Zero-Sums in p-groups via a Generalization of the Ax-Katz Theorem

David Grynkiewicz
University of Memphis

July 12, 2023

Combinatorial Sequences

- Let G be a finite abelian group

Combinatorial Sequences

- Let G be a finite abelian group
- Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

be a finite (unordered) sequence of terms $g_{i} \in G$ written as a multiplicative string.

Combinatorial Sequences

- Let G be a finite abelian group
- Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

be a finite (unordered) sequence of terms $g_{i} \in G$ written as a multiplicative string.

- $|S|=\ell$ is the length of S

Combinatorial Sequences

- Let G be a finite abelian group
- Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

be a finite (unordered) sequence of terms $g_{i} \in G$ written as a multiplicative string.

- $|S|=\ell$ is the length of S

$$
\begin{aligned}
& \Sigma(S)=\left\{g \in G: g=\sum_{i \in I} g_{i} \text { for some nonempty } I \subseteq[1, \ell]\right\} \\
& \Sigma_{k}(S)=\left\{g \in G: g=\sum_{i \in I} g_{i} \text { for some } I \subseteq[1, \ell] \text { with }|I|=k\right\}
\end{aligned}
$$

Combinatorial Sequences

- Let G be a finite abelian group
- Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

be a finite (unordered) sequence of terms $g_{i} \in G$ written as a multiplicative string.

- $|S|=\ell$ is the length of S

$$
\begin{aligned}
& \Sigma(S)=\left\{g \in G: g=\sum_{i \in I} g_{i} \text { for some nonempty } I \subseteq[1, \ell]\right\} \\
& \Sigma_{k}(S)=\left\{g \in G: g=\sum_{i \in I} g_{i} \text { for some } I \subseteq[1, \ell] \text { with }|I|=k\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& S=(-1) \cdot 1^{2} \cdot 4=(-1) \cdot 1 \cdot 1 \cdot 4, \quad|S|=4, \\
& \Sigma_{2}(S)=\{-1+1, \quad-1+4, \quad 1+1, \quad 1+4\}=\{0,3,2,5\}
\end{aligned}
$$

Zero-Sum Questions

G finite abelian group, S a sequence of terms from G.

Zero-Sum Questions

G finite abelian group, S a sequence of terms from G.
Definition
The Davenport Constant $\mathrm{D}(G)$ is the minimal integer such that $|S| \geq \mathrm{D}(G)$ implies $0 \in \Sigma(S)$.

Zero-Sum Questions

G finite abelian group, S a sequence of terms from G.
Definition
The Davenport Constant $\mathrm{D}(G)$ is the minimal integer such that $|S| \geq \mathrm{D}(G)$ implies $0 \in \Sigma(S)$.

- If $G=\left\langle e_{1}\right\rangle \oplus \ldots \oplus\left\langle e_{r}\right\rangle=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $n_{1}|\ldots| n_{r}$, then

$$
S=e_{1}^{n_{1}-1} \cdot \ldots \cdot e_{r}^{n_{r}-1}
$$

shows

$$
\mathrm{D}(G) \geq \mathrm{D}^{*}(G):=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

Zero-Sum Questions

G finite abelian group, S a sequence of terms from G.
Definition
The Davenport Constant $\mathrm{D}(G)$ is the minimal integer such that $|S| \geq \mathrm{D}(G)$ implies $0 \in \Sigma(S)$.

- If $G=\left\langle e_{1}\right\rangle \oplus \ldots \oplus\left\langle e_{r}\right\rangle=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $n_{1}|\ldots| n_{r}$, then

$$
S=e_{1}^{n_{1}-1} \cdot \ldots \cdot e_{r}^{n_{r}-1}
$$

shows

$$
\mathrm{D}(G) \geq \mathrm{D}^{*}(G):=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

- (OIson 1969 or Kruyswijk 1968) If G is a p-group, then

$$
\mathrm{D}(G)=\mathrm{D}^{*}(G)
$$

k-term Zero-Sums

G finite abelian group with $\operatorname{exponent} \exp (G)=n$, S a sequence of terms from G.

k-term Zero-Sums

G finite abelian group with $\operatorname{exponent} \exp (G)=n$, S a sequence of terms from G.
Definition
For $k \geq 0$, let $s_{k n}(G)$ be the minimal integer such that $|S| \geq s_{k n}(G)$ implies $0 \in \Sigma_{k n}(S)$.

k-term Zero-Sums

G finite abelian group with $\operatorname{exponent} \exp (G)=n$, S a sequence of terms from G.
Definition
For $k \geq 0$, let $s_{k n}(G)$ be the minimal integer such that $|S| \geq s_{k n}(G)$ implies $0 \in \Sigma_{k n}(S)$.

- Why a multiple of n ? Answer: $S=e^{N}$ with $\operatorname{ord}(e)=n$

k-term Zero-Sums

G finite abelian group with $\operatorname{exponent} \exp (G)=n$, S a sequence of terms from G.

Definition

For $k \geq 0$, let $s_{k n}(G)$ be the minimal integer such that $|S| \geq s_{k n}(G)$ implies $0 \in \Sigma_{k n}(S)$.

- Why a multiple of n ? Answer: $S=e^{N}$ with $\operatorname{ord}(e)=n$
- Lower bound:

$$
S=0^{k n-1} \cdot T
$$

with T a zero-sum free sequence with maximal length $|T|=\mathrm{D}(G)-1$, shows

$$
s_{k n}(G) \geq k n+D(G)-1
$$

The case $k=1$

- (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

$$
s_{n}\left(C_{n}\right)=2 n-1
$$

The case $k=1$

- (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

$$
s_{n}\left(C_{n}\right)=2 n-1
$$

- (Alon and Dubiner 1995) Via spectral graph theory:

$$
s_{n}\left(C_{n}^{d}\right) \leq c_{d}(n-1)+1
$$

with $c_{d}=2\left(2^{10} d \log d\right)^{d}$

The case $k=1$

- (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

$$
s_{n}\left(C_{n}\right)=2 n-1
$$

- (Alon and Dubiner 1995) Via spectral graph theory:

$$
s_{n}\left(C_{n}^{d}\right) \leq c_{d}(n-1)+1
$$

with $c_{d}=2\left(2^{10} d \log d\right)^{d}$

- (Alon and Dubiner 1993) Via the Chevalley-Warning Theorem:

$$
s_{n}\left(C_{p}^{2}\right) \leq 6 p-5
$$

The case $k=1$

- (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

$$
s_{n}\left(C_{n}\right)=2 n-1
$$

- (Alon and Dubiner 1995) Via spectral graph theory:

$$
s_{n}\left(C_{n}^{d}\right) \leq c_{d}(n-1)+1
$$

with $c_{d}=2\left(2^{10} d \log d\right)^{d}$

- (Alon and Dubiner 1993) Via the Chevalley-Warning Theorem:

$$
s_{n}\left(C_{p}^{2}\right) \leq 6 p-5
$$

- (Ronyai 2000) Via the Linear Algebra of multilinear polynomials:

$$
s_{p}\left(C_{p}^{2}\right) \leq 4 p-2
$$

The case $k=1$

- (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

$$
s_{n}\left(C_{n}\right)=2 n-1
$$

- (Alon and Dubiner 1995) Via spectral graph theory:

$$
s_{n}\left(C_{n}^{d}\right) \leq c_{d}(n-1)+1
$$

with $c_{d}=2\left(2^{10} d \log d\right)^{d}$

- (Alon and Dubiner 1993) Via the Chevalley-Warning Theorem:

$$
s_{n}\left(C_{p}^{2}\right) \leq 6 p-5
$$

- (Ronyai 2000) Via the Linear Algebra of multilinear polynomials:

$$
s_{p}\left(C_{p}^{2}\right) \leq 4 p-2
$$

- (Reiher 2007) Via the Chevalley-Warning Theorem:

$$
\mathrm{s}_{n}\left(C_{n}^{2}\right)=4 n-3
$$

The case $k=1$

- (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

$$
s_{n}\left(C_{n}\right)=2 n-1
$$

- (Alon and Dubiner 1995) Via spectral graph theory:

$$
s_{n}\left(C_{n}^{d}\right) \leq c_{d}(n-1)+1
$$

with $c_{d}=2\left(2^{10} d \log d\right)^{d}$

- (Alon and Dubiner 1993) Via the Chevalley-Warning Theorem:

$$
s_{n}\left(C_{p}^{2}\right) \leq 6 p-5
$$

- (Ronyai 2000) Via the Linear Algebra of multilinear polynomials:

$$
s_{p}\left(C_{p}^{2}\right) \leq 4 p-2
$$

- (Reiher 2007) Via the Chevalley-Warning Theorem:

$$
\mathrm{s}_{n}\left(C_{n}^{2}\right)=4 n-3
$$

- (Ellenberg and Gijswijt 2017) Via the Croot-Lev-Pach Polynomial Method

$$
\mathrm{s}_{3}\left(C_{3}^{d}\right)<2 c^{d}+1
$$

for some $c<3$

- (Gao 1995) $\mathrm{s}_{|G|}(G)=|G|+\mathrm{D}(G)-1$

Larger k ?

- (Gao 1995) $s_{|G|}(G)=|G|+D(G)-1$
- (Gao 1995) $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1 \quad$ for all $k \geq \frac{|G|}{n}$.

Larger k ?

- (Gao 1995) $\mathrm{s}_{|G|}(G)=|G|+\mathrm{D}(G)-1$
- (Gao 1995) $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1 \quad$ for all $k \geq \frac{|G|}{n}$.
- In particular,

$$
\mathrm{s}_{k p}\left(C_{p}^{d}\right)=k p+d(p-1) \quad \text { for } k \geq p^{d-1}
$$

- (Gao 1995) $\mathrm{s}_{|G|}(G)=|G|+\mathrm{D}(G)-1$
- (Gao 1995) $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1 \quad$ for all $k \geq \frac{|G|}{n}$.
- In particular,

$$
s_{k p}\left(C_{p}^{d}\right)=k p+d(p-1) \quad \text { for } k \geq p^{d-1}
$$

- A basic construction shows

$$
\mathrm{s}_{p}\left(C_{p}^{d}\right) \geq 2^{d}(p-1)+1 \quad \text { for } k=1
$$

- (Gao 1995) $\mathrm{s}_{|G|}(G)=|G|+\mathrm{D}(G)-1$
- (Gao 1995) $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1 \quad$ for all $k \geq \frac{|G|}{n}$.
- In particular,

$$
s_{k p}\left(C_{p}^{d}\right)=k p+d(p-1) \quad \text { for } k \geq p^{d-1}
$$

- A basic construction shows

$$
\mathrm{s}_{p}\left(C_{p}^{d}\right) \geq 2^{d}(p-1)+1 \quad \text { for } k=1
$$

- As $k \rightarrow \infty, s_{p}\left(C_{p}^{d}\right)$ goes from exponential to linear (in d).
- (Gao 1995) $s_{|G|}(G)=|G|+D(G)-1$
- (Gao 1995) $s_{k n}(G)=k n+D(G)-1 \quad$ for all $k \geq \frac{|G|}{n}$.
- In particular,

$$
s_{k p}\left(C_{p}^{d}\right)=k p+d(p-1) \quad \text { for } k \geq p^{d-1} .
$$

- A basic construction shows

$$
s_{p}\left(C_{p}^{d}\right) \geq 2^{d}(p-1)+1 \quad \text { for } k=1
$$

- As $k \rightarrow \infty, s_{p}\left(C_{p}^{d}\right)$ goes from exponential to linear (in d).
- Question: What is minimal $\ell(G)$ such that

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq \ell(G)
$$

- (Gao 1995) $\mathrm{s}_{|G|}(G)=|G|+\mathrm{D}(G)-1$
- (Gao 1995) $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1 \quad$ for all $k \geq \frac{|G|}{n}$.
- In particular,

$$
s_{k p}\left(C_{p}^{d}\right)=k p+d(p-1) \quad \text { for } k \geq p^{d-1}
$$

- A basic construction shows

$$
\mathrm{s}_{p}\left(C_{p}^{d}\right) \geq 2^{d}(p-1)+1 \quad \text { for } k=1
$$

- As $k \rightarrow \infty, s_{p}\left(C_{p}^{d}\right)$ goes from exponential to linear (in d).
- Question: What is minimal $\ell(G)$ such that

$$
\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1 \quad \text { for all } k \geq \ell(G)
$$

- (Kubertin 2005, Gao and Han 2014) Conjecture:

$$
\ell(G)=d:=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil
$$

Note $\left\lceil\frac{\mathrm{D}\left(C_{p}^{d}\right)}{p}\right\rceil=d$ for $p \geq d$.

Partial Progress

G finite abelian group with $n=\exp (G)$ and $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$.

- (Dongchun and Han 2018) If G is a p-group, $p \geq 2 d-1$ and $d \leq 4$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq d
$$

Partial Progress

G finite abelian group with $n=\exp (G)$ and $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$.

- (Dongchun and Han 2018) If G is a p-group, $p \geq 2 d-1$ and $d \leq 4$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq d
$$

- (Xiaoyu He 2016) If G is a p-group and $p \geq \frac{7}{2} d-\frac{3}{2}$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq p+d
$$

Partial Progress

G finite abelian group with $n=\exp (G)$ and $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$.

- (Dongchun and Han 2018) If G is a p-group, $p \geq 2 d-1$ and $d \leq 4$, then

$$
s_{k n}(G)=k n+\mathrm{D}(G)-1 \quad \text { for all } k \geq d
$$

- (Xiaoyu He 2016) If G is a p-group and $p \geq \frac{7}{2} d-\frac{3}{2}$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq p+d
$$

- Above improves bound $k \geq p^{d-1}$ to $k \geq p+d$ (for $G=C_{p}^{d}$)

Partial Progress

G finite abelian group with $n=\exp (G)$ and $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$.

- (Dongchun and Han 2018) If G is a p-group, $p \geq 2 d-1$ and $d \leq 4$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq d
$$

- (Xiaoyu He 2016) If G is a p-group and $p \geq \frac{7}{2} d-\frac{3}{2}$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq p+d
$$

- Above improves bound $k \geq p^{d-1}$ to $k \geq p+d$ (for $G=C_{p}^{d}$)
- Can all dependence on p be eliminated?

Eliminating the dependence on p

Theorem (G. 2023)
Let G be a finite abelian p-group with exponent n and let $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$. If $p>d(d-1)$, then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k>\frac{d(d-1)}{2}
$$

Chevalley-Warning Theorem

Theorem (Chevalley-Warning Theorem 1936)
Let \mathbb{F}_{q} be a finite field of characteristic p, let $f_{1}, \ldots, f_{s} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{\ell}\right]$ be nonzero polynomials, where $s \geq 1$, and let

$$
V=\left\{\mathbf{x} \in \mathbb{F}_{q}^{\ell}: f_{1}(\mathbf{x})=0, \ldots, f_{s}(\mathbf{x})=0\right\} .
$$

If $\ell>\sum_{i=1}^{s} \operatorname{deg} f_{i}$, then $|V| \equiv 0 \bmod p$.

Chevalley-Warning Theorem

Theorem (Chevalley-Warning Theorem 1936)

Let \mathbb{F}_{q} be a finite field of characteristic p, let $f_{1}, \ldots, f_{s} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{\ell}\right]$ be nonzero polynomials, where $s \geq 1$, and let

$$
V=\left\{\mathbf{x} \in \mathbb{F}_{q}^{\ell}: f_{1}(\mathbf{x})=0, \ldots, f_{s}(\mathbf{x})=0\right\}
$$

If $\ell>\sum_{i=1}^{s} \operatorname{deg} f_{i}$, then $|V| \equiv 0 \bmod p$.
Theorem (Ax-Katz Theorem 1971)
Let \mathbb{F}_{q} be a finite field of characteristic p and order q, let $f_{1}, \ldots, f_{s} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{\ell}\right]$ be nonzero polynomials, where $s \geq 1$, and let

$$
V=\left\{\mathbf{x} \in \mathbb{F}_{q}^{\ell}: f_{1}(\mathbf{x})=0, \ldots, f_{s}(\mathbf{x})=0\right\}
$$

If $\ell>(m-1) \max _{i \in[1, \mathrm{~s}]}\left\{\operatorname{deg} f_{i}\right\}+\sum_{i=1}^{s} \operatorname{deg} f_{i}$, where $m \geq 1$, then

$$
|V| \equiv 0 \quad \bmod q^{m} .
$$

A Weighted Generalization

Theorem (2023)

Let $p \geq 2$ be prime, let $n \geq 1$ and $\mathcal{B}=\mathcal{I}_{1} \times \ldots \times \mathcal{I}_{n}$ with each $\mathcal{I}_{j} \subseteq \mathbb{Z}$ for $j \in[1, n]$ a complete system of residues modulo p, let $s \geq 1$ and $m_{1}, \ldots, m_{s} \geq 0$ be integers, let $f_{1}, \ldots, f_{s} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ be nonzero polynomials, let $w_{1}, \ldots, w_{s} \in \mathbb{Q}[X]$ be integer-valued polynomials with respective degrees $t_{1}, \ldots, t_{s} \geq 0$, and let

$$
\begin{aligned}
& V=\left\{\mathbf{x} \in \mathcal{B}: f_{i}(\mathbf{x}) \equiv 0 \quad \bmod p^{m_{i}} \text { for all } i \in[1, s]\right\} \quad \text { and } \\
& N=\sum_{\mathbf{a} \in V} \prod_{i=1}^{s} w_{i}\left(\frac{f_{i}(\mathbf{a})}{p^{m_{i}}}\right)
\end{aligned}
$$

If $n>(m-1) \max _{i \in[1, s]}\left\{1, \frac{\varphi\left(p^{m_{i}}\right)}{\rho-1} \operatorname{deg} f_{i}\right\}+\sum_{i=1}^{s} \frac{\left(t_{i}+1\right) p^{m_{i}}-1}{\rho-1} \operatorname{deg} f_{i}$, where $m \geq 0$ and φ denotes the Euler totient function, then

$$
N \equiv 0 \quad \bmod p^{m} .
$$

The Importance of the Box \mathcal{B}

- Hensel's lemma can be used to choose the I_{j} so that behavior modulo p is simulated modulo p^{m} for all $x \in I_{j}$

The Importance of the Box \mathcal{B}

- Hensel's lemma can be used to choose the I_{j} so that behavior modulo p is simulated modulo p^{m} for all $x \in I_{j}$
- Fermat's Litte Theorem:

$$
x^{p-1} \equiv\left\{\begin{array}{llll}
1 & \bmod p & \text { if } x \not \equiv 0 & \bmod p \\
0 & \bmod p & \text { if } x \equiv 0 & \bmod p .
\end{array}\right.
$$

The Importance of the Box \mathcal{B}

- Hensel's lemma can be used to choose the I_{j} so that behavior modulo p is simulated modulo p^{m} for all $x \in I_{j}$
- Fermat's Litte Theorem:

$$
x^{p-1} \equiv\left\{\begin{array}{llll}
1 & \bmod p & \text { if } x \not \equiv 0 & \bmod p \\
0 & \bmod p & \text { if } x \equiv 0 & \bmod p .
\end{array}\right.
$$

- There exists a complete system / of residues modulo p such that

$$
x^{p-1} \equiv\left\{\begin{array}{llll}
1 & \bmod p^{m} & \text { if } x \not \equiv 0 & \bmod p \\
0 & \bmod p^{m} & \text { if } x \equiv 0 & \bmod p,
\end{array} \quad \text { for every } x \in \mathcal{I} .\right.
$$

Using the $A x-K a t z ~ G e n e r a l i z a t i o n ~$

$$
\begin{gathered}
G=\left\langle e_{1}\right\rangle \oplus \ldots \oplus\left\langle e_{s}\right\rangle=C_{p^{m_{1}}} \oplus \ldots \oplus C_{p^{m_{s}}}, \quad S=g_{1} \cdot \ldots \cdot g_{\ell}, \\
g_{i}=a_{i}^{(1)} e_{1}+\ldots+a_{i}^{(s)} e_{s} \quad \text { for } i \in[1, \ell]
\end{gathered}
$$

Define

$$
f_{j}=\sum_{i=1}^{\ell} a_{i}^{(j)} X_{i}^{p-1} \in \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right], \quad \text { for } j \in[1, s] .
$$

and define

$$
f_{s+1}=\sum_{i=1}^{\ell} X_{i}^{p-1} \in \mathbb{Z}\left[X_{1}, \ldots, X_{\ell}\right]
$$

$$
\begin{aligned}
V=\{\mathbf{x} \in \underbrace{I \times \ldots \times I}_{\ell}: f_{j}(\mathbf{x}) \equiv 0 & \bmod p^{m_{j}} \text { for } j \in[1, s] \\
f_{s+1}(\mathbf{x}) \equiv 0 & \left.\bmod p^{m_{s}}=n\right\}
\end{aligned}
$$

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{\ell}\right) \leftrightarrow T_{\mathbf{x}}, \quad g_{i} \text { term of } T_{\mathbf{x}} \text { when } x_{i} \neq 0
$$

The Main Tool

Theorem (G. 2023)

Let G be a finite abelian p-group with exponent $n>1$, let $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$, let $m \geq 0$, let $X \subseteq \mathbb{N}$ be a subset of positive integers with $|X| \geq d+m$, and let $\left\{x_{1}, \ldots, x_{s}\right\}=[1, \max X] \backslash X$ with the x_{i} distinct. Suppose

$$
\begin{equation*}
\prod_{i=1}^{s} x_{i} \prod_{1 \leq i<j \leq s}\left(x_{j}-x_{i}\right) \not \equiv 0 \quad \bmod p^{m+1} \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
\mathrm{s}_{X \cdot n}(G) & \leq\left(\max X-|X|+\frac{m(p-1)}{p}+1\right) n+\mathrm{D}(G)-1 \\
& \leq\left(\max X+1-\frac{m}{p}\right) n-r,
\end{aligned}
$$

where $r \in[1, n]$ is the integer such that $d=\frac{\mathrm{D}(G)+r-1}{n}$.

The Proof

- Main Step: Show $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1$ whenever

$$
\frac{d(d-1)}{2}<k \leq p
$$

The Proof

- Main Step: Show $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1$ whenever

$$
\frac{d(d-1)}{2}<k \leq p
$$

- Transfer Step: Combine above with the following lemma to remove upper bound constraint on k.

Lemma

Let G be a finite abelian p-group with exponent m, let $d=\left\lceil\frac{\mathrm{D}(G)}{n}\right\rceil$, and let $k_{0} \geq 1$. Suppose $\mathrm{s}_{k n}(G)=k n+\mathrm{D}(G)-1$ for all $k \in\left[k_{0}, 2 k_{0}-1\right]$. Then

$$
s_{k n}(G)=k n+D(G)-1 \quad \text { for all } k \geq k_{0} .
$$

Thanks!

[^0]
[^0]:

