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A.Ziv :

Extremal problem related to the Davenport constant

Zero-sum problems for random sequences

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Two parts of talk

Zero-sum Problems based on the work of P. Erdős, A Ginzburg and
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Introduction

Trivial observation

For n ∈ N, and S = a1 · · · an for ai ∈ Z, ∃ a non-trivial subsequence
whose sum is divisible by n.

Length is tight: Example S = 1(n−1).
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Erdős–Ginzburg–Ziv Theorem (1961)

Non-trivial Problem: What if there is restriction on length of the
subsequence?

Classical Result (EGZ Theorem)

Given any n ∈ N, any sequence of 2n − 1 integers i.e., a1 · · · a2n−1
has a subsequence of length n whose sum is divisible by n.

This is tight: Example S = 0(n−1)1(n−1).
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Zero-sum Problem

Convention: (G ,+, 0) is a finite abelian group.

Zero-sum Sequence: A sequence (or a multiset) over G is
said to be zero-sum sequence if it sums to be 0.

Examples:

S = 123 over Z5 ‘YES’.
S = 1.2.3 over Z5 ‘NO’.
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Zero-sum Problem

Zero-sum Problem

To study conditions which ensure that given sequence have
non-trivial zero-sum subsequence(s) with prescribed properties.

Example: Given n, the least k ∈ N s.t. every sequence over Zn of
k- length has a non-trivial zero-sum subsequence, is n itself.
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Davenport Constant D(G )

Definition [Roger (1963)]

The Davenport Constant D(G ) is the smallest positive integer k
such that for any sequence x1 · · · xk of length k over G ,

0 ∈ ({0, 1}x1 + · · ·+ {0, 1}xk) \ ({0}x1 + · · ·+ {0}xk).

Example: D(Zn) = n.
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Importance of Davenport Constant

The Davenport constant is an important invariant of the ideal
class group:

If O be the ring of integer over the number field and G , its
ideal class group, then D(G ) is the max no. of prime ideals
occurring in the prime ideal decomposition of an irreducible in
O.
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Some known results for D(G )

Olson (1969):

D(Zn1 × Zn2) = n1 + n2 − 1 for n1 | n2.

Olson (1969): For prime p,

D(Zpe1 × · · · × Zper ) = 1 +
r∑

i=1

(pei − 1).

Conjecture [Olson (1969)]: If ni | ni+1 then

D(Zn1 × · · · × Znr ) = 1 +
r∑

i=1

(ni − 1)
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Conjecture ”NOT TRUE”

Geroldinger and Scneider (1992) : For group of rank 4,
Conjecture not true for

G = Zm × Z2
n × Z2n for every odd m, n with m | n.

Geroldinger and Scneider (1992) : For group of rank 5,
Conjecture not true for

G = Z3
2 × Z2m × Z2n for every odd m, n with m | n.

Open Problem: Whether the conjecture true for group of
rank 3?
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For group of rank 3

Condition A

For distinct primes p, q (p 6= q) and G := Z3
p×Zq. Let (x1, . . . , xm),

(y1, . . . , ym) are sequences over Z3
p, Zq respectively with m = p(q+

2)− 2 and

y∑j−1
i=1 ri+1

= · · · = y∑j
i=1 ri

= j where 1 ≤ j ≤ q − 1,

and yr+1 = · · · = ym = 0 where r =

q−1∑
i=1

ri .

If r ∈ [pq + 1, p(q + 2) − 2] and

q−1∑
i=1

iri ≡ 0 (mod q), then S :=

(x1, y1) . . . (xm, ym) has a nontrivial zero-sum subsequence.
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Result

A. Biswas and M. (2023+)

For distinct primes p, q and G := Z3
p × Zq. If Condition A holds

true then the Olson’s Conjecture holds true.

Some known results:

G. Bhowmik and J. Schlage-Puchta (2007): For p = 3
and q being any integer not only prime.

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Davenport constant for non-abelian group

Convention: (G , ∗) is a non-abelian group with identity 1.

Two different ways:

The Weak Davenport constant D(G ) is the smallest
positive integer k such that for any sequence x1 · · · xk of
length k over G , there are 1 ≤ i1, i2, · · · , il ≤ k s.t

xi1 ∗ xi2 ∗ · · · ∗ xil = 1.

The Ordered Davenport constant D0(G ) is the smallest
positive integer k such that for any sequence x1 · · · xk of
length k over G , there are 1 ≤ i1 < i2 < · · · < il ≤ k s.t

xi1 ∗ xi2 ∗ · · · ∗ xil = 1.

Note: D(G ) ≤ D0(G ).
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Known results

Olson and White (1977) : For finite non-cyclic group,

D0(G ) ≤
⌈
|G |+ 1

2

⌉
.

Recall, D2n =< x , y |x2 = yn = (xy)2 = 1 > . Consider the
sequence

S = y . . . y︸ ︷︷ ︸
n−1 times

x

This concludes D(D2n) = n + 1 = D0(D2n).
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Known results

Recall the dicyclic group,

Q4n =< x , y |x2 = yn, y2n = 1, (yx)2 = 1 > .

Consider the sequence

S = y . . . y︸ ︷︷ ︸
2n−1 times

x

This concludes D(Q4n) = 2n + 1 = D0(Q4n).
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Ordered Davenport constant

Let G be a finite p-group and FpG is the modular group algebra.
The nilpotency index of jacobson ideal of FpG is called Loewy length
i.e., L(G ). Then,

Dimitrov (2004) : For any p-group G ,

D0(G ) ≤ L(G ).

Conjecture [Dimitrov (2004)] : For any p-group G ,

D0(G ) = L(G ).
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Known result

Dimitrov (2004):Consider, the Heisenberg group of order p3

i.e.

Hp3 =< a, b, c |ap = bp = cp = [a, c] = [b, c] = 1, [a, b] = c >

Consider

S = (abc
1
2 )(p−1)(ab3c

3
2 )(p−1)(b−1)(p−1)(a−1bc

−1
2 )(p−1)

D0(Hp3) = 4p − 3 = L(Hp3) for p ≡ 3(mod4).
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Classification of groups by Beccon and Kappe (1994)

Let p be an odd prime and G be a 2-generator p-group of nilpotency
class 2. Then G is isomorphic to exactly one of the following group:

G1 = (< c > × < a >)o < b >, where [a, b] = c , [a, c] =
[b, c] = 1, o(a) = pα, o(b) = pβ, o(c) = pγwith α ≥ β ≥ γ ≥
1.

G2 =< a > o < b >, where [a, b] = ap
α−γ

, o(a) = pα, o(b) =
pβ, o(c) = pγ , with α ≥ 2γ, β ≥ γ ≥ 1.

G3 = (< c > × < a >)o < b >, where [a, b] = ap
α−γ

c , [c , b] =

a−p
2(α−γ)

c−p
α−γ

, o(a) = pα, o(b) = pβ, o(c) = pσ, with γ >
σ ≥ 1, α + σ ≥ 2γ, β ≥ γ.
G4 = representation not known.

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Classification of groups by Beccon and Kappe (1994)

Let p be an odd prime and G be a 2-generator p-group of nilpotency
class 2. Then G is isomorphic to exactly one of the following group:

G1 = (< c > × < a >)o < b >, where [a, b] = c , [a, c] =
[b, c] = 1, o(a) = pα, o(b) = pβ, o(c) = pγwith α ≥ β ≥ γ ≥
1.

G2 =< a > o < b >, where [a, b] = ap
α−γ

, o(a) = pα, o(b) =
pβ, o(c) = pγ , with α ≥ 2γ, β ≥ γ ≥ 1.

G3 = (< c > × < a >)o < b >, where [a, b] = ap
α−γ

c , [c , b] =

a−p
2(α−γ)

c−p
α−γ

, o(a) = pα, o(b) = pβ, o(c) = pσ, with γ >
σ ≥ 1, α + σ ≥ 2γ, β ≥ γ.
G4 = representation not known.

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Classification of groups by Beccon and Kappe (1994)

Let p be an odd prime and G be a 2-generator p-group of nilpotency
class 2. Then G is isomorphic to exactly one of the following group:

G1 = (< c > × < a >)o < b >, where [a, b] = c , [a, c] =
[b, c] = 1, o(a) = pα, o(b) = pβ, o(c) = pγwith α ≥ β ≥ γ ≥
1.

G2 =< a > o < b >, where [a, b] = ap
α−γ

, o(a) = pα, o(b) =
pβ, o(c) = pγ , with α ≥ 2γ, β ≥ γ ≥ 1.

G3 = (< c > × < a >)o < b >, where [a, b] = ap
α−γ

c , [c , b] =

a−p
2(α−γ)

c−p
α−γ

, o(a) = pα, o(b) = pβ, o(c) = pσ, with γ >
σ ≥ 1, α + σ ≥ 2γ, β ≥ γ.
G4 = representation not known.

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Classification of groups by Beccon and Kappe (1994)

Let p be an odd prime and G be a 2-generator p-group of nilpotency
class 2. Then G is isomorphic to exactly one of the following group:

G1 = (< c > × < a >)o < b >, where [a, b] = c , [a, c] =
[b, c] = 1, o(a) = pα, o(b) = pβ, o(c) = pγwith α ≥ β ≥ γ ≥
1.

G2 =< a > o < b >, where [a, b] = ap
α−γ

, o(a) = pα, o(b) =
pβ, o(c) = pγ , with α ≥ 2γ, β ≥ γ ≥ 1.

G3 = (< c > × < a >)o < b >, where [a, b] = ap
α−γ

c , [c , b] =

a−p
2(α−γ)

c−p
α−γ

, o(a) = pα, o(b) = pβ, o(c) = pσ, with γ >
σ ≥ 1, α + σ ≥ 2γ, β ≥ γ.

G4 = representation not known.

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Classification of groups by Beccon and Kappe (1994)

Let p be an odd prime and G be a 2-generator p-group of nilpotency
class 2. Then G is isomorphic to exactly one of the following group:

G1 = (< c > × < a >)o < b >, where [a, b] = c , [a, c] =
[b, c] = 1, o(a) = pα, o(b) = pβ, o(c) = pγwith α ≥ β ≥ γ ≥
1.

G2 =< a > o < b >, where [a, b] = ap
α−γ

, o(a) = pα, o(b) =
pβ, o(c) = pγ , with α ≥ 2γ, β ≥ γ ≥ 1.

G3 = (< c > × < a >)o < b >, where [a, b] = ap
α−γ

c , [c , b] =

a−p
2(α−γ)

c−p
α−γ

, o(a) = pα, o(b) = pβ, o(c) = pσ, with γ >
σ ≥ 1, α + σ ≥ 2γ, β ≥ γ.
G4 = representation not known.

Eshita Mazumdar Ahmedabad University



Introduction and Applications
Extremal Problem
Random sequences

Some open problems

Main Result

Theorem [Godara, Joshi and M. (2023+)]

For an odd prime p, we have,

D0(G1) = pα + pβ + 2pγ − 3 = L(G1), for γ = 1.

D0(G2) = pα + pβ − 1 = L(G2).

D0(G3) = pα + pβ + 2pσ − 3 = L(G3), for σ = 1.
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Extremal problem related to weighted Davenport constant
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A-weighted Davenport constant, DA(G )

Let (G ,+, 0) be a finite abelian group.

Definition [Adhikari et al. (2006)]

For A (6= ∅) ⊆ Zexp(G) \ {0}, DA(G ) is the smallest k ∈ N s.t. for
any sequence x1x2 · · · xk with length k over G ,

0 ∈ (A ∪ {0})x1 + · · ·+ (A ∪ {0})xk \ ({0}x1 + · · ·+ {0}xk).

Example: D±(Zn) = blog2 nc+ 1.
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Importance of Weighted Davenport Constant

An combinatorial interpretation of this for G = (Zp)n :

For arbitrary A ⊆ Z∗
p, DA(G ) measures how large a sequence

vector in (Zp)n can be, if the sense of ’independence’ restricts
the coefficients of the vectors to A.

Thangadurai (2007): If A = Z∗
p, then

DA(G ) = n + 1

i.e. the precise dimension of it is n.
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Some known results for G = Zn

D{1}(Zn) = n.

Adhikari, Chen, Friedlander, Konyagin, and Pappalardi
(2006):

For A = {1,−1},DA(Zn) = 1 + blog2 nc.

Adhikari, Chen, Friedlander, Konyagin, and Pappalardi
(2006):

For A = Zn \ {0},DA(Zn) = 2.

Adhikari, David, and Urroz (2008): If r , n ∈ N and
1 ≤ r < n then

For A = {1, 2, ..., r},DA(Zn) =

⌈
n

r

⌉
.
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|A| verses DA(n) Graph
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Extremal Problem

f
(D)
G (k) [ Balachandran and M. (2019)]

For k ≥ 2,

f
(D)
G (k) :=

{
min{|A| : A ⊆ [1, exp(G )− 1] s.t DA(G ) ≤ k}
∞ if there is no such A.

Natural Problem: Given a finite abelian group G , and k ≥ 2,

Determine f
(D)
G (k).

Notation : f (D)(n, k) := f
(D)
Zn

(k)

Eshita Mazumdar Ahmedabad University
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Non-trivial Upper bounds for f
(D)
G (k)

Theorem [Balachandran and M. (2019)]

Let G = Zn1 × · · · × Zns , where 1 < n1 and ni | ni+1. For 1 ≤ r <
(ns − 1)/2 and A = {±1,±2, · · · ,±r}

For s = 1, DA(Zn1) = 1 +
⌊
logr+1 n1

⌋
.

For s > 1,

s∑
i=1

⌊
logr+1 ni

⌋
+ 1 ≤ DA(G ) ≤

s∑
i=1

⌈
logr+1 ni

⌉
+ 1.

f
(D)
G (k) ≤ 2(|G |

1
k−s−1 − 1) for s > 1.

f (D)(n1, k) ≤ 2(n
1

k−1

1 − 1).
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Main Results

Theorem [Balachandran and M. (2019)]

p
1
k − 1 ≤ f (p, k) ≤ 2(p

1
k−1 − 1)

Theorem [Balachandran and M. (2019)]

For sufficiently large prime p, we have

p
1
k − 1 ≤ f (p, k) ≤ O((p log p)1/k)
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Main Results

Conjecture [Balachandran and M. (2019)]:

For prime p,
f (p, k) = Θ(p1/k)

Theorem [Balachandran and M. (2023)]

For all primes sufficiently large prime p,

f (p, k) = Θk(p
1
k ).
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|A| verses DA(n) Graph

          

  k

DA(n)

|A|

2 log2n †1

n-1

n/k

P(1/k)

Figure: |A| verses DA(n) Graph.
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Random Sequences

Let Xm = X1 . . .Xm is a Zn-sequence where each Xi is picked
independently and uniformly at random from Zn.

Theorem [Balachandran and M. (2021)]

Suppose ω(n) is a function that satisfies ω(n)→∞ as n→∞.

The following hold whp (as n→∞) :

Xm is a Davenport Zn-sequence if

m ≥ log2 n + ω(n),

Xm is not a Davenport Zn-sequence if

m ≤ log2 n − ω(n).
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Main Results

Continue [Balachandran and M. (2021)]

Suppose A = {−1, 1}. Then whp (as n→∞) the following
hold:

Xm is an A-weighted Davenport Zn-sequence if

m ≥ log3 n + ω(n).

Xm is not an A-weighted Davenport Zn-sequence if

m ≤ log3 n − ω(n)

Suppose n = p1 · · · pr where pi are distinct odd primes and let
A = Z∗n. Then if m ≥ ω(n) then Xm is an A-weighted
Davenport Zn-sequence whp (as n→∞).
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Useful tools

Graph theoretical and Combinatorials methods

Number theoretic methods : Quadratic residue,
Hardy-Littlewood conjecture

Jenning’s Theorem, Singer’s Theorem

Probabilistic methods: Janson Inequality, Markov Inequality
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Future Plans

Identify p 6= q for which Condition A holds true

Ordered Davenport constant for complete class of p-group

Will it be possible to find LA(G ) s.t D0A(G ) ≤ LA(G )?

Dual problem: Determine

max{DA(G ) : |A| = k ,A ⊂ Zexp(G) \ {0}}.

Let ε > 0. Suppose Xk = X1 . . .Xk is a random Zp-sequence.
Aε := {A : P(Xk an A-weighted Davenport Z-seq. ) ≥ 1−ε}.
Determine

f
(D)
Rand(p, k , ε) := min

A∈Aε

|A|
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