TITLE PAGE	Overview	Introduction	Basic Concepts	References
0	0	0	000000000000000000000000000000000000000	00

Representation and Subrepresentation of Γ -Monoids

Flor de May C. Lañohan and Jocelyn P. Vilela, Ph.D.

Department of Mathematics and Statistics College of Science and Mathematics Mindanao State University - Iligan Institute of Technology

July 11, 2023

Representation and Subrepresentation of Γ -Monoids

Flor de May C. Lañohan and Jocelyn P. Vilela, Ph.D.

Department of Mathematics and Statistics College of Science and Mathematics Mindanao State University - Iligan Institute of Technology

July 11, 2023

Representation and Subrepresentation of Γ -Monoids

Representation and Subrepresentation of Γ -Monoids

Background of the Study

Basic Concepts

Background of the Study

Objectives

ad

Basic Concepts

Results

Representation and Subrepresentation of Γ -Monoids

Background of the Study

Objectives

uk

Basic Concepts

Representation theory was first introduced in 1896 by the German mathematician **F. G. Frobenius**

Representation theory was first introduced in 1896 by the German mathematician **F. G. Frobenius**

Representation theory was first introduced in 1896 by the German mathematician **F. G. Frobenius**

GOAL:

to understand algebraic structures by transforming their elements into matrices.

Representation theory was first introduced in 1896 by the German mathematician F. G. Frobenius "GROUPS" GOAL: to understand algebraic structures. by transforming Their elements into matrices

Representation of Monoids

2015 - Steinberg studied the representation theory of finite monoids
 Character Theory of monoids over an arbitrary field

T-Monoid

2020 - Hazrat and Li defined the " Γ -monoid" as a monoid with the group Γ acting on it. Talented monoid T_E (Z-monoid)

2022 - action via monoid automorphism

T-Monoid

2020 - Hazrat and Li defined the " Γ -monoid" as a monoid with the group Γ acting on it. Talented monoid T_E (Z-monoid)

2022 - action via monoid automorphism

The focus of this presentation is the representation of Γ -monoids and its subrepresentation.

This study has the following objectives:

to introduce the concept of the Γ -invariant and subrepresentation of a representation;

to show that a subrepresentation is also a representation;

to demonstrate that a restriction map to the kernel, image, and inverse image of a Γ -linear map are subrepresentations.

This study has the following objectives:

to introduce the concept of the Γ -invariant and subrepresentation of a representation;

to show that a subrepresentation is also a representation;

to demonstrate that a restriction map to the kernel, image, and inverse image of a Γ -linear map are subrepresentations.

This study has the following objectives:

to introduce the concept of the Γ -invariant and subrepresentation of a representation;

to show that a subrepresentation is also a representation;

to demonstrate that a restriction map to the kernel, image, and inverse image of a Γ -linear map are subrepresentations.

Γ -MONOIDS

Definition 1 [2]

Let M be a monoid and Γ a group. M is said to be a Γ -monoid if there is an action of Γ on M via monoid automorphism.

For $\alpha \in \Gamma$ and $a \in M$, the action of α on a shall be denoted by ${}^{\alpha}a$.

$$^{\alpha}(a+b) = {}^{\alpha}a + {}^{\alpha}b$$

Let $\Gamma = \mathbb{Z}$ be the group of integers under addition and \mathbb{C} be the set of complex numbers.

Let $\Gamma = \mathbb{Z}$ be the group of integers under addition and \mathbb{C} be the set of complex numbers.

Note that \mathbb{C} is a group under addition. Thus, it is a monoid.

Let $\Gamma = \mathbb{Z}$ be the group of integers under addition and \mathbb{C} be the set of complex numbers.

Note that \mathbb{C} is a group under addition. Thus, it is a monoid.

Consider the mapping $\Gamma\times\mathbb{C}\to\mathbb{C}$ given by

$$(x, a + bi) \mapsto e^x a + e^x bi$$

for all $x \in \Gamma$ and $a + bi \in \mathbb{C}$.

Since for all $x, y \in \Gamma$ and $a + bi \in \mathbb{C}$,

Representation and Subrepresentation of Γ -Monoids

Since for all $x, y \in \Gamma$ and $a + bi \in \mathbb{C}$, (i) ${}^{0}(a + bi) = e^{0}a + e^{0}bi = a + bi$

Since for all $x, y \in \Gamma$ and $a + bi \in \mathbb{C}$, (i) ${}^{0}(a + bi) = e^{0}a + e^{0}bi = a + bi$ (ii) ${}^{(x+y)}(a + bi) = (e^{x+y}a + e^{x+y}bi) = {}^{x}({}^{y}(a + bi)),$

Since for all
$$x, y \in \Gamma$$
 and $a + bi \in \mathbb{C}$,
(i) ${}^{0}(a + bi) = e^{0}a + e^{0}bi = a + bi$
(ii) ${}^{(x+y)}(a + bi) = (e^{x+y}a + e^{x+y}bi) = {}^{x}({}^{y}(a + bi))$,
(iii) ${}^{x}[(a + bi) + (c + di)] = e^{x}(a + c) + e^{x}(b + d)i$
 $= {}^{x}(a + bi) + {}^{x}(c + di)$,

Since for all
$$x, y \in \Gamma$$
 and $a + bi \in \mathbb{C}$,
(i) ${}^{0}(a + bi) = e^{0}a + e^{0}bi = a + bi$
(ii) ${}^{(x+y)}(a + bi) = (e^{x+y}a + e^{x+y}bi) = {}^{x}({}^{y}(a + bi))$,
(iii) ${}^{x}[(a + bi) + (c + di)] = e^{x}(a + c) + e^{x}(b + d)i$
 $= {}^{x}(a + bi) + {}^{x}(c + di)$,

the mapping is an action of a group Γ on \mathbb{C} .

Since for all
$$x, y \in \Gamma$$
 and $a + bi \in \mathbb{C}$,
(i) ${}^{0}(a + bi) = e^{0}a + e^{0}bi = a + bi$
(ii) ${}^{(x+y)}(a + bi) = (e^{x+y}a + e^{x+y}bi) = {}^{x}({}^{y}(a + bi))$,
(iii) ${}^{x}[(a + bi) + (c + di)] = e^{x}(a + c) + e^{x}(b + d)i$
 $= {}^{x}(a + bi) + {}^{x}(c + di)$,

the mapping is an action of a group Γ on \mathbb{C} .

Hence, \mathbb{C} is a Γ -monoid.

Let $\Gamma = \mathbb{Z}$ and $M_2(\mathbb{C})$ be a square matrix with entries from \mathbb{C} .

Let $\Gamma = \mathbb{Z}$ and $M_2(\mathbb{C})$ be a square matrix with entries from \mathbb{C} .

Note that $M_2(\mathbb{C})$ is a monoid under matrix addition.

Define the mapping
$$\Gamma \times M_2(\mathbb{C}) \to M_2(\mathbb{C})$$
 by
 $\begin{pmatrix} x, \begin{bmatrix} a_1+b_1i & a_2+b_2i\\ a_3+b_3i & a_4+b_4i \end{bmatrix} \end{pmatrix} \mapsto \begin{bmatrix} e^x(a_1+b_1i) & a_2+b_2i\\ a_3+b_3i & e^x(a_4+b_4i) \end{bmatrix}$
for all $x \in \Gamma$ and $\begin{bmatrix} a_1+b_1i & a_2+b_2i\\ a_3+b_3i & a_4+b_4i \end{bmatrix} \in M_2(\mathbb{C}).$

Since for all
$$x, y \in \Gamma$$
 and $\begin{bmatrix} a_1 + b_1 i & a_2 + b_2 i \\ a_3 + b_3 i & a_4 + b_4 i \end{bmatrix} \in M_2(\mathbb{C}),$
(i) $\begin{bmatrix} a_1 + b_1 i & a_2 + b_2 i \\ a_3 + b_3 i & a_4 + b_4 i \end{bmatrix} = \begin{bmatrix} e^0(a_1 + b_1 i) & a_2 + b_2 i \\ a_3 + b_3 i & e^0(a_4 + b_4 i) \end{bmatrix}$
 $= \begin{bmatrix} a_1 + b_1 i & a_2 + b_2 i \\ a_3 + b_3 i & a_4 + b_4 i \end{bmatrix}$

(iii)
$${}^{x} \left(\begin{bmatrix} a_{1} + b_{1}i & a_{2} + b_{2}i \\ a_{3} + b_{3}i & a_{4} + b_{4}i \end{bmatrix} + \begin{bmatrix} c_{1} + d_{1}i & c_{2} + d_{2}i \\ c_{3} + d_{3}i & c_{4} + d_{4}i \end{bmatrix} \right)$$

$$= \begin{bmatrix} e^{x}((a_{1} + b_{1}i) + (c_{1} + d_{1}i)) & (a_{2} + b_{2}i) + (c_{2} + d_{2}i) \\ e^{x}(a_{3} + b_{3}i) & (a_{4} + b_{4}i) + (c_{4} + d_{4}i) \end{bmatrix}$$

$$= {}^{x} \begin{bmatrix} a_{1} + b_{1}i & a_{2} + b_{2}i \\ a_{3} + b_{3}i & a_{4} + b_{4}i \end{bmatrix} + {}^{x} \begin{bmatrix} c_{1} + d_{1}i & c_{2} + d_{2}i \\ c_{3} + d_{3}i & c_{4} + d_{4}i \end{bmatrix}$$

(iii)
$${}^{x} \left(\begin{bmatrix} a_{1} + b_{1}i & a_{2} + b_{2}i \\ a_{3} + b_{3}i & a_{4} + b_{4}i \end{bmatrix} + \begin{bmatrix} c_{1} + d_{1}i & c_{2} + d_{2}i \\ c_{3} + d_{3}i & c_{4} + d_{4}i \end{bmatrix} \right)$$

$$= \begin{bmatrix} e^{x}((a_{1} + b_{1}i) + (c_{1} + d_{1}i)) & (a_{2} + b_{2}i) + (c_{2} + d_{2}i) \\ e^{x}(a_{3} + b_{3}i) & (a_{4} + b_{4}i) + (c_{4} + d_{4}i) \end{bmatrix}$$

$$= {}^{x} \begin{bmatrix} a_{1} + b_{1}i & a_{2} + b_{2}i \\ a_{3} + b_{3}i & a_{4} + b_{4}i \end{bmatrix} + {}^{x} \begin{bmatrix} c_{1} + d_{1}i & c_{2} + d_{2}i \\ c_{3} + d_{3}i & c_{4} + d_{4}i \end{bmatrix}$$
the mapping is an action of a group Γ on $M_{2}(\mathbb{C})$.

(iii)
$${}^{x} \left(\begin{bmatrix} a_{1} + b_{1}i & a_{2} + b_{2}i \\ a_{3} + b_{3}i & a_{4} + b_{4}i \end{bmatrix} + \begin{bmatrix} c_{1} + d_{1}i & c_{2} + d_{2}i \\ c_{3} + d_{3}i & c_{4} + d_{4}i \end{bmatrix} \right)$$

$$= \begin{bmatrix} e^{x}((a_{1} + b_{1}i) + (c_{1} + d_{1}i)) & (a_{2} + b_{2}i) + (c_{2} + d_{2}i) \\ e^{x}(a_{3} + b_{3}i) & (a_{4} + b_{4}i) + (c_{4} + d_{4}i) \end{bmatrix}$$

$$= {}^{x} \begin{bmatrix} a_{1} + b_{1}i & a_{2} + b_{2}i \\ a_{3} + b_{3}i & a_{4} + b_{4}i \end{bmatrix} + {}^{x} \begin{bmatrix} c_{1} + d_{1}i & c_{2} + d_{2}i \\ c_{3} + d_{3}i & c_{4} + d_{4}i \end{bmatrix}$$
the mapping is an action of a group Γ on $M_{2}(\mathbb{C})$.

Hence, $M_2(\mathbb{C})$ is a Γ -monoid.

Definition 4 [2]

Let M_1 , M_2 be monoids and Γ be a group acting on M_1 and M_2 .

A Γ -monoid homomorphism is a monoid homomorphism $\rho: M_1 \to M_2$ that respects the action of Γ , that is,

$$\rho\left(^{\alpha}a\right) = {}^{\alpha}\rho(a)$$

for all $a \in M_1$.

Example 5 NOTE: Let $\Gamma = \mathbb{Z}$.

Representation and Subrepresentation of Γ -Monoids

Example 5 NOTE: Let $\Gamma = \mathbb{Z}$. In Example 2 and 3, \mathbb{C} and $M_2(\mathbb{C})$ are Γ -monoids

Example 5

NOTE: Let $\Gamma = \mathbb{Z}$. In Example 2 and 3, \mathbb{C} and $M_2(\mathbb{C})$ are Γ -monoids via the action $\Gamma \times \mathbb{C} \to \mathbb{C}$ given by

 $(x, a + bi) \mapsto e^x a + bi$

and

Example 5

NOTE: Let $\Gamma = \mathbb{Z}$. In Example 2 and 3, \mathbb{C} and $M_2(\mathbb{C})$ are Γ -monoids via the action $\Gamma \times \mathbb{C} \to \mathbb{C}$ given by

 $(x, a+bi) \mapsto e^x a+bi$

and $\Gamma \times M_2(\mathbb{C})$ by $\begin{pmatrix} x, \begin{bmatrix} a_1 + b_1i & a_2 + b_2i \\ a_3 + b_3i & a_4 + b_4i \end{bmatrix} \end{pmatrix} \mapsto \begin{bmatrix} e^x(a_1 + b_1i) & a_2 + b_2i \\ a_3 + b_3i & e^x(a_4 + b_4i) \end{bmatrix}$ respectively, for all $x \in \Gamma$, $a + bi \in \mathbb{C}^*$, and $\begin{bmatrix} a_1 + b_1i & a_2 + b_2i \\ a_3 + b_3i & a_4 + b_4i \end{bmatrix} \in M_2(\mathbb{C}).$

Consider the mapping $\rho : \mathbb{C} \to M_2(\mathbb{C})$ given by

$$a + bi \mapsto \begin{bmatrix} a + bi & 0\\ 0 & a + bi \end{bmatrix}$$

for all $a + bi \in \mathbb{C}$.

Let $x \in \Gamma$ and $a_1 + b_1 i, a_2 + b_2 i \in \mathbb{C}$. Then

$$\rho(1+0i) = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

and

$$\begin{split} \rho(a_1 + b_1 i)\rho(a_2 + b_2 i) \\ &= \begin{bmatrix} a_1 + b_1 i & 0 \\ 0 & a_1 + b_1 i \end{bmatrix} \begin{bmatrix} a_2 + b_2 i & 0 \\ 0 & a_2 + b_2 i \end{bmatrix} \\ &= \begin{bmatrix} (a_1 + b_1 i)(a_2 + b_2 i) & 0 \\ 0 & (a_1 + b_1 i)(a_2 + b_2 i) \end{bmatrix} \\ &= \rho((a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i) \\ &= \rho((a_1 + b_1 i)(a_2 + b_2 i)). \end{split}$$

Also,

$$\rho(^{x}(a_{1} + b_{1}i)) = \rho(e^{x}(a_{1} + b_{1}i))$$

$$= \rho(e^{x}a_{1} + e^{x}b_{1}i)$$

$$= \begin{bmatrix} e^{x}a_{1} + e^{x}b_{1}i & 0\\ 0 & e^{x}a_{1} + e^{x}b_{1}i \end{bmatrix}$$

$$= \begin{bmatrix} e^{x}(a_{1} + b_{1}i) & 0\\ 0 & e^{x}(a_{1} + b_{1}i) \end{bmatrix}$$

$$= ^{x}[\rho(a_{1} + b_{1}i)].$$

Also,

$$\rho(^{x}(a_{1} + b_{1}i)) = \rho(e^{x}(a_{1} + b_{1}i))$$

$$= \rho(e^{x}a_{1} + e^{x}b_{1}i)$$

$$= \begin{bmatrix} e^{x}a_{1} + e^{x}b_{1}i & 0 \\ 0 & e^{x}a_{1} + e^{x}b_{1}i \\ 0 & e^{x}(a_{1} + b_{1}i) \end{bmatrix}$$

$$= \begin{bmatrix} e^{x}(a_{1} + b_{1}i) & 0 \\ 0 & e^{x}(a_{1} + b_{1}i) \end{bmatrix}$$

$$= ^{x}[\rho(a_{1} + b_{1}i)].$$

Hence, ρ is a Γ -monoid homomorphism.

Let M and $M_r(K)$ be a Γ -monoid where K is a field. A *representation* of M over K is a Γ -monoid homomorphism $\varphi: M \to M_r(K)$.

Let M and $M_r(K)$ be a Γ -monoid where K is a field. A *representation* of M over K is a Γ -monoid homomorphism $\varphi: M \to M_r(K)$.

(i) φ is a monoid homomorphism (ii) $\varphi(^{\alpha}a) = {}^{\alpha}\varphi(a)$

The mapping $\rho : \mathbb{C}^* \to M_2(\mathbb{C})$ given by

$$a+bi\mapsto \begin{bmatrix} a+bi & 0\\ 0 & a+bi \end{bmatrix}$$

for $a + bi \in \mathbb{C}^*$, in Example 5, is a representation.

Let M be a Γ -monoid and $\varphi : M \to M_r(K)$ be a representation of M over a field K.

A subspace V of K^r is Γ -invariant if for all $\alpha \in \Gamma, m \in M$, and $v \in V$,

 $\varphi(^{\alpha}m) \cdot v \in V.$

Example 8 NOTE: Let $\Gamma = \mathbb{Z}$.

Example 8

NOTE: Let $\Gamma = \mathbb{Z}$. In Example 2 and 3, \mathbb{C} and $M_2(\mathbb{C})$ are Γ -monoids.

Consider the representation $\rho : \mathbb{C} \to M_2(\mathbb{C})$ given by

$$a + bi \mapsto \begin{bmatrix} a + bi & 0\\ 0 & a + bi \end{bmatrix}$$

for $a + bi \in \mathbb{C}$.

Take

$$V = \{(-s + ri, r + si) \mid r + si, -s + ri \in \mathbb{C}\} \subset \mathbb{C}^2.$$

Thus, V is a proper subspace of \mathbb{C}^2 .

Let
$$v = (-s + ri, r + si)$$
.

Let
$$v = (-s + ri, r + si)$$
. Note that we can write v as $\begin{bmatrix} -s + ri \\ r + si \end{bmatrix}$.

Let v = (-s + ri, r + si). Note that we can write v as $\begin{bmatrix} -s + ri \\ r + si \end{bmatrix}$. Thus, for all $x \in \Gamma$ and $a + bi \in \mathbb{C}$, we have

$$\begin{split} \rho(^x(a+bi)) \cdot v \\ &= \rho(e^x a + e^x bi) \cdot \begin{bmatrix} -s + ri \\ r + si \end{bmatrix} \\ &= \begin{bmatrix} e^x a + e^x bi & 0 \\ 0 & e^x a + e^x bi \end{bmatrix} \begin{bmatrix} -s + ri \\ r + si \end{bmatrix} \\ &= \begin{bmatrix} -(e^x as + e^x br) + (e^x ar - e^x bs)i & 0 \\ 0 & (e^x ar - e^x bs) + (e^x as + e^x br)i \end{bmatrix} \\ &\in V_{c} W = V_{c} \cdot D_{c} \cdot d_{c} \cdot d_{c} \end{split}$$

 $\in V$. Hence, V is Γ -invariant.

 $M_r(K) \cong Hom(U, U)$, where U is a vector space over a field K and dim(U) = r

 $M_r(K) \cong Hom(U, U)$, where U is a vector space over a field K and dim(U) = r

 $M_r(K) \cong Hom(U, U)$, where U is a vector space over a field K and dim(U) = r

Suppose V is a subspace of U, where dim(V) = s.

 $M_r(K) \cong Hom(U, U)$, where U is a vector space over a field K and dim(U) = r

Suppose V is a subspace of U, where dim(V) = s.

 $M_s(K) \cong Hom(V, V)$

 $M_r(K) \cong Hom(U, U)$, where U is a vector space over a field K and dim(U) = r

Suppose V is a subspace of U, where dim(V) = s.

 $M_s(K) \cong Hom(V, V)$

$$\begin{split} \varphi_V &: M \to M_s(K) \\ \varphi_V &: M \to Hom(V,V) \\ & m \mapsto \varphi(m) \mid_V : V \to V \end{split}$$

Let φ be a representation of a Γ -monoid M over a field Kand V be a subspace of K^r .

We say that $\varphi_V : M \to M_s(K)$ is a *subrepresentation* of φ if V is Γ -invariant, that is,

 $\varphi(^{\alpha}m)\cdot v\in V$

for all $\alpha \in \Gamma, m \in M$, and $v \in V$.

Example 10 In Example 5, $\rho : \mathbb{C} \to M_2(\mathbb{C})$ given by $a + bi \mapsto \begin{bmatrix} a + bi & 0\\ 0 & a + bi \end{bmatrix}$ for all $a + bi \in \mathbb{C}$ is a representation.

By previous example, $V = \{(-s + ri, r + si) \mid r + si, -s + ri \in \mathbb{C}\}$ is a Γ -invariant.

Example 10 In Example 5, $\rho : \mathbb{C} \to M_2(\mathbb{C})$ given by $a + bi \mapsto \begin{bmatrix} a + bi & 0\\ 0 & a + bi \end{bmatrix}$ for all $a + bi \in \mathbb{C}$ is a representation.

By previous example, $V = \{(-s + ri, r + si) | r + si, -s + ri \in \mathbb{C}\}$ is a Γ -invariant. Thus, ρ_V is a subrepresentation.

A subrepresentation is a representation of $\Gamma\text{-monoid}\ M$ over a field K.

A subrepresentation is a representation of Γ -monoid M over a field K.

A subrepresentation is a representation of Γ -monoid Mover a field K.

(i)
$$\varphi_V(1) = \varphi(1)|_V = \varphi(1) = I_r$$
,

A subrepresentation is a representation of Γ -monoid Mover a field K.

(i)
$$\varphi_V(1) = \varphi(1)|_V = \varphi(1) = I_r,$$

(ii) $\varphi_V(m_1)\varphi_V(m_2) = \varphi(m_1)|_V \varphi(m_2)|_V$
 $= \varphi(m_1m_2)|_V$
 $= \varphi_V(m_1m_2), \text{ and}$

A subrepresentation is a representation of Γ -monoid Mover a field K.

(i)
$$\varphi_V(1) = \varphi(1)|_V = \varphi(1) = I_r,$$

(ii) $\varphi_V(m_1)\varphi_V(m_2) = \varphi(m_1)|_V \varphi(m_2)|_V$
 $= \varphi(m_1m_2)|_V$
 $= \varphi_V(m_1m_2),$ and
(iii) $\varphi_V(^{\alpha}m_1) = \varphi(^{\alpha}m_1)|_V$
 $= {}^{\alpha}(\varphi(m_1)|_V)$
 $= {}^{\alpha}(\varphi_V(m_1)).$

A subrepresentation is a representation of Γ -monoid Mover a field K.

 $\varphi: M \to M_r(K)$ be representation

(i)
$$\varphi_V(1) = \varphi(1)|_V = \varphi(1) = I_r,$$

(ii) $\varphi_V(m_1)\varphi_V(m_2) = \varphi(m_1)|_V \varphi(m_2)|_V$
 $= \varphi(m_1m_2)|_V$
 $= \varphi_V(m_1m_2), \text{ and}$
(iii) $\varphi_V(^{\alpha}m_1) = \varphi(^{\alpha}m_1)|_V$
 $= {}^{\alpha}(\varphi(m_1)|_V)$
 $= {}^{\alpha}(\varphi_V(m_1)).$
 $\therefore \varphi_V$ is a representation

Let K_1 and K_2 be fields, and $\varphi_1 : M \to M_r(K_1)$ and $\varphi_2 : M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively.

$$\begin{split} M_r(K_1) &\cong Hom(V,V) \text{ and } M_s(K_2) \cong Hom(W,W) \\ \text{where } \dim(V) &= r \text{ and } \dim(W) = s \\ V &\cong K_1^r \text{ and } W \cong K_2^s \\ \hline & & & & \\ & & & & \\ & & & & & \\$$

Let K_1 and K_2 be fields, and $\varphi_1 : M \to M_r(K_1)$ and $\varphi_2 : M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively.

A function $T: K_1^r \to K_2^s$ is called a Γ -*linear map* if T is a

$$\begin{split} M_r(K_1) &\cong Hom(V,V) \text{ and } M_s(K_2) \cong Hom(W,W) \\ \text{where } \dim(V) &= r \text{ and } \dim(W) = s \\ V &\cong K_1^r \text{ and } W \cong K_2^s \\ \hline & & \varphi_1(m) \\ K_1^r & & & K_1^r \\ T & & & & \downarrow T \\ K_2^s & & & & K_2^s \\ & & & \varphi_2(m) \end{split}$$

Let K_1 and K_2 be fields, and $\varphi_1 : M \to M_r(K_1)$ and $\varphi_2 : M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively.

A function $T: K_1^r \to K_2^s$ is called a Γ -*linear map* if T is a (i) linear transformation and

$$\begin{split} M_r(K_1) &\cong Hom(V,V) \text{ and } M_s(K_2) \cong Hom(W,W) \\ \text{where } \dim(V) = r \text{ and } \dim(W) = s \\ V &\cong K_1^r \text{ and } W \cong K_2^s \\ \hline & & & & \\ F_1^r & & & \\ F_1^r & & & \\ F_1^r & & \\ F_1^r & & & \\ F_1^r & & & \\ F_1^r & & \\ F_1^r & & \\ F_1^r & & & \\ F_1^r & & \\$$

Let K_1 and K_2 be fields, and $\varphi_1 : M \to M_r(K_1)$ and $\varphi_2 : M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively.

A function $T: K_1^r \to K_2^s$ is called a Γ -*linear map* if T is a (i) linear transformation and (ii) $T(\varphi_1(^{\alpha}m)k) = \varphi_2(^{\alpha}m)T(k)$ $k \in K_1$.

for all $\alpha \in \Gamma, m \in M$, and $k \in K_1$.

Let K_1 and K_2 be fields, and $\varphi: M \to M_r(K_1)$ and $\psi: M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively. Suppose $T: K_1^r \to K_2^s$ is a Γ -linear map. Then

Proposition 13

Let K_1 and K_2 be fields, and $\varphi: M \to M_r(K_1)$ and $\psi: M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively. Suppose $T: K_1^r \to K_2^s$ is a Γ -linear map. Then

 $u \in Ker T \Longrightarrow T(u) = 0_{K_2^S}$ $T(\varphi(^{\alpha}m)u) = \psi(^{\alpha}m)T(u) = \psi(^{\alpha}m)0_{K_2^S} = 0_{K_2^S}$ $\Longrightarrow (\varphi(^{\alpha}m)u \in KerT$ $\therefore Ker T \text{ is } \Gamma \text{-invariant}$

 $w \in Im T \Longrightarrow w = T(k) \text{ for some } k \in K_1^r$ $\psi(^{\alpha}m)w = \psi(^{\alpha}m)T(k) = T(\varphi(^{\alpha}m)(k)) \in Im T$ $\therefore Im T \text{ is } \Gamma \text{-invariant}$ (i) φ_{KerT} is a subrepresentation of φ ,

Proposition 13

Let K_1 and K_2 be fields, and $\varphi: M \to M_r(K_1)$ and $\psi: M \to M_s(K_2)$ be representations of a Γ -monoid M over K_1 and K_2 , respectively. Suppose $T: K_1^r \to K_2^s$ is a Γ -linear map. Then

 $u \in Ker T \Longrightarrow T(u) = 0_{K_2^S}$ $T(\varphi(^{\alpha}m)u) = \psi(^{\alpha}m)T(u) = \psi(^{\alpha}m)0_{K_2^S} = 0_{K_2^S}$ $\Longrightarrow (\varphi(^{\alpha}m)u \in KerT$ $\therefore Ker T \text{ is } \Gamma \text{-invariant}$

 $w \in Im T \Longrightarrow w = T(k) \text{ for some } k \in K_1^r$ $\psi(^{\alpha}m)w = \psi(^{\alpha}m)T(k) = T(\varphi(^{\alpha}m)(k)) \in Im T$ $\therefore Im T \text{ is } \Gamma \text{-invariant}$ (i) φ_{KerT} is a subrepresentation of φ ,

(ii) ψ_{ImT} is a subrepresentation of ψ ,

(iii) if V is a Γ -invariant of K_1^r , then T(V) is Γ -invariant subspace of K_2^s , and

(iii) if V is a Γ -invariant of K_1^r , then T(V) is Γ -invariant subspace of K_2^s , and

(iv) if W is a Γ -invariant subspace of K_2^s , then $T^{-1}(W)$ is Γ -invariant subspace of K_1^r .

- L. G. Cordeiro, D. Gonçalves, R. Hazrat, The talented monoid of a directed graph with applications to graph algebras. *Rev. Mat. Iberoam.* 38 (2022), no. 1, 223–256.
- [2] R. Hazrat and H. Li, The talented monoid of a Leavitt path algebra, *Journal of Algebra*, 547 (2020), 430-455.
- [3] T. Hungerford, Algebra. Springer-Verlag, New York, 1974.
- [4] J. A. Masuda, L. Quoos, B. Steinberg, Character Theory of Monoids Over an Arbitrary Field, *Journal of Algebra*, 431 (2015), 107-126.

[5] A. Sebandal and J. Vilela, The Jordan-Holder theorem for monoids with group action, *Journal of Algebra and Its Application* (2022).

Thank you all for this wonderful experience! \bigcirc

Representation and Subrepresentation of T-Monoids

111