
Zero-Sums in p-groups via a Generalization of
the Ax-Katz Theorem

David Grynkiewicz

University of Memphis

July 12, 2023



Combinatorial Sequences
▶ Let G be a finite abelian group

▶ Let
S = g1 · . . . · gℓ

be a finite (unordered) sequence of terms gi ∈ G written as a
multiplicative string.

▶ |S | = ℓ is the length of S

Σ(S) = {g ∈ G : g =
∑
i∈I

gi for some nonempty I ⊆ [1, ℓ]}

Σk(S) = {g ∈ G : g =
∑
i∈I

gi for some I ⊆ [1, ℓ] with |I | = k}

Example
S = (−1) · 12 · 4 = (−1) · 1 · 1 · 4, |S | = 4,

Σ2(S) = { − 1 + 1, −1 + 4, 1 + 1, 1 + 4} = {0, 3, 2, 5}



Combinatorial Sequences
▶ Let G be a finite abelian group
▶ Let

S = g1 · . . . · gℓ
be a finite (unordered) sequence of terms gi ∈ G written as a
multiplicative string.

▶ |S | = ℓ is the length of S

Σ(S) = {g ∈ G : g =
∑
i∈I

gi for some nonempty I ⊆ [1, ℓ]}

Σk(S) = {g ∈ G : g =
∑
i∈I

gi for some I ⊆ [1, ℓ] with |I | = k}

Example
S = (−1) · 12 · 4 = (−1) · 1 · 1 · 4, |S | = 4,

Σ2(S) = { − 1 + 1, −1 + 4, 1 + 1, 1 + 4} = {0, 3, 2, 5}



Combinatorial Sequences
▶ Let G be a finite abelian group
▶ Let

S = g1 · . . . · gℓ
be a finite (unordered) sequence of terms gi ∈ G written as a
multiplicative string.

▶ |S | = ℓ is the length of S

Σ(S) = {g ∈ G : g =
∑
i∈I

gi for some nonempty I ⊆ [1, ℓ]}

Σk(S) = {g ∈ G : g =
∑
i∈I

gi for some I ⊆ [1, ℓ] with |I | = k}

Example
S = (−1) · 12 · 4 = (−1) · 1 · 1 · 4, |S | = 4,

Σ2(S) = { − 1 + 1, −1 + 4, 1 + 1, 1 + 4} = {0, 3, 2, 5}



Combinatorial Sequences
▶ Let G be a finite abelian group
▶ Let

S = g1 · . . . · gℓ
be a finite (unordered) sequence of terms gi ∈ G written as a
multiplicative string.

▶ |S | = ℓ is the length of S

Σ(S) = {g ∈ G : g =
∑
i∈I

gi for some nonempty I ⊆ [1, ℓ]}

Σk(S) = {g ∈ G : g =
∑
i∈I

gi for some I ⊆ [1, ℓ] with |I | = k}

Example
S = (−1) · 12 · 4 = (−1) · 1 · 1 · 4, |S | = 4,

Σ2(S) = { − 1 + 1, −1 + 4, 1 + 1, 1 + 4} = {0, 3, 2, 5}



Combinatorial Sequences
▶ Let G be a finite abelian group
▶ Let

S = g1 · . . . · gℓ
be a finite (unordered) sequence of terms gi ∈ G written as a
multiplicative string.

▶ |S | = ℓ is the length of S

Σ(S) = {g ∈ G : g =
∑
i∈I

gi for some nonempty I ⊆ [1, ℓ]}

Σk(S) = {g ∈ G : g =
∑
i∈I

gi for some I ⊆ [1, ℓ] with |I | = k}

Example
S = (−1) · 12 · 4 = (−1) · 1 · 1 · 4, |S | = 4,

Σ2(S) = { − 1 + 1, −1 + 4, 1 + 1, 1 + 4} = {0, 3, 2, 5}



Zero-Sum Questions

G finite abelian group, S a sequence of terms from G .

Definition
The Davenport Constant D(G ) is the minimal integer such that
|S | ≥ D(G ) implies 0 ∈ Σ(S).

▶ If G = ⟨e1⟩ ⊕ . . .⊕ ⟨er ⟩ = Cn1 ⊕ . . .⊕ Cnr with n1 | . . . | nr , then

S = en1−1
1 · . . . · enr−1

r

shows

D(G ) ≥ D∗(G ) := 1 +
r∑

i=1

(ni − 1)

▶ (Olson 1969 or Kruyswijk 1968) If G is a p-group, then

D(G ) = D∗(G ).
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k-term Zero-Sums

G finite abelian group with exponent exp(G ) = n,
S a sequence of terms from G .

Definition
For k ≥ 0, let skn(G ) be the minimal integer such that |S | ≥ skn(G )
implies 0 ∈ Σkn(S).

▶ Why a multiple of n? Answer: S = eN with ord(e) = n

▶ Lower bound:
S = 0kn−1 · T ,

with T a zero-sum free sequence with maximal length
|T | = D(G )− 1, shows

skn(G ) ≥ kn +D(G )− 1.
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The case k = 1
▶ (Erdős-Ginzburg-Ziv Theorem 1961) Via combinatorial methods:

sn(Cn) = 2n − 1

▶ (Alon and Dubiner 1995) Via spectral graph theory:

sn(C
d
n ) ≤ cd(n − 1) + 1

with cd = 2(210d log d)d

▶ (Alon and Dubiner 1993) Via the Chevalley-Warning Theorem:

sn(C
2
p ) ≤ 6p − 5

▶ (Ronyai 2000) Via the Linear Algebra of multilinear polynomials:

sp(C
2
p ) ≤ 4p − 2

▶ (Reiher 2007) Via the Chevalley-Warning Theorem:

sn(C
2
n ) = 4n − 3

▶ (Ellenberg and Gijswijt 2017) Via the Croot-Lev-Pach Polynomial
Method

s3(C
d
3 ) < 2cd + 1

for some c < 3
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Larger k?
▶ (Gao 1995) s|G |(G ) = |G |+D(G )− 1

▶ (Gao 1995) skn(G ) = kn +D(G )− 1 for all k ≥ |G |
n .

▶ In particular,

skp(C
d
p ) = kp + d(p − 1) for k ≥ pd−1.

▶ A basic construction shows

sp(C
d
p ) ≥ 2d(p − 1) + 1 for k = 1.

▶ As k → ∞, sp(C
d
p ) goes from exponential to linear (in d).

▶ Question: What is minimal ℓ(G ) such that

skn(G ) = kn +D(G )− 1 for all k ≥ ℓ(G ).

▶ (Kubertin 2005, Gao and Han 2014) Conjecture:

ℓ(G ) = d :=

⌈
D(G )

n

⌉
.

Note

⌈
D(C d

p )

p

⌉
= d for p ≥ d .
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Partial Progress

G finite abelian group with n = exp(G ) and d = ⌈D(G)
n ⌉.

▶ (Dongchun and Han 2018) If G is a p-group, p ≥ 2d − 1 and d ≤ 4,
then

skn(G ) = kn +D(G )− 1 for all k ≥ d

▶ (Xiaoyu He 2016) If G is a p-group and p ≥ 7
2d − 3

2 , then

skn(G ) = kn +D(G )− 1 for all k ≥ p + d

▶ Above improves bound k ≥ pd−1 to k ≥ p + d (for G = C d
p )

▶ Can all dependence on p be eliminated?
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Eliminating the dependence on p

Theorem (G. 2023)
Let G be a finite abelian p-group with exponent n and let d = ⌈D(G)

n ⌉. If
p > d(d − 1), then

skn(G ) = kn +D(G )− 1 for all k > d(d−1)
2 .



Chevalley-Warning Theorem

Theorem (Chevalley-Warning Theorem 1936)
Let Fq be a finite field of characteristic p, let f1, . . . , fs ∈ Fq[X1, . . . ,Xℓ]
be nonzero polynomials, where s ≥ 1, and let

V = {x ∈ Fℓ
q : f1(x) = 0, . . . , fs(x) = 0}.

If ℓ >
s∑

i=1

deg fi , then |V | ≡ 0 mod p.

Theorem (Ax-Katz Theorem 1971)
Let Fq be a finite field of characteristic p and order q, let
f1, . . . , fs ∈ Fq[X1, . . . ,Xℓ] be nonzero polynomials, where s ≥ 1, and let

V = {x ∈ Fℓ
q : f1(x) = 0, . . . , fs(x) = 0}.

If ℓ > (m − 1)maxi∈[1,s]{deg fi}+
s∑

i=1

deg fi , where m ≥ 1, then

|V | ≡ 0 mod qm.
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A Weighted Generalization

Theorem (2023)
Let p ≥ 2 be prime, let n ≥ 1 and B = I1 × . . .× In with each Ij ⊆ Z
for j ∈ [1, n] a complete system of residues modulo p, let s ≥ 1 and
m1, . . . ,ms ≥ 0 be integers, let f1, . . . , fs ∈ Z[X1, . . . ,Xn] be nonzero
polynomials, let w1, . . . ,ws ∈ Q[X ] be integer–valued polynomials with
respective degrees t1, . . . , ts ≥ 0, and let

V = {x ∈ B : fi (x) ≡ 0 mod pmi for all i ∈ [1, s]} and

N =
∑
a∈V

s∏
i=1

wi

( fi (a)
pmi

)
.

If n > (m − 1)maxi∈[1,s]

{
1, φ(pmi )

p−1 deg fi
}
+

s∑
i=1

(ti+1)pmi−1
p−1 deg fi , where

m ≥ 0 and φ denotes the Euler totient function, then

N ≡ 0 mod pm.



The Importance of the Box B

▶ Hensel’s lemma can be used to choose the Ij so that behavior
modulo p is simulated modulo pm for all x ∈ Ij

▶ Fermat’s Litte Theorem:

xp−1 ≡
{

1 mod p if x ̸≡ 0 mod p
0 mod p if x ≡ 0 mod p.

▶ There exists a complete system I of residues modulo p such that

xp−1 ≡
{

1 mod pm if x ̸≡ 0 mod p
0 mod pm if x ≡ 0 mod p,

for every x ∈ I.
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Using the Ax-Katz Generalization

G = ⟨e1⟩ ⊕ . . .⊕ ⟨es⟩ = Cpm1 ⊕ . . .⊕ Cpms , S = g1 · . . . · gℓ,

gi = a
(1)
i e1 + . . .+ a

(s)
i es for i ∈ [1, ℓ]

Define

fj =
ℓ∑

i=1

a
(j)
i X p−1

i ∈ Z[X1, . . . ,Xℓ], for j ∈ [1, s].

and define

fs+1 =
ℓ∑

i=1

X p−1
i ∈ Z[X1, . . . ,Xℓ].

V =
{
x ∈ I × . . .× I︸ ︷︷ ︸

ℓ
: fj(x) ≡ 0 mod pmj for j ∈ [1, s]

fs+1(x) ≡ 0 mod pms = n
}

x = (x1, . . . , xℓ) ↔ Tx, gi term of Tx when xi ̸= 0.



The Main Tool

Theorem (G. 2023)
Let G be a finite abelian p-group with exponent n > 1, let d =

⌈
D(G)
n

⌉
,

let m ≥ 0, let X ⊆ N be a subset of positive integers with |X | ≥ d +m,
and let {x1, . . . , xs} = [1,maxX ] \ X with the xi distinct. Suppose

s∏
i=1

xi
∏

1≤i<j≤s

(xj − xi ) ̸≡ 0 mod pm+1. (1)

Then

sX ·n(G ) ≤
(
maxX − |X |+ m(p − 1)

p
+ 1

)
n +D(G )− 1

≤
(
maxX + 1− m

p

)
n − r ,

where r ∈ [1, n] is the integer such that d = D(G)+r−1
n .



The Proof

▶ Main Step: Show skn(G ) = kn +D(G )− 1 whenever

d(d − 1)

2
< k ≤ p

▶ Transfer Step: Combine above with the following lemma to remove
upper bound constraint on k.

Lemma
Let G be a finite abelian p-group with exponent m, let d =

⌈
D(G)
n

⌉
, and

let k0 ≥ 1. Suppose skn(G ) = kn +D(G )− 1 for all k ∈ [k0, 2k0 − 1].
Then

skn(G ) = kn +D(G )− 1 for all k ≥ k0.
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Thanks!


