# Bhargava factorials and irreducibility of integer-valued polynomials 

Conference on Rings and Factorizations 2023 July 10-14, 2023
University of Graz, Graz, Austria.

Presented by - Devendra Prasad Chennai, India

## SHIV NADAR <br> —UNIVERSITY

## Outline

(1) Bhargava Factorials
(2) Irreducibility of IVPs

## Introduction

In his celebrated work, Bhargava [1] (see also Bhargava [2]) generalized the notion of factorials to an arbitrary subset $S$ of $\mathbb{Z}$. These factorials are intrinsic to the given subset. He obtained these factorials by the notion of $p$-orderings.

## Introduction

In his celebrated work, Bhargava [1] (see also Bhargava [2]) generalized the notion of factorials to an arbitrary subset $S$ of $\mathbb{Z}$. These factorials are intrinsic to the given subset. He obtained these factorials by the notion of $p$-orderings.

## p-orderings

Let $S$ be an arbitrary subset of $\mathbb{Z}$ and $p$ be a fixed prime. A $p$-ordering of $S$ is a sequence $a_{0}, a_{1}, a_{2}, \cdots$ of elements of $S$ that is formed as follows:
[1] Manjul Bhargava. P-orderings and polynomial functions on arbitrary subsets of Dedekind rings. J. Reine Angew. Math., 490:101-127, 1997.
[2] Manjul Bhargava. The factorial function and generalizations. Amer. Math. Monthly, 107(9):783-799, 2000.

## p-orderings

## Step 0

Choose any element $a_{0} \in S$;

## p-orderings

## Step 0

Choose any element $a_{0} \in S$;

## Step 1

Choose an element $a_{1} \in S$ that minimizes the highest power of $p$ dividing $a_{1}-a_{0}$;

## p-orderings

## Step 0

Choose any element $a_{0} \in S$;

## Step 1

Choose an element $a_{1} \in S$ that minimizes the highest power of $p$ dividing $a_{1}-a_{0}$;

## Step 2

Choose an element $a_{2} \in S$ that minimizes the highest power of $p$ dividing $\left(a_{2}-a_{0}\right)\left(a_{2}-a_{1}\right) ;$

## p-orderings

## Step 0

Choose any element $a_{0} \in S$;

## Step 1

Choose an element $a_{1} \in S$ that minimizes the highest power of $p$ dividing $a_{1}-a_{0}$;

## Step 2

Choose an element $a_{2} \in S$ that minimizes the highest power of $p$ dividing $\left(a_{2}-a_{0}\right)\left(a_{2}-a_{1}\right) ;$

## Step k

In a similar way,
Choose an element $a_{k} \in S$ that minimizes the highest power of $p$ dividing $\prod_{i=0}^{k-1}\left(a_{k}-a_{\text {shiv }}\right)$

## Generalized factorials

## Fact

A p-ordering of any set need not be unique but the highest power of $p$ dividing $\prod_{i=0}^{k-1}\left(a_{k}-a_{i}\right)$ is always unique.

## Generalized factorials

## Fact

A p-ordering of any set need not be unique but the highest power of $p$ dividing $\prod_{i=0}^{k-1}\left(a_{k}-a_{i}\right)$ is always unique.

## generalized factorials

the generalized factorial of index $k \forall k \geq 0$ is defined as

$$
k!_{S}=\prod_{p} w_{p}\left(\left(a_{k}-a_{0}\right)\left(a_{k}-a_{1}\right) \ldots\left(a_{k}-a_{k-1}\right)\right)
$$

where $w_{p}(d)$ denotes the highest power of $p$ dividing $d$ for a given integer $d$. For instance, $w_{2}(12)=2^{2}$.

## Examples

## Ex. 1

Let $S=\mathbb{Z}$, then for all positive integers $k$, we have $k!_{\mathbb{Z}}=k!$.

## Examples

Ex. 1
Let $S=\mathbb{Z}$, then for all positive integers $k$, we have $k!_{\mathbb{Z}}=k!$.

Ex. 2
Let $S=2 \mathbb{Z}$, then for all positive integers $k$, we have $k!_{S}=2^{k} k!$.

## Examples

Ex. 1
Let $S=\mathbb{Z}$, then for all positive integers $k$, we have $k!_{\mathbb{Z}}=k$ !.

Ex. 2
Let $S=2 \mathbb{Z}$, then for all positive integers $k$, we have $k!_{S}=2^{k} k!$.

## Ex. 3

Let $S=2 \mathbb{Z}+1$, then for all positive integers $k$, we have $k!{ }_{S}=2^{k} k!$.

## Examples

Ex. 1
Let $S=\mathbb{Z}$, then for all positive integers $k$, we have $k!_{\mathbb{Z}}=k!$.

## Ex. 2

Let $S=2 \mathbb{Z}$, then for all positive integers $k$, we have $k!_{S}=2^{k} k!$.

## Ex. 3

Let $S=2 \mathbb{Z}+1$, then for all positive integers $k$, we have $k!{ }_{S}=2^{k} k!$.

## Ex. 4

Let $S=\left\{2^{n}: n \in \mathbb{Z}\right\}$, then for all positive integers $k$, we have $k!_{S}=\left(2^{n}-2^{0}\right)\left(2^{n}-2^{1}\right) \ldots\left(2^{k}-2^{k-1}\right)$.

## Integer-valued polynomials

## Definition

the ring of integer-valued polynomials over a subset $S \subseteq \mathbb{Z}$ is defined as

$$
\operatorname{Int}(S, \mathbb{Z})=\{f \in \mathbb{Q}[x]: f(S) \subset \mathbb{Z}\}
$$

## Integer-valued polynomials

## Definition

the ring of integer-valued polynomials over a subset $S \subseteq \mathbb{Z}$ is defined as

$$
\operatorname{Int}(S, \mathbb{Z})=\{f \in \mathbb{Q}[x]: f(S) \subset \mathbb{Z}\}
$$

Denote the set of polynomials of $\operatorname{Int}(S, \mathbb{Z})$ of degree $k$ by $\operatorname{Int}_{k}(S, \mathbb{Z})$. It turns out that

$$
k!_{S}=\operatorname{gcd}\left\{a: a \operatorname{Int}_{k}(S, \mathbb{Z}) \subseteq \mathbb{Z}[x]\right.
$$

## Integer-valued polynomials

## Definition

the ring of integer-valued polynomials over a subset $S \subseteq \mathbb{Z}$ is defined as

$$
\operatorname{Int}(S, \mathbb{Z})=\{f \in \mathbb{Q}[x]: f(S) \subset \mathbb{Z}\}
$$

Denote the set of polynomials of $\operatorname{Int}(S, \mathbb{Z})$ of degree $k$ by $\operatorname{Int}_{k}(S, \mathbb{Z})$. It turns out that

$$
k!s=\operatorname{gcd}\left\{a: \operatorname{ant}_{k}(S, \mathbb{Z}) \subseteq \mathbb{Z}[x] .\right.
$$

## $d_{k}$-orderings

For given integers $d$ and $k$, let $p_{1}, p_{2}, \ldots, p_{r}$ be all the prime divisors of $d$. For $1 \leq j \leq r$, let $\left\{u_{i j}\right\}_{i \geq 0}$ be a $p_{j}$-ordering of $S \subset \mathbb{Z}$. Then a $d_{k}$-ordering $\left\{x_{i}\right\}_{0 \leq i \leq k}$ of $S$ is a solution to the following congruences

$$
\begin{equation*}
x_{i} \equiv u_{i j} \quad \bmod \pi_{j}^{e_{k j}+1} \forall 1 \leq j \leq r \tag{1}
\end{equation*}
$$

where $p_{j}^{e_{k j}}=w_{p_{j}}\left(k!_{S}\right)$.

## Examples

## Ex. 1

Let $S=\mathbb{Z}$, then $0,1, \ldots, k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Examples

## Ex. 1

Let $S=\mathbb{Z}$, then $0,1, \ldots, k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

```
Ex . 2
```

Let $S=2 \mathbb{Z}$, then $0,2,4, \ldots, 2 k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Examples

## Ex. 1

Let $S=\mathbb{Z}$, then $0,1, \ldots, k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Ex. 2

Let $S=2 \mathbb{Z}$, then $0,2,4, \ldots, 2 k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Ex. 3

Let $S=2 \mathbb{Z}+1$, then $1,3,5, \ldots, 2 k+1$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Examples

## Ex. 1

Let $S=\mathbb{Z}$, then $0,1, \ldots, k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Ex. 2

Let $S=2 \mathbb{Z}$, then $0,2,4, \ldots, 2 k$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Ex. 3

Let $S=2 \mathbb{Z}+1$, then $1,3,5, \ldots, 2 k+1$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## Ex. 4

Let $S=\left\{2^{n}: n \in \mathbb{Z}\right\}$, then $2^{0}, 2^{1}, 2^{2}, \ldots, 2^{k}$ is a $d_{k}$ - ordering for all positive integers $d$ and $k$.

## the $\mu$-function

## Definition

For a given polynomial $f=\frac{g}{d} \in \mathbb{Q}[x]$, define $\mu_{i}(d, p)$ by

$$
\mu_{i}(d, p) w_{p}\left(i!_{S}\right)=w_{p}(d)
$$

## the $\mu$-function

## Definition

For a given polynomial $f=\frac{g}{d} \in \mathbb{Q}[x]$, define $\mu_{i}(d, p)$ by

$$
\mu_{i}(d, p) w_{p}\left(i!_{S}\right)=w_{p}(d)
$$

The function $\mu_{i}(d, p)$ also depends on the set since $i$ ! $s$ depends. Therefore, we assume that in the notation $\mu_{i}(d, p)$, the subset and the underlying ring automatically come from the context (see Prasad [3]).

## the $\mu$-function

## Definition

For a given polynomial $f=\frac{g}{d} \in \mathbb{Q}[x]$, define $\mu_{i}(d, p)$ by

$$
\mu_{i}(d, p) w_{p}\left(i!_{S}\right)=w_{p}(d)
$$

The function $\mu_{i}(d, p)$ also depends on the set since $i$ ! $s$ depends. Therefore, we assume that in the notation $\mu_{i}(d, p)$, the subset and the underlying ring automatically come from the context (see Prasad [3]).

## A Z-module basis

Let $a_{0}, a_{1}, \ldots, a_{k}$ is a $d_{k}$-ordering of $S \subseteq \mathbb{Z}$, then $S_{i}(x)=\left(x-a_{0}\right)\left(x-a_{1}\right) \ldots\left(x-a_{k}\right)$ where $0 \leq i \leq k$ is a Z-module basis for $\operatorname{lnt}_{k}(S, \mathbb{Z})$.
[3] Devendra Prasad. Bhargava factorials and irreducibility of integer-valued polynomials. Rocky Mountain J. Math. 52 (3) 1031-1038, June 2022.

## Some results

## Lemma

For every polynomial $f=\frac{g}{d} \in \mathbb{Q}[x]$ of degree $k$, the following holds

$$
f \in \operatorname{Int}(S, \mathbb{Z}) \Leftrightarrow f\left(\underline{a}_{i}\right) \in \mathbb{Z} \forall 0 \leq i \leq k
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ is a $d_{k}$-ordering of $S \subseteq \mathbb{Z}$.

## Some results

## Lemma

For every polynomial $f=\frac{g}{d} \in \mathbb{Q}[x]$ of degree $k$, the following holds

$$
f \in \operatorname{Int}(S, \mathbb{Z}) \Leftrightarrow f\left(\underline{a}_{i}\right) \in \mathbb{Z} \forall 0 \leq i \leq k
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ is a $d_{k}$-ordering of $S \subseteq \mathbb{Z}$.

## Lemma

A polynomial $f=\frac{\sum_{i=0}^{k} b_{i} S_{i}(x)}{d} \in \mathbb{Q}[x]$ is integer-valued iff $\forall p \mid d, w_{p}(d) \leq w_{p}\left(b_{i} i!_{s}\right) \forall 0 \leq i \leq k$.

## Some results

## Lemma

For every polynomial $f=\frac{g}{d} \in \mathbb{Q}[x]$ of degree $k$, the following holds

$$
f \in \operatorname{Int}(S, \mathbb{Z}) \Leftrightarrow f\left(\underline{a}_{i}\right) \in \mathbb{Z} \forall 0 \leq i \leq k
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ is a $d_{k}$-ordering of $S \subseteq \mathbb{Z}$.

## Lemma

A polynomial $f=\frac{\sum_{i=0}^{k} b_{i} S_{i}(x)}{d} \in \mathbb{Q}[x]$ is integer-valued iff
$\forall p \mid d, w_{p}(d) \leq w_{p}\left(b_{i} i!_{s}\right) \forall 0 \leq i \leq k$.

## Definition

A polynomial $f \in \operatorname{Int}(S, \mathbb{Z})$ is said to be "image primitive " iff the ideal $\{f(s): s \in \mathbb{Z}\}$ is the whole ring $\mathbb{Z}$.

## Lemma

SHIV NADAR
A polynomial $f=\frac{\sum_{i=0}^{k} b_{i} S_{i}(x)}{d} \in \operatorname{Int}(S, \mathbb{Z})$ is image primitive iff $\forall p \mid d, \exists 0 \leq i \leq k$ such that $w_{p}(d)=w_{p}\left(b_{i} i!_{s}\right)$.

## Main results and applications

## Irreducibility condition

Let $f=\frac{g}{d} \in \operatorname{Int}(S, \mathbb{Z})$ be a polynomial of degree $k$ and $a_{0}, a_{1}, \ldots, a_{k}$ be a $d_{k}$-ordering. Then $f$ is irreducible iff for any factorization $g=\left(\sum_{i=0}^{k_{1}} b_{i} S_{i}(x)\right)\left(\sum_{j=0}^{k_{2}} c_{i} S_{i}(x)\right)$ there exist a prime $p \mid d$ and non-zero positive integers $r \leq k_{1}$ and $s \leq k_{2}$ such that $\frac{\mu_{r}(d, p) \mu_{s}(d, p)}{w_{p}(d)} \nmid w_{p}\left(b_{r} c_{s}\right)$.

## Main results and applications

## Irreducibility condition

Let $f=\frac{g}{d} \in \operatorname{Int}(S, \mathbb{Z})$ be a polynomial of degree $k$ and $a_{0}, a_{1}, \ldots, a_{k}$ be a $d_{k}$-ordering. Then $f$ is irreducible iff for any factorization $g=\left(\sum_{i=0}^{k_{1}} b_{i} S_{i}(x)\right)\left(\sum_{j=0}^{k_{2}} c_{i} S_{i}(x)\right)$ there exist a prime $p \mid d$ and non-zero positive integers $r \leq k_{1}$ and $s \leq k_{2}$ such that $\frac{\mu_{r}(d, p) \mu_{s}(d, p)}{w_{p}(d)} \nmid w_{p}\left(b_{r} c_{s}\right)$.

## Example

Let us check the irreducibility of the polynomial

$$
f=\frac{18 x^{6}-48 x^{5}+47 x^{4}-29 x^{2}+41 x+6}{6}
$$

in $\operatorname{Int}(\mathbb{Z})$. We have only the following way of factoring $f$

$$
f=\frac{f_{1} f_{2}}{6}
$$

where $f_{1}=2+3 x+6 x(x-1)+2 x(x-1)(x-2)$ and $f_{2}=3+4 x+3 x(x-1)+9 x(x-1)(x-2)$. Since $b_{0}=2$ and $c_{1}=4$ are not multiple of three, it follows that $w_{3}\left(b_{0} c_{1}\right)=w_{3}(2 \times 4)=3^{0}$. However, $\frac{\mu_{0}(6,3) \mu_{1}(6,3)}{w_{3}(6)}=\frac{3^{1} 3^{1}}{3^{1}}>w_{p}\left(b_{r} c_{s}\right)$, which implies that the polynomial is irreducible.

## Thank You



