Derived set-like constructions in commutative algebra

Dario Spirito

Università di Udine

Conference on Rings and Factorizations Graz, July 10th, 2023

Dario Spirito Derived set-like constructions in commutative algebra

(日)

Let X be a topological space.

- A point $x \in X$ is isolated if $\{x\}$ is an open set.
- A point $x \in X$ is a limit point if it is not isolated.
- The derived set of X is the set of the limit points of X.
- We denote the derived set by $\mathcal{D}(X)$.
- $\mathcal{D}(X)$ is always a closed subspace of X.
- $\mathcal{D}(X)$ can be empty (if the space is discrete).
- It may be $\mathcal{D}(X) = X$ (e.g., $X = \mathbb{R}$ with the Euclidean topology).

- 人間 と く ヨ と 一 ヨ

- $\mathcal{D}(X)$ is itself a topological space, so we can consider $\mathcal{D}(\mathcal{D}(X))$.
- It need not to be the whole $\mathcal{D}(X)$!
 - For example, if $X = \{0\} \cup \{1/n \mid n \in \mathbb{N}\}$, then $\mathcal{D}(X) = \{0\}$ and thus $\mathcal{D}(\mathcal{D}(X)) = \emptyset$.
- We set $\mathcal{D}^2(X) := \mathcal{D}(\mathcal{D}(X)).$
- In the same way, we define $\mathcal{D}^3(X), \ \mathcal{D}^4(X), \ \mathcal{D}^5(X), \ \dots$

- ・ 同 ト ・ ヨ ト - - ヨ

A topological introduction (3)

• Let α be an ordinal. We define

$$\mathcal{D}^{lpha}(X) = egin{cases} \mathcal{D}(\mathcal{D}^{\gamma}(X)) & ext{if } lpha = \gamma + 1, \ igcap_{eta < lpha} \mathcal{D}^{eta}(X) & ext{if } lpha ext{ is a limit ordinal.} \end{cases}$$

- $\{\mathcal{D}^{\alpha}(X)\}$ is a descending chain of closed subsets of X.
- There is a (minimal) α such that D^α(X) = D^{α+1}(X) (and thus D^α(X) = D^β(X) for all β > α): it is called the Cantor-Bendixson rank of X.
- If, for this α , we have $\mathcal{D}^{\alpha}(X) = \emptyset$, we say that X is scattered.
- Equivalently, X is scattered if and only of every open set has an isolated point.

- 人 同 ト 人 ヨ ト - - - ヨ

- In this talk, I will show two algebraic constructions that are analogues to the derived set, and three applications of these constructions.
- Throughout the talk, D will be an integral domain, and K will be its quotient field.
- A *D*-submodule *I* of *K* is a fractional ideal if $dI \subseteq D$ for some $d \neq 0$.
- $\mathcal{F}(D)$ is the set of fractional ideals of D.
- F(D) is the set of D-submodules of K.

Part I

Jaffard and pre-Jaffard families I: Closure operations

Dario Spirito Derived set-like constructions in commutative algebra

- An overring of D is a domain between D and K.
- We denote by Over(D) the set of all overrings of D.
- A sublocalization of D is an overring in the form ∩{D_P | P ∈ X} for some family X ⊆ Spec(D).
- A flat overring of D is an overring that is flat as a D-module.
- Flat overrings (in particular, localizations) are sublocalizations; the converse fails.

Let Θ be a family of flat overrings.

- Θ is complete if, for every ideal *I* of *D*, we have $I = \bigcap \{IT \mid T \in \Theta\}$.
 - Equivalently, if for every $P \in \operatorname{Spec}(D)$ there is a $T \in \Theta$ such that $PT \neq T$.
- Θ is independent if TT' = K for all $T \neq T'$ in K.
 - Equivalently, if for every $P \in \text{Spec}(D)$, $P \neq (0)$ there is at most one $T \in \Theta$ such that $PT \neq T$.
- Θ is locally finite if every $x \in D \setminus \{0\}$ is a unit in all but finitely many $T \in \Theta$.

Jaffard families

Definition

We say that $\Theta \subseteq \operatorname{Over}(D)$ is a Jaffard family if:

- either $\Theta = \{K\}$ or $K \notin \Theta$;
- all $T \in \Theta$ are flat;
- Θ is complete;
- Θ is independent;
- Θ is locally finite.
- If D is a Dedekind domain, Θ := {D_M | M ∈ Max(D)} is a Jaffard family.

Why Jaffard families?

• Jaffard families generalize the concept of *h*-local domains.

- A domain is *h*-local if $\{D_M \mid M \in Max(D)\}$ is locally finite and every nonzero prime ideal is contained in only one maximal ideal.
- $\{D_M \mid M \in Max(D)\}$ is a Jaffard family if and only if D is h-local.
- If {X_α} is a family of D-submodules of K with nonzero intersection and T ∈ Θ, then

$$\left(\bigcap_{\alpha\in A}X_{\alpha}\right)T=\bigcap_{\alpha\in A}X_{\alpha}T.$$

- If $T \in \Theta$, then (I : J)T = (IT : JT) for every *D*-submodules *I*, *J* of *K* such that $(I : J) \neq (0)$.
- If *M* is a torsion *D*-module, then $M \simeq \bigoplus \{M \otimes T \mid T \in \Theta\}$.

- 人 同 ト 人 ヨ ト - - - ヨ

Factorization properties

Let Θ be a Jaffard family of D.

- Every ideal I can be uniquely factored as $I = J_1 \cdots J_k$, where:
 - each J_i survives in exactly one $T_i \in \Theta$;
 - $T_i \neq T_j$ for all $i \neq j$.

For Dedekind domains, we get back prime factorization.

•
$$\mathcal{F}(D) \simeq \bigoplus \{ \mathcal{F}(T) \mid T \in \Theta \}$$
 (as monoids).

- $\operatorname{Inv}(D) \simeq \bigoplus \{ \operatorname{Inv}(T) \mid T \in \Theta \}$ (as groups).
- If ★ is a star operation, then there are (uniquely and explicitly determined) star operations ★_T on each T such that

$$I^{\star} = \bigcap_{T \in \Theta} (IT)^{\star_T}$$

- ・ 同 ト ・ ヨ ト - - ヨ

In particular, $\operatorname{Star}(D) \simeq \prod \{ \operatorname{Star}(T) \mid T \in \Theta \}.$

Topological aspects of Jaffard families

• The Zariski topology on Over(D) is generated by the sets

 $\mathcal{B}(x) := \{ T \in \operatorname{Over}(D) \mid x \in T \}.$

It is related to the Zariski tppology on the spectrum.

- The inverse topology is generated by the complements of the $\mathcal{B}(x)$, and is related to properties of representations of D.
- Let Θ be a Jaffard family.
 - Θ is compact in the Zariski topology.
 - In the inverse topology, Θ is a discrete space.
 - Thus, all elements of Θ are isolated in $\Theta^{\rm inv}.$
 - This "explains" the fact that the representation has good properties: each point (=overring) is "sufficiently separated" from the rest of Θ.

イロト イポト イヨト イヨト 二日

• What about non-discrete spaces?

Pre-Jaffard families

Definition

We say that $\Theta \subseteq \operatorname{Over}(D)$ is a Jaffard family if:

- either $\Theta = \{K\}$ or $K \notin \Theta$;
- all $T \in \Theta$ are flat;
- Θ is complete;
- Θ is independent;
- Θ is locally finite.

Definition

We say that $\Theta \subseteq \operatorname{Over}(D)$ is a pre-Jaffard family if:

- either $\Theta = \{K\}$ or $K \notin \Theta$;
- all $T \in \Theta$ are flat;
- Θ is complete;
- Θ is independent;
- Θ is compact, with respect to the Zariski topology.
- The typical example is {D_M | M ∈ Max(D)}, where D is a one-dimensional domain.
- Θ is Hausdorff, with respect to the inverse topology.
- Problem: is the last condition redundant?
- We want to give an algebraic notion of isolated point.

Let T be a flat overring of D.

- We say that T is a Jaffard overring of D if it belongs to a Jaffard family of D.
- Define $T^{\perp} := \bigcap \{ D_P \mid P = (0) \text{ or } P \in \operatorname{Spec}(D) \setminus \Sigma(T) \}.$

• Here
$$\Sigma(T) := \{P \in \operatorname{Spec}(D) \mid T \subseteq D_P\}.$$

- T^{\perp} is again a sublocalization, and $\Sigma(T) \cup \Sigma(T^{\perp}) = \operatorname{Spec}(D)$.
 - $\{T, T^{\perp}\}$ is always complete.
- The following are equivalent:
 - T is a Jaffard overring;
 - $T \cdot T^{\perp} = K;$
 - if $P \neq (0)$ is a prime ideal of D, then PT = T or $PT^{\perp} = T^{\perp}$;
 - $\{T, T^{\perp}\}$ is independent.

Let Θ be a pre-Jaffard family.

- Θ is a Jaffard family if and only if every $T \in \Theta$ is a Jaffard overring.
- ${\cal T}$ is a Jaffard overring if and only if $\Theta \setminus \{{\cal T}\}$ is compact in the Zariski topology.
- If $T \in \Theta$ is a Jaffard overring, then T is isolated.
- The converse does not hold: *T* may be isolated, but not a Jaffard overring.
- The problem is that an overring of T may be a limit point of Θ \ {T} in the space of all overrings.

The derived sequence

Let Θ be a pre-Jaffard family.

- We denote by N(Θ) the set of elements of Θ that are not Jaffard overrings of D.
- $\mathcal{N}(\Theta)$ is a closed set of Θ : we want to use in place of $\mathcal{D}(X)$.
- $\mathcal{N}(\Theta)$ is not a pre-Jaffard family of D: we have to take the overring

$$T_1 := \bigcap \{ T \mid T \in \mathcal{N}(\Theta) \}.$$

- $\mathcal{N}(\Theta)$ is a pre-Jaffard family of \mathcal{T}_1 .
- Thus we can define N(N(Θ)) as the elements of N(Θ) that are not Jaffard overrings of T₁.

The derived sequence (2)

We define recursively:

•
$$\mathcal{N}^0(\Theta):=\Theta$$
 and $\mathcal{T}_0:=D.$

- $\mathcal{N}^1(\Theta) = \mathcal{N}(\Theta)$ and $T_1 := \bigcap \{ T \mid T \in \mathcal{N}^1(\Theta) \}.$
- We always define $T_{\alpha} := \bigcap \{ T \mid T \in \mathcal{N}^{\alpha}(\Theta) \}.$
- For ordinals α > 1:
 - if $\alpha = \gamma + 1$ is a successor ordinal, $\mathcal{N}^{\alpha}(\Theta) = \mathcal{N}(\mathcal{N}^{\gamma}(\Theta))$;
 - if α is a limit ordinal, $\mathcal{N}^{\alpha}(\Theta) := \bigcap_{\beta < \alpha} \mathcal{N}^{\beta}(\Theta)$.
- We obtain a decreasing sequence of subsets of Θ ,

$$\Theta = \mathcal{N}^{\mathsf{0}}(\Theta) \supseteq \mathcal{N}^{1}(\Theta) \supseteq \mathcal{N}^{2}(\Theta) \supseteq \cdots \supseteq \mathcal{N}^{\alpha}(\Theta) \supseteq \cdots$$

and an increasing sequence of overrings of D (the derived sequence with respect to Θ):

$$D = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq \cdots$$

(日) (日) (日)

The derived sequence (3)

- The Jaffard degree of a pre-Jaffard family Θ is the minimal ordinal α such that $T_{\alpha+1} = T_{\alpha}$. Equivalently, such that $\mathcal{N}^{\alpha}(\Theta) = \mathcal{N}^{\alpha+1}(\Theta)$.
- We call T_{α} the dull limit of Θ .
- The dull limit is the point at which we cannot go further: no element of Θ_α is a Jaffard overring of T_α.
- Let Θ be a pre-Jaffard family with Jaffard degree α . We say that:
 - Θ is sharp if $T_{\alpha} = K$ (equivalently, if $\mathcal{N}^{\alpha}(\Theta) = \emptyset$);
 - Θ is dull if $T_{\alpha} \neq K$ (equivalently, if $\mathcal{N}^{\alpha}(\Theta) \neq \emptyset$).
- The terminology comes from the theory of one-dimensional Prüfer domains: D is ultimately sharp if and only if Θ := {D_M | M ∈ Max(D)} is sharp.

イロト イポト イヨト イヨト 二日

Examples

- If $\Theta = \{K\}$ (and so D = K) then Θ is sharp with Jaffard degree 0.
- If Θ is a Jaffard family and D ≠ K, then N¹(Θ) = Ø. Thus, Θ is sharp with Jaffard degree 1.
- If Θ is a pre-Jaffard family with a single S that is not a Jaffard overring, then N¹(Θ) = {S} and N²(Θ) = ∅: hence, Θ is sharp with Jaffard degree 2. In this case, we say that Θ is a weak Jaffard family pointed at S.
- Let D be the ring of algebraic integers and $\Theta = \{D_M \mid M \in Max(D)\}$. Then, no $T \in \Theta$ is a Jafffard overring, so that $\mathcal{N}(\Theta) = \Theta$ and $T_1 = T_0$. Hence, Θ is dull with Jaffard degree 0.

イロト 不得下 イヨト イヨト 二日

Stable semistar operations

- A stable semistar operation is a map $\star : F(D) \longrightarrow F(D)$ such that:
 - \star is a closure operation;
 - $x \cdot I^* = (xI)^*$ for all $x \in K$, $I \in F(D)$;
 - $(I \cap J)^* = I^* \cap J^*$ for all $I, J \in F(D)$.
- If Θ is a Jaffard family, then $I^{\star} = \bigcap_{\mathcal{T} \in \Theta} (I\mathcal{T})^{\star}$ for every I, and thus

there is a natural isomorphism

$$\mathrm{SStar}_{\mathrm{stab}}(D) \simeq \prod_{\mathcal{T} \in \Theta} \mathrm{SStar}_{\mathrm{stab}}(\mathcal{T})$$

- We call a family Θ stable-preserving if this factorization holds for every stable semistar operation.
- Let D be an almost Dedekind domain with exactly one maximal ideal that is not finitely generated. Then, $\{D_M \mid M \in Max(D)\}$ is not a Jaffard family, but it is stable-preserving.

Length functions

- A singular length function is a map $\ell: \operatorname{Mod}(D) \longrightarrow \{0,\infty\}$ such that
 - $\ell(0) = 0;$
 - if $0 \longrightarrow N \longrightarrow M \longrightarrow P \longrightarrow 0$ is exact, then $\ell(M) = \ell(N) + \ell(P)$;
 - $\ell(M) = \sup\{\ell(N) \mid N \leq M \text{ is finitely generated}\}.$
- There is a natural correspondence between singular length functions and stable semistar operations.
- If \star correspond to $\ell,$ the factorization of \star corresponds to the factorization

$$\ell = \sum_{T \in \Theta} \ell \otimes T,$$

イロト 不得下 イヨト イヨト 二日

where $(\ell \otimes T)(M) = \ell(M \otimes T)$.

• Singular length functions factorize exactly if Θ is stable-preserving.

How to use the derived sequence

Let Θ be a pre-Jaffard family.

- Let Λ_1 be the union of
 - all Jaffard overrings of Θ (i.e., $\Theta \setminus \mathcal{N}(\Theta)$);
 - $T_1 := \bigcap \{ T \mid T \in \mathcal{N}(\Theta) \}$, the first element of the derived sequence.
- We are concentrating all bad points of Θ in T_1 .
- Λ_1 is a weak Jaffard family and thus it is stable-preserving.
- If \star is any stable semistar operation, we have

$$I^{\star} = \bigcap_{T \in \Lambda_1} (IT)^{\star} = \bigcap_{T \in \Theta \setminus \mathcal{N}(\Theta)} (IT)^{\star} \cap (IT_1)^{\star}$$

• Now we do the same for T_1 .

How to use the derived sequence (2)

• For all lpha we consider

$$\Lambda_{\alpha} := (\Theta \setminus \mathcal{N}^{\alpha}(\Theta)) \cup \{T_{\alpha}\}.$$

• By induction, every Λ_{α} is stable-preserving:

$$I^{\star} = \bigcap_{T \in \Lambda_{\alpha}} (IT)^{\star} = \bigcap_{T \in \Theta \setminus \mathcal{N}^{\alpha}(\Theta)} (IT)^{\star} \cap (IT_{\alpha})^{\star}.$$

- In particular, this holds if α is the Jaffard degree of Θ .
- If Θ is sharp, $T_{\alpha} = K$ can be eliminated, and Θ is stable-preserving.

向下 イヨト イヨト

Dimension 1

- If D has dimension 1, consider $\Theta := \{D_M \mid M \in Max(D)\}.$
- In this case, D_M is a Jaffard overring if and only if M is an isolated point of Max(D)^{inv} (i.e., Max(D) endowed with the inverse topology).
- Therefore, the derived sequence of Θ corresponds exactly to the derived sequence of Max(D)^{inv}.
- Θ is sharp if and only if Max(D)^{inv} is a scattered space; in this case, the stable semistar operations have the form

$$I^{\star} = \bigcap_{M \in \mathsf{Max}(D)} (ID_M)^{\star_M}$$

where each \star_M is a stable semistar operation on D_M .

 If Θ is dull, then there will be stable operations that cannot be written in this way.

Part II

Jaffard and pre-Jaffard families II: The Picard group

Dario Spirito Derived set-like constructions in commutative algebra

- The Picard group of the domain D is the quotient between the group Inv(D) of all invertible ideals of D and the subgroup of the principal ideals.
- Equivalently, it is the group of all projective modules of rank 1 (modulo isomorphism), with the tensor product as operation.
- The Picard group is a global property: if D is local, then Pic(D) = (0).
- If D is a Dedekind domain, then Pic(D) = (0) if and only if D is a principal ideal domain.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Integer-valued polynomials

Let $\operatorname{Int}(D) := \{ f \in K[X] \mid f(D) \subseteq D \}.$

• If D is Dedekind, there is an exact sequence

$$0 \longrightarrow \operatorname{Pic}(D) \longrightarrow \operatorname{Pic}(\operatorname{Int}(D)) \longrightarrow \bigoplus_{M \in \operatorname{Max}(D)} \operatorname{Pic}(\operatorname{Int}(D_M)) \longrightarrow 0.$$

- Moreover, $Pic(Int(D_M))$ is known (it can be expressed as a quotient of a group of continuous functions).
- The same exact sequence holds for one-dimensional Noetherian domains.

伺 ト イヨ ト イヨ ト

Jaffard families and the Picard group

$0 \longrightarrow \operatorname{Pic}(D) \longrightarrow \operatorname{Pic}(\operatorname{Int}(D)) \longrightarrow \bigoplus_{M \in \operatorname{Max}(D)} \operatorname{Pic}(\operatorname{Int}(D_M)) \longrightarrow 0.$

Dario Spirito Derived set-like constructions in commutative algebra

Jaffard families and the Picard group

$0 \longrightarrow \operatorname{Pic}(D) \longrightarrow \operatorname{Pic}(\operatorname{Int}(D)) \longrightarrow \bigoplus_{\mathcal{T} \in \Theta} \operatorname{Pic}(\operatorname{Int}(\mathcal{T})) \longrightarrow 0.$

- We want to substitute $\{D_M \mid M \in Max(D)\}$ with a Jaffard family Θ .
- In general, the kernel is wrong (take for example $\Theta = \{D\}$).

イロト イポト イヨト イヨト 二日

Jaffard families and the Picard group

$$0 \longrightarrow \operatorname{Pic}(D, \Theta) \longrightarrow \operatorname{Pic}(\operatorname{Int}(D)) \longrightarrow \bigoplus_{\mathcal{T} \in \Theta} \operatorname{Pic}(\operatorname{Int}(\mathcal{T})) \longrightarrow 0.$$

- We want to substitute $\{D_M \mid M \in Max(D)\}$ with a Jaffard family Θ .
- In general, the kernel is wrong (take for example $\Theta = \{D\}$).
- This can be resolved using, instead of Pic(D), the subgroup

 $\operatorname{Pic}(D,\Theta) := \{ [I] \in \operatorname{Pic}(D) \mid IT \text{ is principal for all } T \in \Theta \}.$

- If $\Theta = \{D_M \mid M \in Max(D)\}$, then $Pic(D, \Theta) = Pic(D)$.
- If $\Theta = \{D\}$, then $\operatorname{Pic}(D, \Theta) = (0)$.

▲日▶ ▲母▶ ▲ヨ▶ ▲ヨ▶ ヨー りゅつ

Jaffard families and the Picard group (2)

- $Pic(D, \Theta)$ is not easy to find.
- Using a little bit of homological algebra, we can transform the previous sequence into

$$0 \longrightarrow \operatorname{Pic}(D) \longrightarrow \operatorname{Pic}(\operatorname{Int}(D)) \longrightarrow \bigoplus_{\mathcal{T} \in \Theta} \frac{\operatorname{Pic}(\operatorname{Int}(\mathcal{T}))}{\operatorname{Pic}(\mathcal{T})} \longrightarrow 0.$$

Better,

$$\frac{\operatorname{Pic}(\operatorname{Int}(D))}{\operatorname{Pic}(D)} \simeq \bigoplus_{T \in \Theta} \frac{\operatorname{Pic}(\operatorname{Int}(T))}{\operatorname{Pic}(T)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Dario Spirito Derived set-like constructions in commutative algebra

Jaffard families and the Picard group (2)

- $Pic(D, \Theta)$ is not easy to find.
- Using a little bit of homological algebra, we can transform the previous sequence into

$$0 \longrightarrow \operatorname{Pic}(D) \longrightarrow \operatorname{Pic}(\operatorname{Int}(D)) \longrightarrow \bigoplus_{T \in \Theta} \frac{\operatorname{Pic}(\operatorname{Int}(T))}{\operatorname{Pic}(T)} \longrightarrow 0.$$

Better,

$$\mathcal{P}(D)\simeq \bigoplus_{T\in\Theta}\mathcal{P}(T)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

where $\mathcal{P}(A) := \operatorname{Pic}(\operatorname{Int}(A))/\operatorname{Pic}(A)$.

- Let Θ be a pre-Jaffard family.
- We concentrate $\mathcal{N}(\Theta)$ into the first step of the derived sequence, \mathcal{T}_1 .
- We don't get an exact sequence with Pic(Int(D)).
- However, using a reasoning similar to the one for Jaffard families, we obtain an exact sequence

$$0 \longrightarrow \bigoplus_{\mathcal{T} \in \Theta \setminus \mathcal{N}(\Theta)} \mathcal{P}(\mathcal{T}) \longrightarrow \mathcal{P}(D) \longrightarrow \frac{\operatorname{Pic}(\operatorname{Int}(D)\mathcal{T}_1)}{\operatorname{Pic}(\mathcal{T}_1)} \longrightarrow 0.$$

• What about T_{α} instead of T_1 ?

<日

Pre-Jaffard families

- Extending the previous results to pre-Jaffard properties runs into two problems.
 - We use the fact that Int(D)T = Int(T) if T is a Jaffard overring, but the equality does not hold for arbitrary flat overrings.
 - We need some ways to split exact sequences.

• These are not solvable in general: we need to add new hypothesis.

- Let Θ be a pre-Jaffard family and lpha an ordinal; suppose that
 - $\operatorname{Int}(D)T = \operatorname{Int}(T)$ if $T \in \Theta \setminus \mathcal{N}^{\alpha}(\Theta)$ or $T = T_{\gamma}$ with $\gamma < \alpha$;
 - $\mathcal{P}(T)$ is a free group for each $T \in \Theta \setminus \mathcal{N}^{lpha}(\Theta)$.

Then, there is an exact sequence

$$0 \longrightarrow \bigoplus_{T \in \Theta \setminus \mathcal{N}^{\alpha}(\Theta)} \mathcal{P}(T) \longrightarrow \mathcal{P}(D) \longrightarrow \frac{\operatorname{Pic}(\operatorname{Int}(D)T_{\alpha})}{\operatorname{Pic}(T_{\alpha})} \longrightarrow 0.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• If $T_{\alpha} = K$, then $\mathcal{P}(D) \simeq \bigoplus_{T \in \Theta} \mathcal{P}(T)$.

Pre-Jaffard families (2)

- The previous hypothesis hold in some interesting cases.
- Int(D)T = Int(T) holds if Int(D) behaves well under localizations.
 - This happens for some almost Dedekind domains (that can be characterized).
- If V is a valuation domain, then $\mathcal{P}(V) = \operatorname{Pic}(\operatorname{Int}(V))$ is free.
- In this case, we have an exact sequence

$$0 \longrightarrow \bigoplus_{T \in \Theta \setminus \mathcal{N}^{\alpha}(\Theta)} \mathcal{P}(T) \longrightarrow \mathcal{P}(D) \longrightarrow \mathcal{P}(T_{\alpha}) \longrightarrow 0.$$

• If $Max(D)^{inv}$ is scattered, then

$$\mathcal{P}(D) \simeq \bigoplus_{M \in \mathsf{Max}(D)} \mathcal{P}(D_M).$$

Beyond integer-valued polynomials

- The results for Int(D) actually holds for other constructions.
- Let R be one of the following: D[X], Int(E, D), $\mathbb{B}_{x}(D)$ (the Bhargava ring with respect to x).
- Define $\operatorname{LPic}(R, D)$ as the quotient $\operatorname{Pic}(R)/\operatorname{Pic}(D)$.
- If Θ is a Jaffard family of D, then

$$\operatorname{LPic}(R,D) \simeq \bigoplus_{T \in \Theta} \operatorname{LPic}(RT,T).$$

 The same decomposition holds if Θ is a sharp pre-Jaffard family of D and each LPic(RT, T) is free.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Part III

Almost Dedekind domains

Dario Spirito Derived set-like constructions in commutative algebra

・ロト ・ 四ト ・ ヨト ・ ヨト

- An almost Dedekind domain in an integral domain D such that D_M is a DVR for all $M \in Max(D)$.
- An almost Dedekind domain is Prüfer and one-dimensional.
- We use \mathcal{M} to denote Max(D) with the inverse topology.

・ 同 ト ・ ヨ ト ・ ヨ ト

- An ideal I of a domain D has radical factorization if we can write $I = J_1 \cdots J_n$ for some radical ideals J_i .
- If every ideal of D has radical factorization, then D is an SP-domain.
- Every SP-domain is almost Dedekind, but not all almost Dedekind domains are SP-domains.
- The following are equivalent for an almost Dedekind domain D:
 - *D* is an SP-domain;
 - the radical of every finitely generated ideal is finitely generated;
 - D has no critical maximal ideal (more on them later).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let D be an almost Dedekind domain.

• To every fractional ideal I we can associate a map

$$u_I \colon \mathcal{M} \longrightarrow \mathbb{Z}, \ M \longmapsto v_M(I),$$

where v_M is the valuation associated to D_M and $v_M(I) := \inf\{v_M(x) \mid x \in I\}.$

• If I is finitely generated (=invertible), then ν_I is of a function of compact support.

• If $f: X \longrightarrow \mathbb{Z}$, supp(f) is the closure of $\{x \in X \mid f(x) \neq 0\}$.

- In general, it is not continuous.
- Indeed, in general, ν_I is not bounded, while every continuous function with compact support is bounded.

イロト イポト イヨト イヨト 二日

Let Inv(D) be the group of invertible ideals of D.

- For finitely generated ideals, radical factorization corresponds to continuity of ν_I .
 - If I = rad(J) for some finitely generated ideal J, then V(I) is clopen in \mathcal{M} and thus ν_I is continuous.
- [Huebo-Kwegna−Olberding−Reinhart] If D is an SP-domain with nonzero Jacobson radical, then Inv(D) ≃ C(M, Z).
- If D is an SP-domain, then $\operatorname{Inv}(D) \simeq \mathcal{C}_{c}(\mathcal{M},\mathbb{Z}).$
- In particular, Inv(D) is a free group.
 - It is a subgroup of the group of bounded functions, which is free.

イロト イポト イヨト イヨト 二日

- Let M be a maximal ideal of an almost Dedekind domain D. Then, M is critical if it does not contain a finitely generated radical ideal.
- We denote by Crit(D) the set of critical ideals of D.
- A finitely generated ideal *I* has radical factorization if and only if
 V(I) ∩ Crit(D) = Ø.
- D is an SP-domain if and only if Crit(D) is empty.
- In general, $\operatorname{Crit}(D)$ is a closed subset of \mathcal{M} , and $\operatorname{Crit}(D) \subseteq \mathcal{D}(\mathcal{M})$.
- We can do a derived-set like construction.

・ 何 ト ・ ラ ト ・ ラ ト

Critical maximal ideals (2)

- Let Crit(D) be the set of critical maximal ideals.
- Then, $T_1 := \bigcap \{ D_P \mid P \in \operatorname{Crit}(D) \}$ is an almost Dedekind domain whose maximal ideals are the extensions of the elements of $\operatorname{Crit}(D)$.

• We can construct
$$\operatorname{Crit}(\mathcal{T}_1)$$
.

- We set $\operatorname{Crit}_2(D) := \{ P \in \mathcal{M} \mid PT_1 \in \operatorname{Crit}(T_1) \}.$
- More generally:

•
$$T_{\alpha} := \bigcap \{ D_P \mid P \in \operatorname{Crit}_{\alpha}(D) \};$$

- if $\alpha = \gamma + 1$, then $\operatorname{Crit}_{\alpha}(D) := \{ P \in \mathcal{M} \mid PT_{\gamma} \in \operatorname{Crit}(T_{\gamma}) \};$
- if α is a limit ordinal, then $\operatorname{Crit}_{\alpha}(D) = \bigcap_{\beta < \alpha} \operatorname{Crit}_{\beta}(D)$.

• Structurally, this is the same as the construction of $\mathcal{D}^{\alpha}(X)$ or $\mathcal{N}^{\alpha}(\Theta)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We have an exact sequence

$$0 \longrightarrow \Delta_1 \longrightarrow \operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(T_1) \longrightarrow 0,$$

where the map $\operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(\mathcal{T}_1)$ is the extension.

- $\Delta_1 = \{I \in \operatorname{Inv}(D) \mid IT_1 = T_1\} = \langle \{I \mid V(I) \cap \operatorname{Crit}(D) = \emptyset\} \rangle.$
- The proper ideals in Δ₁ are exactly the ones having radical factorization.
- Therefore, $\Delta_1 \simeq \mathcal{C}_c(\mathcal{M} \setminus \operatorname{Crit}(D), \mathbb{Z}).$
- More generally, for every α we have an exact sequence

$$0 \longrightarrow \Delta_{\alpha} \longrightarrow \operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(\mathcal{T}_{\alpha}) \longrightarrow 0.$$

- ・ 同 ト ・ ヨ ト - - ヨ

where Δ_{α} is generated by the proper ideals I such that $V(I) \cap \operatorname{Crit}_{\alpha}(D) = \emptyset$.

Exact sequences (2)

- The map $\operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(\mathcal{T}_{\alpha})$ is the composition of the step-wise maps $\operatorname{Inv}(\mathcal{T}_{\beta}) \longrightarrow \operatorname{Inv}(\mathcal{T}_{\beta+1})$.
- So, the kernel Δ_{lpha} is the "composition" of these kernels.
- By the case $\alpha = 1$, they are isomorphic to $C_c(X_\beta, \mathbb{Z})$ (where $X_\beta = \operatorname{Crit}_\beta(D) \setminus \operatorname{Crit}_{\beta+1}(D)$).
- In particular, they are free groups.
- This allows to split some sequence of kernels: we obtain that

$$\Delta_{lpha}\simeq igoplus_{eta$$

or, in other words, an exact sequence

$$0 \longrightarrow \bigoplus_{\beta < \alpha} \mathcal{C}_{c}(X_{\beta}, \mathbb{Z}) \longrightarrow \operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(T_{\alpha}) \longrightarrow 0.$$

- 人間 と く ヨ と 一 ヨ

- There is a (minimal) ordinal α such that $\operatorname{Crit}_{\alpha}(D) = \operatorname{Crit}_{\alpha+1}(D)$.
- We call α the SP-rank of D.
- If, for this α , we have $\operatorname{Crit}_{\alpha}(D) = \emptyset$, we say that D is SP-scattered.
- In this case, $T_lpha=K$, and the exact sequence becomes

$$0 \longrightarrow \bigoplus_{\beta < \alpha} \mathcal{C}_{c}(X_{\beta}, \mathbb{Z}) \longrightarrow \operatorname{Inv}(D) \longrightarrow 0 \longrightarrow 0.$$

- So, $\operatorname{Inv}(D) \simeq \bigoplus_{\beta < \alpha} \mathcal{C}_c(X_\beta, \mathbb{Z}).$
- In particular, Inv(D) is free.

く 伺 ト く ヨ ト く ヨ ト

- The worst case for the previous construction is when $\operatorname{Crit}(D) = \mathcal{M}$.
- This is equivalent to saying that all finitely generated ideals are unbounded.
- This is impossible (by Baire category theorem), and thus all almost Dedekind domains are SP-scattered.
- In particular, Inv(D) is free for every almost Dedekind domain D, and there is always a bounded finitely generated ideal.
- M \ Crit(D) is always dense in M: "almost all" maximal ideals are non-critical.

イロト イポト イヨト イヨト 二日

Let D be an almost Dedekind domain.

- Let ℓ be a singular length function on D, and let $\tau(I) := \ell(D/I)$.
- Like $\ell \otimes T$, we can define $(\tau \otimes T)(I) = \ell(T/IT)$.
- If \mathcal{M} is scattered, then $\ell = \sum \ell \otimes D_M$ and thus $\tau = \sum \tau \otimes D_M$.
- In this case, any stable semistar operation is in the form $I \mapsto \bigcap \{ ID_P \mid P \in \Delta \}$ for some $\Delta \subseteq \mathcal{M}$.
- In particular, $au(I) = au(\operatorname{rad}(I))$.
- For ideals, this means that stable semistar operations are radical: $1 \in I^*$ if and only if $1 \in rad(I)^*$.

イロト 不得 とくき とくき とうき

Length functions (2)

- If D is an SP-domain, then every ideal contains a power of its radical.
- Since $\tau(I) = \tau(I^n)$, it follows that the equality $\tau(I) = \tau(\operatorname{rad}(I))$ holds also for SP-domains.
- Using the sequence $\{T_{\alpha}\}$, for every ordinal α , we have

$$\tau(I) = \tau(\mathsf{rad}(I)) + (\tau \otimes T_{\alpha})(I).$$

- Choosing α to be the SP-rank, $T_{\alpha} = K$ and $\tau(I) = \tau(rad(I))$ for all almost Dedekind domains.
- Every stable semistar operation is the supremum of a family of $s_{\Delta} : I \mapsto \bigcap \{ ID_P \mid P \in \Delta \}.$
- Problem: is there a more explicit way to write them?

イロト 不得 トイヨト イヨト 三日

Thank you for your attention!

Dario Spirito Derived set-like constructions in commutative algebra

◆□▶ ◆舂▶ ◆注▶ ◆注▶

Bibliography

- D. S., The derived sequence of a pre-Jaffard sequence. *Mediterr. J. Math.*, 29, no. 146 (2022).
- D. S., Almost Dedekind domain without radical factorization *Forum Math.*, 35(2), 363–382 (2023).
- D. S., Localizations of integer-valued polynomials and of their Picard group.
 Math. Nach,, to appear.
- D. S., Boundness in almost Dedekind domains. submitted.
- D. S., The local Picard group of a ring extension. submitted.

く 伺 ト く ヨ ト く ヨ ト

Olivier A. Heubo-Kwegna, Bruce Olberding, and Andreas Reinhart. Group-theoretic and topological invariants of completely integrally closed Prüfer domains.

J. Pure Appl. Algebra, 220(12):3927–3947, 2016.

Dario Spirito Derived set-like constructions in commutative algebra

・ 同 ト ・ ヨ ト ・ ヨ ト

Invertible ideals and pre-Jaffard families

- A similar reasoning can be done with the derived sequence of a pre-Jaffard family (for example, for arbitrary one-dimensional Prüfer domains).
- The first exact sequence becomes

$$0 \longrightarrow \bigoplus_{A \in \Theta \setminus \mathcal{N}(\Theta)} \operatorname{Inv}(A) \longrightarrow \operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(T_1) \longrightarrow 0$$

- Similarly, we have $0 \longrightarrow \Delta_{\alpha} \longrightarrow \operatorname{Inv}(D) \longrightarrow \operatorname{Inv}(\mathcal{T}_{\alpha}) \longrightarrow 0$.
- The proof of the splitting $\Delta_{\alpha} \simeq \bigoplus Inv(A)$, however, works only if the Inv(A) are free or divisible.
- What happens in the general case?

Let D be an almost Dedekind domain.

- We say that D is anti-SP if Crit(D) = Max(D).
- In this case, the procedure outlined above stops at the first step.
- If D is anti-SP, ν_I is unbounded for all finitely generated ideals I, and $Y_n := \nu_I^{-1}((n, +\infty))$ is dense in \mathcal{M} and in V(I).
- Since V(I) is compact Hausdorff, also $\bigcap_n Y_n$ is dense.
- However, $\bigcap_n Y_n = \emptyset$.
- Thus, there are no anti-SP domains, and all almost Dedekind domains are SP-scattered.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >