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General Notation

General notation we will use throughout this talk:

N := {1, 2, 3, . . .},

N0 := {0} ∪ N = {0, 1, 2, . . .},

P denotes the set of primes, and

Fq denotes the field of q elements.
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A Convention and some Preliminaries

A monoid is a cancellative commutative semigroup with an identity element.

Definition: Let M be a (multiplicative) monoid.

We let M× denote the group of units (i.e., invertible elements) of M.

M is called reduced if M× is the trivial group.

M can be universally embedded into an abelian group gp(M), which is
often called the Grothendieck group of M.

M is torsion-free if gp(M) is a torsion-free group.

The rank of M is the rank of the abelian group gp(M).

a ∈ M \M× is an atom (or an irreducible) if for any b, c ∈ M the
equality a = bc implies that either b ∈ M× or c ∈ M×.

We let A(M) denote the set of atoms of M.

An element of M is atomic if it is a unit or it factors into atoms.

A subset I of M is an ideal if IM := {bm | b ∈ I and m ∈ M} ⊆ I .

An ideal of the form bM for some b ∈ M is called principal.
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Beyond UFDs and Noetherian Domains

Unique Factorization Domains:
Gauss, Kummer, Dedekind...

Noetherian Domains:
Hilbert, Noether, Krull...

Definitions: Let M be a monoid.

If b = a1 · · · aℓ for some atoms a1, . . . , aℓ in M, then ℓ is a length of b.

M is a bounded factorization monoid (BFM) if every element of M has a
nonempty finite set of lengths.

An integral domain R is a BFD if R∗ is a BFM.

Examples of BFDs:

UFDs and Noetherian domains.

Mori domains.

Q[M] with M = ({0} ∪ R≥1,+).

Felix Gotti fgotti@mit.edu Strong Types of Atomicity



Beyond BFDs: The ACCP

Remark: The arithmetic of lengths of BFMs/BFDs has been well studied.

Several classes of BFMs/BFDs have been proved to have a
well-structured system of sets of lengths (Geroldinger 1988,
Freiman-Geroldinger 2000, Geroldinger-Kainrath 2010).

Several classes of BFMs/BFDs have been proved to have full systems of
sets of lengths (Kainrath 1999, Frisch-Nakato-Rissner 2019, Ajran-Gotti
2023).

Definition: A monoid/domain satisfies the ACCP if every ascending chain of
principal ideals stabilizes.

Examples of ACCP Domains:

Every BFM/BFD satisfies the ACCP.

R[x ] satisfies the ACCP if R does.

Q
[
x1/p | p ∈ P

]
is an ACCP domain that is not a BFD.

Proposition (Cohn 1968)

In an ACCP domain every nonzero nonunit factors into atoms.
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The Lands of Atomicity

Definition (Atomicity: Cohn 1968)

A monoid/domain is called atomic if each nonzero nonunit factors into atoms.

Wildlands of Atomicity: The class of atomic monoids/domains that do not
satisfy the ACCP (it’s inhabited by beautiful creatures... and scary monsters).
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The Right Wrong Assertion

Cohn’s Assertion: An integral domain is atomic iff it satisfies the ACCP.

Despite of being wrong, this assertion has stimulated several constructions of
non-ACCP atomic domains: magical creatures and scary monsters inside the
wildlands of atomicity.

1974 Grams: the first counterexample

1982 Zaks: two more constructions (one of them suggested by Cohn)

1993 Roitman: further (stronger) incidental constructions

Further constructions have also been provided more recently.

2019 Boynton-Coykendall: a pullback construction

2022 G.-Li: a finite-dimensional monoid algebra

2023 Bell-Brown-Nazemian-Smertnig: a non-commutative ring

2023 Bu-G.-Li-Zhao: a one-dimensional monoid algebra
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Into The Wildlands of Atomicity: Strong Atomicity

Definition (Strong Atomicity: Anderson-Anderson-Zafrullah 1990)

A monoid M is strongly atomic if for all b, c ∈ M there exists an atomic
common divisor d of b and c in M such that every common divisor of
b/d and c/d in M is a unit.

An integral domain is strongly atomic if its multiplicative monoid is
strongly atomic.

Remarks:

Every strongly atomic monoid/domain is atomic.

Every ACCP monoid/domain is strongly atomic.

Theorem (Roitman 1993)

There exists an atomic domain that is not strongly atomic.

Theorem (G.-Li 2022)

There exists a strongly atomic domain that is not ACCP.
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Grams’ Domain Is Strongly Atomic

Let F be a field.

Let (pn)n≥0 be a strictly increasing sequence of primes.

Consider the additive monoid M :=
〈

1
pn0pn

| n ∈ N
〉
.

Let F [M] be the monoid algebra of M over F .

S := {f ∈ F [M] | f (0) ̸= 0} is a multiplicative subset of F [M].

Remark: Neither F [M] nor F [M]S satisfies the ACCP.

Theorem (Grams 1974)

F [M]S is an atomic domain.

Theorem (G.-Li 2022)

F [M]S is a strongly atomic domain.
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Atomic Domains/Monoids not Strongly Atomic

Examples:

Roitman 1993: An atomic domain not strongly atomic.

G.-Vulakh 2022: A rank-2 atomic monoid not strongly atomic.

CrowdMath 2023: A rank-1 atomic monoid not strongly atomic.

Definition: For each k ∈ N, a domain/monoid is a k-MCD if every subset of
size at most k has a maximal common divisor.

Remarks:

Every domain/monoid is 1-MCD.

A monoid is strongly atomic if and only if it is both atomic and 2-MCD.

Theorem (Roitman 1993)

For each k ∈ N, there exists an atomic domain that is k-MCD but not
(k + 1)-MCD.

Theorem (G.-Rabinovitz 2023)

For each k ∈ N, there exists an atomic rank-1 monoid that is k-MCD but not
(k + 1)-MCD.
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Hereditary Atomicity: Monoids

Definition

A monoid M is hereditarily atomic if every submonoid of M is atomic.

Examples:

Every numerical monoid is hereditarily atomic.

Every reduced Krull monoid is hereditarily atomic.

The additive monoid ⟨ 1
p
| p ∈ P⟩ is hereditarily atomic.

Proposition: If M is a monoid satisfying the ACCP, then every submonoid N
of M with N× = N ∩M× satisfies the ACCP.

Corollary

Every reduced monoid that satisfies the ACCP is hereditarily atomic.
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Hereditary Atomicity: Monoids (cont.)

Theorem

1 G.-Vulakh 2022: Every torsion-free hereditarily atomic monoid satisfies
the ACCP.

2 G.-Li 2023: Every hereditarily atomic monoid satisfies the ACCP.

Corollary: A reduced monoid is hereditarily atomic if and only if it satisfies the
ACCP.

Example: Set M = (Z× N0,+), which is a submonoid of Z2.

1 Since M/M× is isomorphic to (N0,+), the monoid M satisfies the ACCP.

2 The submonoid N := (N0 × {0}) ⊔ (Z× N) of M is the nonnegative cone
of (Z2,+) under the lexicographical order ⪯.

3 Hence A(N) =
{
min⪯(N \ {(0, 0)})

}
= {(1, 0)}, and so N is not atomic.

4 Thus, M satisfies the ACCP but is not hereditarily atomic.
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Hereditary Atomicity: Abelian Groups

Examples:

(Z,+) is hereditarily atomic.

(Q,+) is not hereditarily atomic: its submonoid Q≥0 is not atomic.

Theorem (G. 2023)

Let G be an abelian group, and let T be the torsion subgroup of G. Then G is
hereditarily atomic if and only if G/T is cyclic.

Corollary: (Z2,+) is not a hereditarily atomic group.

Magic Beasts Inside (Z2,+):

A non-atomic monoid with nonempty set of atoms.

An antimatter monoid that is not a subgroup.

An atomic monoid that does not satisfy the ACCP (G. 2023).

An ACCP monoid that is not a BFM (Tirador 2023).
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Hereditary Atomicity: Integral Domains

Definition

An integral domain R is hereditarily atomic if every subring of R is atomic.

Examples:

Z is hereditarily atomic.

F2[x ] is hereditarily atomic.

Q[x ] is not hereditarily atomic: its subring Z+ xQ[x ] is not atomic.

Proposition (Coykendall-G.-Hasenauer 2022)

For a field F , the ring F [x ] is hereditarily atomic if and only if F is an
algebraic extension of Fp for some p ∈ P.

If R is an integral domain, then R[[x ]] is not hereditarily atomic.

Proposition (G. 2023)

Let R be an integral domain, and let G be a nontrivial abelian group. Then
R[G ] is hereditarily atomic if and only if R is an algebraic extension of Fp for
some p ∈ P and G is the infinite cyclic group.
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Hereditary Atomicity: Fields

Examples:

Fq is hereditarily atomic.

Q is hereditarily atomic.

Q(x) is not hereditarily atomic: its subring Z+ xQ[x ] is not atomic.

Theorem (Coykendall-G.-Hasenauer 2023)

Let F be a field.

If char(F ) = 0, then F is hereditarily atomic if and only if F is an
algebraic extension of Q such that ZF is a Dedekind domain.

If char(F ) = p ∈ P, then F is hereditarily atomic if and only if the

transcendental degree of F over Fp is at most 1 and Fp[x ]F is a Dedekind
domain for every x ∈ F .
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Related Open Questions

Question (1)

Let M be the Grams’ monoid.

Is Q[M] atomic?

Is Q[M] strongly atomic?

Question (2)

Does every hereditarily atomic domain satisfy the ACCP?

Is every hereditarily atomic domain strongly atomic?

Definition: An integral domain is overatomic if all its overrings are atomic.

Question (3)

Does every overatomic domain satisfy the ACCP?

Is every overatomic domain strongly atomic?
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End of Presentation

THANK YOU!
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