Representation and Subrepresentation of Γ-Monoids

Flor de May C. Lañohan
and
Jocelyn P. Vilela, Ph.D.

Department of Mathematics and Statistics
College of Science and Mathematics
Mindanao State University - Iligan Institute of Technology

$$
\text { July 11, } 2023
$$

Representation and Subrepresentation of Γ-Monoids

Flor de May C. Lañohan
and
Jocelyn P. Vilela, Ph.D.

Department of Mathematics and Statistics
College of Science and Mathematics
Mindanao State University - Iligan Institute of Technology

$$
\text { July 11, } 2023
$$

OUTLINE OF THE PRESENTATION

OUTLINE OF THE PRESENTATION

Background of the Study

Objectives

Basic Concepts

Results

OUTLINE OF THE PRESENTATION

Objectives

Basic Concepts

Results

OUTLINE OF THE PRESENTATION

OUTLINE OF THE PRESENTATION

Background of the study

Representation theory was first introduced in
1896 by the German mathematician
F. G. Frobenius

Background of the study
Representation theory was first introduced in
1896 by the German mathematician
F. G. Frobenius

Background of the study

Representation theory was first introduced in
1896 by the German mathematician
F. G. Frobenius

GOAL:

to understand algebraic structures by transforming their elements into matrices.

Background of the study

Representation theory was first introduced in
1896 by the German mathematician
F. G. Frobenius

GOAL:

 "GROUPS" to understand algebraic structures by transforming theirelements into matrices.

Background of the study

Representation of Monoids

2015-Steinberg studied the representation theory of finite monoids

Character Theory of monoids over an arbitrary field

Background of the study
T-Monoid
2020 - Hazrat and Li defined the " Γ-monoid" as a monoid with the group Γ acting on it. Talented monoid T_{E} (Z \mathbb{Z}-monoid)

2022- action via monoid automorphism

Background of the study

T-Monoid
2020 - Hazrat and Li defined the " Γ-monoid" as
a monoid with the group Γ acting on it.
Talented monoid T_{E} (Z \mathbb{Z}-monoid)

2022- action via monoid automorphism

The focus of this presentation is the representation of Γ-monoids and its subrepresentation.

This study has the following objectives:
to introduce the concept of the Γ-invariant and subrepresentation of a representation;
to show that a subrepresentation is also a representation;
to demonstrate that a restriction map to the kernel, image, and inverse image of a Γ-linear map are subrepresentations.

This study has the following objectives:
to introduce the concept of the Γ-invariant and subrepresentation of a representation;
to show that a subrepresentation is also a representation;
to demonstrate that a restriction map to the kernel, image, and inverse image of a Γ-linear map are subrepresentations.

This study has the following objectives:

(6)
to introduce the concept of the Γ-invariant and subrepresentation of a representation;
to show that a subrepresentation is also a representation;
to demonstrate that a restriction map to the kernel, image, and inverse image of a Γ-linear map are subrepresentations.

Γ-MONOIDS

Definition 1 [2]

Let M be a monoid and Γ a group.
M is said to be a Γ-monoid if there is an action of Γ on M via monoid automorphism.

For $\alpha \in \Gamma$ and $a \in M$, the action of α on a shall be denoted by ${ }^{\alpha} a$.

$$
{ }^{\alpha}(a+b)={ }^{\alpha} a+{ }^{\alpha} b
$$

Example 2

Let $\Gamma=\mathbb{Z}$ be the group of integers under addition and \mathbb{C} be the set of complex numbers.

Example 2

Let $\Gamma=\mathbb{Z}$ be the group of integers under addition and \mathbb{C} be the set of complex numbers. Note that \mathbb{C} is a group under addition. Thus, it is a monoid.

Example 2

Let $\Gamma=\mathbb{Z}$ be the group of integers under addition and \mathbb{C} be the set of complex numbers. Note that \mathbb{C} is a group under addition. Thus, it is a monoid.

Consider the mapping $\Gamma \times \mathbb{C} \rightarrow \mathbb{C}$ given by

$$
(x, a+b i) \mapsto e^{x} a+e^{x} b i
$$

for all $x \in \Gamma$ and $a+b i \in \mathbb{C}$.

Since for all $x, y \in \Gamma$ and $a+b i \in \mathbb{C}$,

Since for all $x, y \in \Gamma$ and $a+b i \in \mathbb{C}$,
(i) ${ }^{0}(a+b i)=e^{0} a+e^{0} b i=a+b i$

Since for all $x, y \in \Gamma$ and $a+b i \in \mathbb{C}$,
(i) ${ }^{0}(a+b i)=e^{0} a+e^{0} b i=a+b i$
(ii) ${ }^{(x+y)}(a+b i)=\left(e^{x+y} a+e^{x+y} b i\right)={ }^{x}\left({ }^{y}(a+b i)\right)$,

Since for all $x, y \in \Gamma$ and $a+b i \in \mathbb{C}$,
(i) ${ }^{0}(a+b i)=e^{0} a+e^{0} b i=a+b i$
(ii) ${ }^{(x+y)}(a+b i)=\left(e^{x+y} a+e^{x+y} b i\right)={ }^{x}\left({ }^{y}(a+b i)\right)$,
(iii) ${ }^{x}[(a+b i)+(c+d i)]=e^{x}(a+c)+e^{x}(b+d) i$

$$
={ }^{x}(a+b i)+{ }^{x}(c+d i),
$$

Since for all $x, y \in \Gamma$ and $a+b i \in \mathbb{C}$,
(i) ${ }^{0}(a+b i)=e^{0} a+e^{0} b i=a+b i$
(ii) ${ }^{(x+y)}(a+b i)=\left(e^{x+y} a+e^{x+y} b i\right)={ }^{x}\left({ }^{y}(a+b i)\right)$,
(iii) ${ }^{x}[(a+b i)+(c+d i)]=e^{x}(a+c)+e^{x}(b+d) i$

$$
={ }^{x}(a+b i)+{ }^{x}(c+d i),
$$

the mapping is an action of a group Γ on \mathbb{C}.

Since for all $x, y \in \Gamma$ and $a+b i \in \mathbb{C}$,
(i) ${ }^{0}(a+b i)=e^{0} a+e^{0} b i=a+b i$
(ii) ${ }^{(x+y)}(a+b i)=\left(e^{x+y} a+e^{x+y} b i\right)={ }^{x}\left({ }^{y}(a+b i)\right)$,
(iii) ${ }^{x}[(a+b i)+(c+d i)]=e^{x}(a+c)+e^{x}(b+d) i$

$$
={ }^{x}(a+b i)+{ }^{x}(c+d i),
$$

the mapping is an action of a group Γ on \mathbb{C}.

Hence, \mathbb{C} is a Γ-monoid.

Example 3

Let $\Gamma=\mathbb{Z}$ and $M_{2}(\mathbb{C})$ be a square matrix with entries from \mathbb{C}.

Example 3

Let $\Gamma=\mathbb{Z}$ and $M_{2}(\mathbb{C})$ be a square matrix with entries from \mathbb{C}.
Note that $M_{2}(\mathbb{C})$ is a monoid under matrix addition.
Define the mapping $\Gamma \times M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ by

$$
\left(x,\left[\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]\right) \mapsto\left[\begin{array}{cc}
e^{x}\left(a_{1}+b_{1} i\right) & a_{2}+b_{2} i \\
a_{3}+b_{3} i & e^{x}\left(a_{4}+b_{4} i\right)
\end{array}\right]
$$

for all $x \in \Gamma$ and $\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right] \in M_{2}(\mathbb{C})$.

Since for all $x, y \in \Gamma$ and $\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right] \in M_{2}(\mathbb{C})$,
(i) $0\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right]=\left[\begin{array}{cc}e^{0}\left(a_{1}+b_{1} i\right) & a_{2}+b_{2} i \\ a_{3}+b_{3} i & e^{0}\left(a_{4}+b_{4} i\right)\end{array}\right]$

$$
=\left[\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]
$$

(ii) ${ }^{x+y}\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
e^{(x+y)}\left(a_{1}+b_{1} i\right) & a_{2}+b_{2} i \\
a_{3}+b_{3} i & e^{(x+y)}\left(a_{4}+b_{4} i\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{x} e^{y}\left(a_{1}+b_{1} i\right) & a_{2}+b_{2} i \\
a_{3}+b_{3} i & e^{x} e^{y}\left(a_{4}+b_{4} i\right)
\end{array}\right] \\
& ={ }^{x}\left(y\left[\begin{array}{cc}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]\right)
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& \left.x\left(\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]+\left[\begin{array}{ll}
c_{1}+d_{1} i & c_{2}+d_{2} i \\
c_{3}+d_{3} i & c_{4}+d_{4} i
\end{array}\right]\right) \\
& =\left[\begin{array}{rr}
e^{x}\left(\left(a_{1}+b_{1} i\right)+\left(c_{1}+d_{1} i\right)\right) & \left(a_{2}+b_{2} i\right)+\left(c_{2}+d_{2} i\right) \\
e^{x}\left(a_{3}+b_{3} i\right) & \left(a_{4}+b_{4} i\right)+\left(c_{4}+d_{4} i\right)
\end{array}\right] \\
= & x\left[\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]+x\left[\begin{array}{ll}
c_{1}+d_{1} i & c_{2}+d_{2} i \\
c_{3}+d_{3} i & c_{4}+d_{4} i
\end{array}\right]
\end{aligned}
$$

(iii) $x\left(\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right]+\left[\begin{array}{ll}c_{1}+d_{1} i & c_{2}+d_{2} i \\ c_{3}+d_{3} i & c_{4}+d_{4} i\end{array}\right]\right)$
$=\left[\begin{array}{cl}e^{x}\left(\left(a_{1}+b_{1} i\right)+\left(c_{1}+d_{1} i\right)\right) & \left(a_{2}+b_{2} i\right)+\left(c_{2}+d_{2} i\right) \\ e^{x}\left(a_{3}+b_{3} i\right) & \left(a_{4}+b_{4} i\right)+\left(c_{4}+d_{4} i\right)\end{array}\right]$
$={ }^{x}\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right]+{ }^{x}\left[\begin{array}{ll}c_{1}+d_{1} i & c_{2}+d_{2} i \\ c_{3}+d_{3} i & c_{4}+d_{4} i\end{array}\right]$
the mapping is an action of a group Γ on $M_{2}(\mathbb{C})$.
(iii) $x\left(\left[\begin{array}{ll}a_{1}+b_{1} i & a_{2}+b_{2} i \\ a_{3}+b_{3} i & a_{4}+b_{4} i\end{array}\right]+\left[\begin{array}{ll}c_{1}+d_{1} i & c_{2}+d_{2} i \\ c_{3}+d_{3} i & c_{4}+d_{4} i\end{array}\right]\right)$

$$
=\left[\begin{array}{cl}
e^{x}\left(\left(a_{1}+b_{1} i\right)+\left(c_{1}+d_{1} i\right)\right) & \left(a_{2}+b_{2} i\right)+\left(c_{2}+d_{2} i\right) \\
e^{x}\left(a_{3}+b_{3} i\right) & \left(a_{4}+b_{4} i\right)+\left(c_{4}+d_{4} i\right)
\end{array}\right]
$$

$$
={ }^{x}\left[\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]+{ }^{x}\left[\begin{array}{ll}
c_{1}+d_{1} i & c_{2}+d_{2} i \\
c_{3}+d_{3} i & c_{4}+d_{4} i
\end{array}\right]
$$

the mapping is an action of a group Γ on $M_{2}(\mathbb{C})$.

Hence, $M_{2}(\mathbb{C})$ is a Γ-monoid.

Definition 4 [2]

Let M_{1}, M_{2} be monoids and Γ be a group acting on M_{1} and M_{2}.

A Γ-monoid homomorphism is a monoid homomorphism $\rho: M_{1} \rightarrow M_{2}$ that respects the action of Γ, that is,

$$
\rho\left({ }^{\alpha} a\right)={ }^{\alpha} \rho(a)
$$

for all $a \in M_{1}$.

Example 5

NOTE: Let $\Gamma=\mathbb{Z}$.

Example 5

NOTE: Let $\Gamma=\mathbb{Z}$. In Example 2 and $3, \mathbb{C}$ and $M_{2}(\mathbb{C})$ are Γ-monoids

Example 5

NOTE: Let $\Gamma=\mathbb{Z}$. In Example 2 and $3, \mathbb{C}$ and $M_{2}(\mathbb{C})$ are Γ-monoids via the action $\Gamma \times \mathbb{C} \rightarrow \mathbb{C}$ given by

$$
(x, a+b i) \mapsto e^{x} a+b i
$$

and

Example 5

NOTE: Let $\Gamma=\mathbb{Z}$. In Example 2 and $3, \mathbb{C}$ and $M_{2}(\mathbb{C})$ are Γ-monoids via the action $\Gamma \times \mathbb{C} \rightarrow \mathbb{C}$ given by

$$
(x, a+b i) \mapsto e^{x} a+b i
$$

and $\Gamma \times M_{2}(\mathbb{C})$ by

$$
\left(x,\left[\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right]\right) \mapsto\left[\begin{array}{cc}
e^{x}\left(a_{1}+b_{1} i\right) & a_{2}+b_{2} i \\
a_{3}+b_{3} i & e^{x}\left(a_{4}+b_{4} i\right)
\end{array}\right]
$$

respectively, for all $x \in \Gamma, a+b i \in \mathbb{C}^{*}$, and

$$
\left[\begin{array}{ll}
a_{1}+b_{1} i & a_{2}+b_{2} i \\
a_{3}+b_{3} i & a_{4}+b_{4} i
\end{array}\right] \in M_{2}(\mathbb{C}) .
$$

Consider the mapping $\rho: \mathbb{C} \rightarrow M_{2}(\mathbb{C})$ given by

$$
a+b i \mapsto\left[\begin{array}{cc}
a+b i & 0 \\
0 & a+b i
\end{array}\right]
$$

for all $a+b i \in \mathbb{C}$.

Let $x \in \Gamma$ and $a_{1}+b_{1} i, a_{2}+b_{2} i \in \mathbb{C}$. Then

$$
\rho(1+0 i)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
\begin{aligned}
& \rho\left(a_{1}+b_{1} i\right) \rho\left(a_{2}+b_{2} i\right) \\
& =\left[\begin{array}{cc}
a_{1}+b_{1} i & 0 \\
0 & a_{1}+b_{1} i
\end{array}\right]\left[\begin{array}{cc}
a_{2}+b_{2} i & 0 \\
0 & a_{2}+b_{2} i
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right) & 0 \\
0 & \left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right)
\end{array}\right] \\
& =\rho\left(\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) i\right) \\
& =\rho\left(\left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right)\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\rho\left({ }^{x}\left(a_{1}+b_{1} i\right)\right) & =\rho\left(e^{x}\left(a_{1}+b_{1} i\right)\right) \\
& =\rho\left(e^{x} a_{1}+e^{x} b_{1} i\right) \\
& =\left[\begin{array}{cc}
e^{x} a_{1}+e^{x} b_{1} i & 0 \\
0 & e^{x} a_{1}+e^{x} b_{1} i
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{x}\left(a_{1}+b_{1} i\right) & 0 \\
0 & e^{x}\left(a_{1}+b_{1} i\right)
\end{array}\right] \\
& ={ }^{x}\left[\rho\left(a_{1}+b_{1} i\right)\right] .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\rho\left({ }^{x}\left(a_{1}+b_{1} i\right)\right) & =\rho\left(e^{x}\left(a_{1}+b_{1} i\right)\right) \\
& =\rho\left(e^{x} a_{1}+e^{x} b_{1} i\right) \\
& =\left[\begin{array}{cc}
e^{x} a_{1}+e^{x} b_{1} i & 0 \\
0 & e^{x} a_{1}+e^{x} b_{1} i
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{x}\left(a_{1}+b_{1} i\right) & 0 \\
0 & e^{x}\left(a_{1}+b_{1} i\right)
\end{array}\right] \\
& ={ }^{x}\left[\rho\left(a_{1}+b_{1} i\right)\right] .
\end{aligned}
$$

Hence, ρ is a Γ-monoid homomorphism.

Definition 6

Let M and $M_{r}(K)$ be a Γ-monoid where K is a field. A representation of M over K is a Γ-monoid homomorphism $\varphi: M \rightarrow M_{r}(K)$.

Definition 6

Let M and $M_{r}(K)$ be a Γ-monoid where K is a field. A representation of M over K is a Γ-monoid homomorphism $\varphi: M \rightarrow M_{r}(K)$.
(i) φ is a monoid homomorphism
(ii) $\varphi\left({ }^{\alpha} a\right)={ }^{\alpha} \varphi(a)$

The mapping $\rho: \mathbb{C}^{*} \rightarrow M_{2}(\mathbb{C})$ given by

$$
a+b i \mapsto\left[\begin{array}{cc}
a+b i & 0 \\
0 & a+b i
\end{array}\right]
$$

for $a+b i \in \mathbb{C}^{*}$, in Example 5, is a representation.

Definition 7

Let M be a Γ-monoid and $\varphi: M \rightarrow M_{r}(K)$ be a representation of M over a field K.

A subspace V of K^{r} is Γ-invariant if for all $\alpha \in \Gamma, m \in M$, and $v \in V$,

$$
\varphi\left({ }^{\alpha} m\right) \cdot v \in V .
$$

Example 8

NOTE: Let $\Gamma=\mathbb{Z}$.

Example 8

NOTE: Let $\Gamma=\mathbb{Z}$. In Example 2 and $3, \mathbb{C}$ and $M_{2}(\mathbb{C})$ are
Γ-monoids.

Consider the representation $\rho: \mathbb{C} \rightarrow M_{2}(\mathbb{C})$ given by

$$
a+b i \mapsto\left[\begin{array}{cc}
a+b i & 0 \\
0 & a+b i
\end{array}\right]
$$

for $a+b i \in \mathbb{C}$.

Take

$$
V=\{(-s+r i, r+s i) \mid r+s i,-s+r i \in \mathbb{C}\} \subset \mathbb{C}^{2}
$$

Thus, V is a proper subspace of \mathbb{C}^{2}.

Let $v=(-s+r i, r+s i)$.

Let $v=(-s+r i, r+s i)$. Note that we can write v as $\left[\begin{array}{c}-s+r i \\ r+s i\end{array}\right]$

Let $v=(-s+r i, r+s i)$. Note that we can write v as $\left[\begin{array}{c}-s+r i \\ r+s i\end{array}\right]$. Thus, for all $x \in \Gamma$ and $a+b i \in \mathbb{C}$, we have
$\rho\left({ }^{x}(a+b i)\right) \cdot v$
$=\rho\left(e^{x} a+e^{x} b i\right) \cdot\left[\begin{array}{c}-s+r i \\ r+s i\end{array}\right]$
$=\left[\begin{array}{cc}e^{x} a+e^{x} b i & 0 \\ 0 & e^{x} a+e^{x} b i\end{array}\right]\left[\begin{array}{c}-s+r i \\ r+s i\end{array}\right]$
$=\left[\begin{array}{cc}-\left(e^{x} a s+e^{x} b r\right)+\left(e^{x} a r-e^{x} b s\right) i & 0 \\ 0 & \left(e^{x} a r-e^{x} b s\right)+\left(e^{x} a s+e^{x} b r\right) i\end{array}\right]$
$\in V$. Hence, V is Γ-invariant.

$$
\text { representation } \varphi: M \rightarrow M_{r}(K)
$$

$$
\text { representation } \varphi: M \rightarrow M_{r}(K)
$$

$M_{r}(K) \cong \operatorname{Hom}(U, U)$, where U is a vector space over a field K and $\operatorname{dim}(U)=r$

$$
\text { representation } \varphi: M \rightarrow M_{r}(K)
$$

$M_{r}(K) \cong \operatorname{Hom}(U, U)$, where U is a vector space over a field K and $\operatorname{dim}(U)=r$

$$
\text { representation } \varphi: M \rightarrow M_{r}(K)
$$

$M_{r}(K) \cong \operatorname{Hom}(U, U)$, where U is a vector space over a field K and $\operatorname{dim}(U)=r$

Suppose V is a subspace
 of U, where $\operatorname{dim}(V)=s$.

$$
\text { representation } \varphi: M \rightarrow M_{r}(K)
$$

$M_{r}(K) \cong \operatorname{Hom}(U, U)$, where U is a vector space over a field K and $\operatorname{dim}(U)=r$

Suppose V is a subspace
 of U, where $\operatorname{dim}(V)=s$.

$$
M_{s}(K) \cong H o m(V, V)
$$

$$
\text { representation } \varphi: M \rightarrow M_{r}(K)
$$

$M_{r}(K) \cong \operatorname{Hom}(U, U)$, where U is a vector space over a field K and $\operatorname{dim}(U)=r$

Suppose V is a subspace of U, where $\operatorname{dim}(V)=s$.

$$
M_{s}(K) \cong H o m(V, V)
$$

$$
\begin{aligned}
\varphi_{V} & : M \rightarrow M_{s}(K) \\
\varphi_{V} & : M \rightarrow \operatorname{Hom}(V, V) \\
& \left.m \mapsto \varphi(m)\right|_{V}: V \rightarrow V
\end{aligned}
$$

Definition 9
Let φ be a representation of a Γ-monoid M over a field K and V be a subspace of K^{r}.

We say that $\varphi_{V}: M \rightarrow M_{s}(K)$ is a subrepresentation of φ if V is Γ-invariant, that is,

$$
\varphi\left({ }^{\alpha} m\right) \cdot v \in V
$$

for all $\alpha \in \Gamma, m \in M$, and $v \in V$.

Example 10

In Example 5, $\rho: \mathbb{C} \rightarrow M_{2}(\mathbb{C})$ given by
$a+b i \mapsto\left[\begin{array}{cc}a+b i & 0 \\ 0 & a+b i\end{array}\right]$ for all $a+b i \in \mathbb{C}$ is a representation.
By previous example, $V=\{(-s+r i, r+s i) \mid$
$r+s i,-s+r i \in \mathbb{C}\}$ is a Γ-invariant.

Example 10

In Example 5, $\rho: \mathbb{C} \rightarrow M_{2}(\mathbb{C})$ given by
$a+b i \mapsto\left[\begin{array}{cc}a+b i & 0 \\ 0 & a+b i\end{array}\right]$ for all $a+b i \in \mathbb{C}$ is a representation.
By previous example, $V=\{(-s+r i, r+s i) \mid$
$r+s i,-s+r i \in \mathbb{C}\}$ is a Γ-invariant.
Thus, ρ_{V} is a subrepresentation.

Proposition 11

A subrepresentation is a representation of Γ-monoid M over a field K.

Proposition 11

A subrepresentation is a representation of Γ-monoid M over a field K.
$\varphi: M \rightarrow M_{r}(K)$ be representation

Proposition 11

A subrepresentation is a representation of Γ-monoid M over a field K.
$\varphi: M \rightarrow M_{r}(K)$ be representation
(i) $\varphi_{V}(1)=\left.\varphi(1)\right|_{V}=\varphi(1)=I_{r}$,

Proposition 11

A subrepresentation is a representation of Γ-monoid M over a field K.
$\varphi: M \rightarrow M_{r}(K)$ be representation
(i) $\varphi_{V}(1)=\left.\varphi(1)\right|_{V}=\varphi(1)=I_{r}$,
(ii) $\varphi_{V}\left(m_{1}\right) \varphi_{V}\left(m_{2}\right)=\left.\left.\varphi\left(m_{1}\right)\right|_{V} \varphi\left(m_{2}\right)\right|_{V}$

$$
=\left.\varphi\left(m_{1} m_{2}\right)\right|_{V}
$$

$$
=\varphi_{V}\left(m_{1} m_{2}\right), \text { and }
$$

Proposition 11

A subrepresentation is a representation of Γ-monoid M over a field K.
$\varphi: M \rightarrow M_{r}(K)$ be representation
(i) $\varphi_{V}(1)=\left.\varphi(1)\right|_{V}=\varphi(1)=I_{r}$,
(ii) $\varphi_{V}\left(m_{1}\right) \varphi_{V}\left(m_{2}\right)=\left.\left.\varphi\left(m_{1}\right)\right|_{V} \varphi\left(m_{2}\right)\right|_{V}$

$$
\begin{aligned}
& =\left.\varphi\left(m_{1} m_{2}\right)\right|_{V} \\
& =\varphi_{V}\left(m_{1} m_{2}\right), \text { and }
\end{aligned}
$$

(iii) $\varphi_{V}\left({ }^{\alpha} m_{1}\right)=\left.\varphi\left({ }^{\alpha} m_{1}\right)\right|_{V}$

$$
\begin{aligned}
& ={ }^{\alpha}\left(\left.\varphi_{(}\left(m_{1}\right)\right|_{V}\right) \\
& ={ }^{\alpha}\left(\varphi_{V}\left(m_{1}\right)\right) .
\end{aligned}
$$

Proposition 11

A subrepresentation is a representation of Γ-monoid M over a field K.
$\varphi: M \rightarrow M_{r}(K)$ be representation
(i) $\varphi_{V}(1)=\left.\varphi(1)\right|_{V}=\varphi(1)=I_{r}$,
(ii) $\varphi_{V}\left(m_{1}\right) \varphi_{V}\left(m_{2}\right)=\left.\left.\varphi\left(m_{1}\right)\right|_{V} \varphi\left(m_{2}\right)\right|_{V}$

$$
\begin{aligned}
& =\left.\varphi\left(m_{1} m_{2}\right)\right|_{V} \\
& =\varphi_{V}\left(m_{1} m_{2}\right), \text { and }
\end{aligned}
$$

(iii) $\varphi_{V}\left({ }^{\alpha} m_{1}\right)=\left.\varphi\left({ }^{\alpha} m_{1}\right)\right|_{V}$

$$
\begin{aligned}
& ={ }^{\alpha}\left(\left.\varphi_{(}\left(m_{1}\right)\right|_{V}\right) \\
& ={ }^{\alpha}\left(\varphi_{V}\left(m_{1}\right)\right) .
\end{aligned}
$$

$\therefore \varphi_{V}$ is a representation

Definition 12

$M_{r}\left(K_{1}\right) \cong \operatorname{Hom}(V, V)$ and $M_{s}\left(K_{2}\right) \cong \operatorname{Hom}(W, W)$ where $\operatorname{dim}(V)=r$ and $\operatorname{dim}(W)=s$

$$
V \cong K_{1}^{r} \text { and } W \cong K_{2}^{s}
$$

Definition 12

$M_{r}\left(K_{1}\right) \cong \operatorname{Hom}(V, V)$ and $M_{s}\left(K_{2}\right) \cong \operatorname{Hom}(W, W)$ where $\operatorname{dim}(V)=r$ and $\operatorname{dim}(W)=s$

$$
V \cong K_{1}^{r} \text { and } W \cong K_{2}^{s}
$$

Let K_{1} and K_{2} be fields, and $\varphi_{1}: M \rightarrow M_{r}\left(K_{1}\right)$
and $\varphi_{2}: M \rightarrow M_{s}\left(K_{2}\right)$
be representations of a Γ-monoid M over K_{1} and K_{2}, respectively.

A function $T: K_{1}^{r} \rightarrow K_{2}^{s}$
is called a Γ-linear map if T is a

Definition 12

```
\(M_{r}\left(K_{1}\right) \cong \operatorname{Hom}(V, V)\) and \(M_{s}\left(K_{2}\right) \cong \operatorname{Hom}(W, W)\)
```

 where \(\operatorname{dim}(V)=r\) and \(\operatorname{dim}(W)=s\)
 $$
V \cong K_{1}^{r} \text { and } W \cong K_{2}^{s}
$$

Let K_{1} and K_{2} be fields, and $\varphi_{1}: M \rightarrow M_{r}\left(K_{1}\right)$
and $\varphi_{2}: M \rightarrow M_{s}\left(K_{2}\right)$
be representations of a Γ-monoid M over K_{1} and K_{2}, respectively.

A function $T: K_{1}^{r} \rightarrow K_{2}^{s}$
is called a Γ-linear map if T is a
(i) linear transformation and

Definition 12

$M_{r}\left(K_{1}\right) \cong \operatorname{Hom}(V, V)$ and $M_{s}\left(K_{2}\right) \cong \operatorname{Hom}(W, W)$ where $\operatorname{dim}(V)=r$ and $\operatorname{dim}(W)=s$

$$
V \cong K_{1}^{r} \text { and } W \cong K_{2}^{s}
$$

Let K_{1} and K_{2} be fields, and $\varphi_{1}: M \rightarrow M_{r}\left(K_{1}\right)$ and $\varphi_{2}: M \rightarrow M_{s}\left(K_{2}\right)$
be representations of a Γ-monoid M over K_{1} and K_{2}, respectively.

A function $T: K_{1}^{r} \rightarrow K_{2}^{s}$ is called a Γ-linear map if T is a
(i) linear transformation and
(ii) $T\left(\varphi_{1}\left({ }^{\alpha} m\right) k\right)=\varphi_{2}\left({ }^{\alpha} m\right) T(k)$
for all $\alpha \in \Gamma, m \in M$, and $k \in K_{1}$.

Proposition 13

Let K_{1} and K_{2} be fields, and $\varphi: M \rightarrow M_{r}\left(K_{1}\right)$ and $\psi: M \rightarrow M_{s}\left(K_{2}\right)$ be representations of a Γ-monoid M over K_{1} and K_{2}, respectively. Suppose $T: K_{1}^{r} \rightarrow K_{2}^{s}$ is a Γ-linear map. Then

Proposition 13

Let K_{1} and K_{2} be fields, and $\varphi: M \rightarrow M_{r}\left(K_{1}\right)$ and $\psi: M \rightarrow M_{s}\left(K_{2}\right)$ be representations of a Γ-monoid M over K_{1} and K_{2}, respectively. Suppose $T: K_{1}^{r} \rightarrow K_{2}^{s}$ is a Γ-linear map. Then

$$
\begin{gathered}
u \in \operatorname{Ker} T \Rightarrow T(u)=0_{K_{2}^{s}} \\
T\left(\varphi\left({ }^{\alpha} m\right) u\right)=\psi\left({ }^{\alpha} m\right) T(u)=\psi\left({ }^{\alpha} m\right) 0_{K_{2}^{s}}=0_{K_{2}^{s}} \\
\Rightarrow\left(\varphi\left({ }^{\alpha} m\right) u \in \operatorname{Ker} T\right. \\
\therefore \operatorname{Ker} T \text { is } \Gamma \text {-invariant } \\
w \in \operatorname{Im} T \Rightarrow w=T(k) \text { for some } k \in K_{1}^{r} \\
\psi\left({ }^{\alpha} m\right) w=\psi\left({ }^{\alpha} m\right) T(k)=T\left(\varphi\left({ }^{\alpha} m\right)(k)\right) \in \operatorname{Im} T \\
\therefore \operatorname{Im} T \text { is } \Gamma \text {-invariant }
\end{gathered}
$$

Proposition 13

Let K_{1} and K_{2} be fields, and $\varphi: M \rightarrow M_{r}\left(K_{1}\right)$ and $\psi: M \rightarrow M_{s}\left(K_{2}\right)$ be representations of a Γ-monoid M over K_{1} and K_{2}, respectively. Suppose $T: K_{1}^{r} \rightarrow K_{2}^{s}$ is a Γ-linear map. Then

$$
\begin{gathered}
u \in \operatorname{Ker} T \Rightarrow T(u)=0_{K_{2}^{s}} \\
T\left(\varphi\left({ }^{\alpha} m\right) u\right)=\psi\left({ }^{\alpha} m\right) T(u)=\psi\left({ }^{\alpha} m\right) 0_{K_{2}^{s}}=0_{K_{2}^{s}} \\
\Rightarrow\left(\varphi\left({ }^{\alpha} m\right) u \in \operatorname{Ker} T\right. \\
\therefore \operatorname{Ker} T \text { is } \Gamma \text {-invariant } \\
w \in \operatorname{Im} T \Rightarrow w=T(k) \text { for some } k \in K_{1}^{r} \\
\psi\left({ }^{\alpha} m\right) w=\psi\left({ }^{\alpha} m\right) T(k)=T\left(\varphi\left({ }^{\alpha} m\right)(k)\right) \in \operatorname{Im} T \\
\therefore \operatorname{Im} T \text { is } \Gamma \text {-invariant }
\end{gathered}
$$

(i) $\varphi_{K e r T}$ is
a subrepresentation of φ,
(ii) $\psi_{\operatorname{Im} T}$ is
a subrepresentation of ψ,

(iii) if V is a Γ-invariant of K_{1}^{r}, then $T(V)$ is Γ-invariant subspace of

$$
K_{2}^{s}, \text { and }
$$

(iii) if V is a Γ-invariant of K_{1}^{r}, then $T(V)$ is Γ-invariant subspace of

$$
K_{2}^{s}, \text { and }
$$

(iv) if W is a Γ-invariant subspace of K_{2}^{s}, then $T^{-1}(W)$ is Γ-invariant subspace of K_{1}^{r}.
[1] L. G. Cordeiro, D. Gonçalves, R. Hazrat, The talented monoid of a directed graph with applications to graph algebras. Rev. Mat. Iberoam. 38 (2022), no. 1, 223-256.
[2] R. Hazrat and H. Li, The talented monoid of a Leavitt path algebra, Journal of Algebra, 547 (2020), 430-455.
[3] T. Hungerford, Algebra. Springer-Verlag, New York, 1974.
[4] J. A. Masuda, L. Quoos, B. Steinberg, Character Theory of Monoids Over an Arbitrary Field, Journal of Algebra, 431 (2015), 107-126.
[5] A. Sebandal and J. Vilela, The Jordan-Holder theorem for monoids with group action, Journal of Algebra and Its Application (2022).

Thank you all for this wonderful experience! ©

