \in A$ and $u \in H s \cap H t$ such that $s a=t b=u c$, (5) A is torsion-free and for all ideals I and J of $H:(I \cap J) A=I A \cap J A$.
(6) For all $a, b \in A$ and $s, t \in H$ such that sa $=t b$ there exist $c \in A$ and $u, v \in H$ such that $a=u c, b=v c$ and $u s=v t$.

- Let T be a submonoid of a monoid H. Then $T^{-1} H$ is a flat H-act.
- Let H be a discrete valuation monoid and A a torsion-free H-Act.

Flatness for Monoids

Properties

Theorem

Let H be a monoid and A an H-Act.
Then the following conditions are equivalent:
(1) A is flat,
(2) A is weakly flat,
(3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that $s a=t b$ there exist $c \in A$ and $u \in H s \cap H t$ such that $s a=t b=u c$,
(4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that $s a=t b$ there exist $c \in A$ and $u \in H s \cap H t$ such that $s a=t b=u c$, (5) A is torsion-free and for all ideals I and J of $H:(I \cap J) A=I A \cap J A$.
(6) For all $a, b \in A$ and $s, t \in H$ such that sa $=t b$ there exist $c \in A$ and $u, v \in H$ such that $a=u c, b=v c$ and $u s=v t$.

- Let T be a submonoid of a monoid H. Then $T^{-1} H$ is a flat H-act.
- Let H be a discrete valuation monoid and A a torsion-free H-Act.

Flatness for Monoids

Properties

Theorem

Let H be a monoid and A an H-Act.
Then the following conditions are equivalent:
(1) A is flat,
(2) A is weakly flat,
(3) A is principally weakly flat and for all $a, b \in A$ and $s, t \in H$ such that $s a=t b$ there exist $c \in A$ and $u \in H s \cap H t$ such that $s a=t b=u c$,
(4) A is torsion-free and for all $a, b \in A$ and $s, t \in H$ such that $s a=t b$ there exist $c \in A$ and $u \in H s \cap H t$ such that $s a=t b=u c$, (5) A is torsion-free and for all ideals I and J of $H:(I \cap J) A=I A \cap J A$.
(6) For all $a, b \in A$ and $s, t \in H$ such that sa $=t b$ there exist $c \in A$ and $u, v \in H$ such that $a=u c, b=v c$ and $u s=v t$.

- Let T be a submonoid of a monoid H. Then $T^{-1} H$ is a flat H-act.
- Let H be a discrete valuation monoid and A a torsion-free H-Act. Then A is flat.

Flatness for Monoids

Properties

- Let $\varphi: H \rightarrow D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\left.\varphi(u)\right|_{D} \varphi(v)$ there are $w \in \varphi^{-1}\left(D^{\times}\right)$ such that $\left.u\right|_{H} v w$.
- In particular, if $q(\varphi): q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D)=\varphi^{-1}\left(D^{\times}\right)^{-1} H$.
- Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:
(1) D is a flat H -act,
(2) $D=\left(H \cap D^{\times}\right)^{-1} H$,
(3) for every $x \in D$ there are $u \in H \cap D^{\times}$such that $u x \in H$,
(4) $(H: H x) D=D$ for every $x \in D$.

Flatness for Monoids

Properties

- Let $\varphi: H \rightarrow D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\left.\varphi(u)\right|_{D} \varphi(v)$ there are $w \in \varphi^{-1}\left(D^{\times}\right)$ such that $\left.u\right|_{H} v w$.
- In particular, if $q(\varphi): q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D)=\varphi^{-1}\left(D^{\times}\right)^{-1} H$.
- Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:

Flatness for Monoids

Properties

- Let $\varphi: H \rightarrow D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\left.\varphi(u)\right|_{D} \varphi(v)$ there are $w \in \varphi^{-1}\left(D^{\times}\right)$ such that $\left.u\right|_{H} v w$.
- In particular, if $q(\varphi): q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D)=\varphi^{-1}\left(D^{\times}\right)^{-1} H$.
- Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:
(1) D is a flat H-act,

Flatness for Monoids

Properties

- Let $\varphi: H \rightarrow D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\left.\varphi(u)\right|_{D} \varphi(v)$ there are $w \in \varphi^{-1}\left(D^{\times}\right)$ such that $\left.u\right|_{H} v w$.
- In particular, if $q(\varphi): q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D)=\varphi^{-1}\left(D^{\times}\right)^{-1} H$.
- Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:
(1) D is a flat H-act,
(2) $D=\left(H \cap D^{\times}\right)^{-1} H$,

Flatness for Monoids

Properties

- Let $\varphi: H \rightarrow D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\left.\varphi(u)\right|_{D} \varphi(v)$ there are $w \in \varphi^{-1}\left(D^{\times}\right)$ such that $\left.u\right|_{H} v w$.
- In particular, if $q(\varphi): q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D)=\varphi^{-1}\left(D^{\times}\right)^{-1} H$.
- Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:
(1) D is a flat H-act,
(2) $D=\left(H \cap D^{\times}\right)^{-1} H$,
(3) for every $x \in D$ there are $u \in H \cap D^{\times}$such that $u x \in H$,

Flatness for Monoids

Properties

- Let $\varphi: H \rightarrow D$ be a morphism of monoids making D a flat H-act. Then for all $u, v \in H$ such that $\left.\varphi(u)\right|_{D} \varphi(v)$ there are $w \in \varphi^{-1}\left(D^{\times}\right)$ such that $\left.u\right|_{H} v w$.
- In particular, if $q(\varphi): q(H) \rightarrow q(D)$ denotes the canonical morphism induced in the quotient monoids, then $q(\varphi)^{-1}(D)=\varphi^{-1}\left(D^{\times}\right)^{-1} H$.
- Let H, D be monoids such that $H \subseteq D \subseteq q(H)$. The following conditions are equivalent:
(1) D is a flat H-act,
(2) $D=\left(H \cap D^{\times}\right)^{-1} H$,
(3) for every $x \in D$ there are $u \in H \cap D^{\times}$such that $u x \in H$,
(4) $(H: H x) D=D$ for every $x \in D$.

Flatness for Monoids

Domains
Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of $R . M$ is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and every $x \in M^{\bullet}$ has an irreducible M-divisor.
M is a pre-Schreier R-module if for every $r, s \in H$ and $x, y \in M^{*}$ such that $r x=s y$ there are $t, u, v \in R$ and $z \in M$ such that $r=t v, s=t u, x=u z$
and $y=v z$.
- If M is a pre-Schreier R-module, then M^{0} is a flat R^{0}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M^{0} is a flat R^{\bullet}-act.

Flatness for Monoids

Domains
Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of R. M is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and every $x \in M^{\bullet}$ has an irreducible M-divisor
M is a pre-Schreier R-module if for every $r, s \in H$ and $x, y \in M^{\bullet}$ such that $r x=s y$ there are $t, u, v \in R$ and $z \in M$ such that $r=t v, s=t u, x=u z$ and $y=v z$
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely,
if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M° is a flat R^{\bullet}-act.

Flatness for Monoids

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of $R . M$ is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x.

Flatness for Monoids

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of $R . M$ is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and every $x \in M^{\bullet}$ has an irreducible M-divisor.
M is a pre-Schreier R-module if for every $r, s \in H$ and $x, y \in M^{\circ}$ such that
\square
- If M is a pre-Schreier R-module, then M^{0} is a flat R°-act; conversely, if R is a pre-Schreier domain and M^{*} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for Monoids

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of $R . M$ is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and every $x \in M^{\bullet}$ has an irreducible M-divisor.
M is a pre-Schreier R-module if for every $r, s \in H$ and $x, y \in M^{\bullet}$ such that $r x=s y$ there are $t, u, v \in R$ and $z \in M$ such that $r=t v, s=t u, x=u z$ and $y=v z$.

Flatness for Monoids

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of $R . M$ is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and every $x \in M^{\bullet}$ has an irreducible M-divisor.
M is a pre-Schreier R-module if for every $r, s \in H$ and $x, y \in M^{\bullet}$ such that $r x=s y$ there are $t, u, v \in R$ and $z \in M$ such that $r=t v, s=t u, x=u z$ and $y=v z$.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.

Flatness for Monoids

Domains

Let R be a domain, M a torsion-free R-module and put $R^{\bullet}:=R \backslash\{0\}$, $M^{\bullet}:=M \backslash\{0\}$.
For all $r \in R$ and $x, y \in M$ such that $x=r y, r$ is called an R-divisor of x and y an M-divisor of x.
$x \in M^{\bullet}$ is irreducible if every R-divisor of x is a unit of $R . M$ is factorable if every $x \in M^{\bullet}$ has an M-divisor dividing every M-divisor of x.

- M is a factorable R-module if and only if M^{\bullet} is a flat R^{\bullet}-act and every $x \in M^{\bullet}$ has an irreducible M-divisor.
M is a pre-Schreier R-module if for every $r, s \in H$ and $x, y \in M^{\bullet}$ such that $r x=s y$ there are $t, u, v \in R$ and $z \in M$ such that $r=t v, s=t u, x=u z$ and $y=v z$.
- If M is a pre-Schreier R-module, then M^{\bullet} is a flat R^{\bullet}-act; conversely, if R is a pre-Schreier domain and M^{\bullet} is a flat R^{\bullet}-act, then M is a pre-Schreier R-module.
- If R is a pre-Schreier domain and M a flat R-module, then M^{\bullet} is a flat R^{\bullet}-act.

Flatness for Monoids

References

－Stenström，B．；Flatness and localization of monoids，Mathematische Nachrichten 48 （1971）315－333
围 Howie，J．M．；Fundamentals of Semigroup Theory，Oxford University Press（1995）
围 Bulman－Fleming，S．，McDowell，K．，Renshaw，J．；Some observations on left absolutely flat monoids，Semigroup Forum 41 （1990）165－171

國 Geroldinger，A．，Halter－Koch，F．；Arithmetical Theory of Monoid Homomorphisms，Semigroup Forum 48 （1994）333－362

Angermüller，G．；Unique factorization in torsion－free modules．In： Rings，Polynomials and Modules，13－31（2017）Springer
围 Dumitrescu，T．，Epure，M．；A Schreier Type Property for Modules， Journal of Algebra and Its Applications（2023） https：／／doi．org／10．1142／S0219498824501251

