Strong Types of Atomicity

Felix Gotti fgotti@mit.edu

Massachusetts Institute of Technology

Conference on Rings and Factorizations 2023 University of Graz, Austria

July 12, 2023

Outline

Preliminaries and Motivation

The ACCP

Strong Atomicity

Hereditary Atomicity

Some Related Open Problems

General notation we will use throughout this talk:

- $\mathbb{N} := \{1, 2, 3, \ldots\}$,
- $\mathbb{N}_0 := \{0\} \cup \mathbb{N} = \{0, 1, 2, \ldots\}$,
- $\bullet \ \ \mathbb{P}$ denotes the set of primes, and
- \mathbb{F}_q denotes the field of q elements.

A Convention and some Preliminaries

A monoid is a cancellative commutative semigroup with an identity element. **Definition:** Let M be a (multiplicative) monoid.

- We let M^{\times} denote the group of units (i.e., invertible elements) of M.
- *M* is called reduced if M^{\times} is the trivial group.
- M can be universally embedded into an abelian group gp(M), which is often called the Grothendieck group of M.
- M is torsion-free if gp(M) is a torsion-free group.
- The rank of M is the rank of the abelian group gp(M).
- a ∈ M \ M[×] is an atom (or an irreducible) if for any b, c ∈ M the equality a = bc implies that either b ∈ M[×] or c ∈ M[×].
- We let $\mathcal{A}(M)$ denote the set of atoms of M.
- An element of *M* is atomic if it is a unit or it factors into atoms.
- A subset I of M is an ideal if $IM := \{bm \mid b \in I \text{ and } m \in M\} \subseteq I$.
- An ideal of the form bM for some $b \in M$ is called principal.

Beyond UFDs and Noetherian Domains

	UFDs
Noetherian Domains	

Definitions: Let *M* be a monoid.

- Unique Factorization Domains: Gauss, Kummer, Dedekind...
- Noetherian Domains: Hilbert, Noether, Krull...
- If $b = a_1 \cdots a_\ell$ for some atoms a_1, \ldots, a_ℓ in M, then ℓ is a length of b.
- *M* is a bounded factorization monoid (BFM) if every element of *M* has a nonempty finite set of lengths.
- An integral domain R is a BFD if R^* is a BFM.

Examples of BFDs:

- UFDs and Noetherian domains.
- Mori domains.
- $\mathbb{Q}[M]$ with $M = (\{0\} \cup \mathbb{R}_{\geq 1}, +).$

Beyond BFDs: The ACCP

Remark: The arithmetic of lengths of BFMs/BFDs has been well studied.

- Several classes of BFMs/BFDs have been proved to have a well-structured system of sets of lengths (Geroldinger 1988, Freiman-Geroldinger 2000, Geroldinger-Kainrath 2010).
- Several classes of BFMs/BFDs have been proved to have full systems of sets of lengths (Kainrath 1999, Frisch-Nakato-Rissner 2019, Ajran-Gotti 2023).

Definition: A monoid/domain satisfies the ACCP if every ascending chain of principal ideals stabilizes.

Examples of ACCP Domains:

- Every BFM/BFD satisfies the ACCP.
- R[x] satisfies the ACCP if R does.
- $\mathbb{Q}[x^{1/p} \mid p \in \mathbb{P}]$ is an ACCP domain that is not a BFD.

Proposition (Cohn 1968)

In an ACCP domain every nonzero nonunit factors into atoms.

Definition (Atomicity: Cohn 1968)

A monoid/domain is called atomic if each nonzero nonunit factors into atoms.

Wildlands of Atomicity: The class of atomic monoids/domains that do not satisfy the ACCP (it's inhabited by beautiful creatures... and scary monsters).

Atomic Domains	9 9997777	
$\frac{\mathbf{ACCPs}}{\mathbf{Ex}} = \mathbb{Q}[\mathbf{y}]$		
BDFs $Ex : \mathbb{Q}[x]$		
	UFDs $Ex : \mathbb{Q}[x_n]$	$n \in \mathbb{N}$
Noetherian	$Ex: \mathbb{Q}[x]$	
$\frac{\text{Domains}}{$	$\mathbb{Q}[x^2, x^3]$	

Felix Gotti fgotti@mit.edu

Strong Types of Atomicity

Cohn's Assertion: An integral domain is atomic iff it satisfies the ACCP.

Despite of being wrong, this assertion has stimulated several constructions of non-ACCP atomic domains: magical creatures and scary monsters inside the wildlands of atomicity.

- 1974 Grams: the first counterexample
- 1982 Zaks: two more constructions (one of them suggested by Cohn)
- 1993 Roitman: further (stronger) incidental constructions

Further constructions have also been provided more recently.

- 2019 Boynton-Coykendall: a pullback construction
- 2022 G.-Li: a finite-dimensional monoid algebra
- 2023 Bell-Brown-Nazemian-Smertnig: a non-commutative ring
- 2023 Bu-G.-Li-Zhao: a one-dimensional monoid algebra

Into The Wildlands of Atomicity: Strong Atomicity

Definition (Strong Atomicity: Anderson-Anderson-Zafrullah 1990)

- A monoid M is strongly atomic if for all b, c ∈ M there exists an atomic common divisor d of b and c in M such that every common divisor of b/d and c/d in M is a unit.
- An integral domain is strongly atomic if its multiplicative monoid is strongly atomic.

Remarks:

- Every strongly atomic monoid/domain is atomic.
- Every ACCP monoid/domain is strongly atomic.

Theorem (Roitman 1993)

There exists an atomic domain that is not strongly atomic.

Theorem (G.-Li 2022)

There exists a strongly atomic domain that is not ACCP.

Grams' Domain Is Strongly Atomic

- Let F be a field.
- Let $(p_n)_{n\geq 0}$ be a strictly increasing sequence of primes.
- Consider the additive monoid $M := \left\langle \frac{1}{p_0^n p_n} \mid n \in \mathbb{N} \right\rangle$.
- Let F[M] be the monoid algebra of M over F.
- $S := \{f \in F[M] \mid f(0) \neq 0\}$ is a multiplicative subset of F[M].
- **Remark:** Neither F[M] nor $F[M]_S$ satisfies the ACCP.

Theorem (Grams 1974)

 $F[M]_{S}$ is an atomic domain.

Theorem (G.-Li 2022)

 $F[M]_S$ is a strongly atomic domain.

Atomic Domains/Monoids not Strongly Atomic

Examples:

- Roitman 1993: An atomic domain not strongly atomic.
- G.-Vulakh 2022: A rank-2 atomic monoid not strongly atomic.
- CrowdMath 2023: A rank-1 atomic monoid not strongly atomic.

Definition: For each $k \in \mathbb{N}$, a domain/monoid is a k-MCD if every subset of size at most k has a maximal common divisor.

Remarks:

- Every domain/monoid is 1-MCD.
- A monoid is strongly atomic if and only if it is both atomic and 2-MCD.

Theorem (Roitman 1993)

For each $k \in \mathbb{N}$, there exists an atomic domain that is k-MCD but not (k + 1)-MCD.

Theorem (G.-Rabinovitz 2023)

For each $k \in \mathbb{N}$, there exists an atomic rank-1 monoid that is k-MCD but not (k + 1)-MCD.

Definition

A monoid M is hereditarily atomic if every submonoid of M is atomic.

Examples:

- Every numerical monoid is hereditarily atomic.
- Every reduced Krull monoid is hereditarily atomic.
- The additive monoid $\langle \frac{1}{p} | p \in \mathbb{P} \rangle$ is hereditarily atomic.

Proposition: If *M* is a monoid satisfying the ACCP, then every submonoid *N* of *M* with $N^{\times} = N \cap M^{\times}$ satisfies the ACCP.

Corollary

Every reduced monoid that satisfies the ACCP is hereditarily atomic.

Theorem

- **G.-Vulakh 2022:** Every torsion-free hereditarily atomic monoid satisfies the ACCP.
- **G.-Li 2023:** Every hereditarily atomic monoid satisfies the ACCP.

Corollary: A reduced monoid is hereditarily atomic if and only if it satisfies the ACCP.

Example: Set $M = (\mathbb{Z} \times \mathbb{N}_0, +)$, which is a submonoid of \mathbb{Z}^2 .

- Since M/M^{\times} is isomorphic to $(\mathbb{N}_0, +)$, the monoid M satisfies the ACCP.
- The submonoid N := (N₀ × {0}) ⊔ (Z × N) of M is the nonnegative cone of (Z², +) under the lexicographical order ≤.
- Hence $\mathcal{A}(N) = \{ \min_{\leq} (N \setminus \{(0,0)\}) \} = \{(1,0)\}$, and so N is not atomic.
- Thus, *M* satisfies the ACCP but is not hereditarily atomic.

Hereditary Atomicity: Abelian Groups

Examples:

- $(\mathbb{Z}, +)$ is hereditarily atomic.
- $(\mathbb{Q},+)$ is not hereditarily atomic: its submonoid $\mathbb{Q}_{\geq 0}$ is not atomic.

Theorem (G. 2023)

Let G be an abelian group, and let T be the torsion subgroup of G. Then G is hereditarily atomic if and only if G/T is cyclic.

Corollary: $(\mathbb{Z}^2, +)$ is not a hereditarily atomic group.

Magic Beasts Inside $(\mathbb{Z}^2, +)$:

- A non-atomic monoid with nonempty set of atoms.
- An antimatter monoid that is not a subgroup.
- An atomic monoid that does not satisfy the ACCP (G. 2023).
- An ACCP monoid that is not a BFM (Tirador 2023).

Hereditary Atomicity: Integral Domains

Definition

An integral domain R is hereditarily atomic if every subring of R is atomic.

Examples:

- $\bullet \ \mathbb{Z}$ is hereditarily atomic.
- $\mathbb{F}_2[x]$ is hereditarily atomic.
- $\mathbb{Q}[x]$ is not hereditarily atomic: its subring $\mathbb{Z} + x\mathbb{Q}[x]$ is not atomic.

Proposition (Coykendall-G.-Hasenauer 2022)

- For a field F, the ring F[x] is hereditarily atomic if and only if F is an algebraic extension of 𝔽_p for some p ∈ 𝒫.
- If R is an integral domain, then R[[x]] is not hereditarily atomic.

Proposition (G. 2023)

Let R be an integral domain, and let G be a nontrivial abelian group. Then R[G] is hereditarily atomic if and only if R is an algebraic extension of \mathbb{F}_p for some $p \in \mathbb{P}$ and G is the infinite cyclic group.

Hereditary Atomicity: Fields

Examples:

- \mathbb{F}_q is hereditarily atomic.
- $\bullet \ \mathbb{Q}$ is hereditarily atomic.
- $\mathbb{Q}(x)$ is not hereditarily atomic: its subring $\mathbb{Z} + x\mathbb{Q}[x]$ is not atomic.

Theorem (Coykendall-G.-Hasenauer 2023)

Let F be a field.

- If char(F) = 0, then F is hereditarily atomic if and only if F is an algebraic extension of \mathbb{Q} such that $\overline{\mathbb{Z}}_F$ is a Dedekind domain.
- If char(F) = p ∈ P, then F is hereditarily atomic if and only if the transcendental degree of F over F_p is at most 1 and F_p[x]_F is a Dedekind domain for every x ∈ F.

Related Open Questions

Question (1)

Let M be the Grams' monoid.

- Is $\mathbb{Q}[M]$ atomic?
- Is $\mathbb{Q}[M]$ strongly atomic?

Question (2)

- Does every hereditarily atomic domain satisfy the ACCP?
- Is every hereditarily atomic domain strongly atomic?

Definition: An integral domain is overatomic if all its overrings are atomic.

Question (3)

- Does every overatomic domain satisfy the ACCP?
- Is every overatomic domain strongly atomic?

References

- D. D. Anderson, D. F. Anderson, and M. Zafrullah: *Factorizations in integral domains*, J. Pure Appl. Algebra **69** (1990) 1–19.
- J. G. Boynton and J. Coykendall: An example of an atomic pullback without the ACCP, J. Pure Appl. Algebra **223** (2019) 619–625.
- S. T. Chapman, F. Gotti, and M. Gotti: Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020) 380–396.
- P. M. Cohn: Bezout rings and and their subrings, Math. Proc. Cambridge Philos. Soc. 64 (1968) 251–264.
- J. Coykendall and F. Gotti: *On the atomicity of monoid algebras*, J. Algebra **539** (2019) 138–151.

CrowdMath 2023: *Arithmetic of power monoids*, https://artofproblemsolving.com/polymath/mitprimes2023/f

G. Freiman and A. Geroldinger: *An addition theorem and its arithmetical application*, J. Number Theory **85** (1) (2000) 59–73.

References

- S. Frisch, S. Nakato, and R. Rissner: Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields, J. Algebra 528 (2019) 231–249.
- A. Geroldinger: Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. **197** (1988) 505–529.
- A. Geroldinger and F. Kainrath: On the arithmetic of tame monoids with applications to Krull monoids and Mori domains, J. Pure Appl. Algebra 214 (2010) 2199–2218.
- R. Gilmer: Commutative Semigroup Rings, Chicago Lectures in Mathematics, The University of Chicago Press, London, 1984.
- F. Gotti and B. Li: *Divisibility and a weak ascending chain condition on principal ideals*. Submitted. Preprint available on arXiv: https://arxiv.org/abs/2212.06213
- F. Gotti and J. Vulakh: *On the atomic structure of torsion-free monoids*, Semigroup Forum (to appear).

- A. Grams: Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc., **75** (1974) 321–329.
- F. Kainrath: *Factorization in Krull monoids with infinite class group*, Colloq. Math. **80** (1999) 23–30.
- M. Roitman: Polynomial extensions of atomic domains, J. Pure Appl. Algebra 87 (1993) 187–199.
- A. Zaks: Atomic rings without a.c.c. on principal ideals, J. Algebra 80 (1982) 223–231.

THANK YOU!