Bhargava factorials and irreducibility of integer-valued polynomials

Conference on Rings and Factorizations 2023 July 10–14, 2023 University of Graz, Graz, Austria.

Presented by - Devendra Prasad Chennai, India

UNIVERSITY - BY (B) (E) (E) E DOC

2 Irreducibility of IVPs

Ξ.

▲ロト ▲御 ト ▲注 ト ▲注 ト

(Shiv Nadar University Chennai)

Introduction

In his celebrated work, Bhargava [1] (see also Bhargava [2]) generalized the notion of factorials to an arbitrary subset S of \mathbb{Z} . These factorials are intrinsic to the given subset. He obtained these factorials by the notion of *p*-orderings.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

In his celebrated work, Bhargava [1] (see also Bhargava [2]) generalized the notion of factorials to an arbitrary subset S of \mathbb{Z} . These factorials are intrinsic to the given subset. He obtained these factorials by the notion of *p*-orderings.

p-orderings

Let S be an arbitrary subset of \mathbb{Z} and p be a fixed prime. A p-ordering of S is a sequence a_0, a_1, a_2, \cdots of elements of S that is formed as follows:

 Manjul Bhargava. P-orderings and polynomial functions on arbitrary subsets of Dedekind rings. J. Reine Angew. Math., 490:101–127, 1997.
Manjul Bhargava. The factorial function and generalizations. Amer. Math. Monthly, 107(9):783–799, 2000.

SHIV NADAR

・ロト ・ 同ト ・ ヨト ・ ヨト

Choose any element $a_0 \in S$;

Ξ.

▲ロト ▲御 ト ▲注 ト ▲注 ト

Choose any element $a_0 \in S$;

Step 1

Choose an element $a_1 \in S$ that minimizes the highest power of p dividing $a_1 - a_0$;

・ロト ・聞 ト ・ ヨト ・ ヨト

Choose any element $a_0 \in S$;

Step 1

Choose an element $a_1 \in S$ that minimizes the highest power of p dividing $a_1 - a_0$;

Step 2

Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 - a_0)(a_2 - a_1)$;

・ロト ・聞 ト ・ ヨト ・ ヨト

Choose any element $a_0 \in S$;

Step 1

Choose an element $a_1 \in S$ that minimizes the highest power of p dividing $a_1 - a_0$;

Step 2

Choose an element $a_2 \in S$ that minimizes the highest power of p dividing $(a_2 - a_0)(a_2 - a_1)$;

Step k

In a similar way,

Choose an element $a_k \in S$ that minimizes the highest power of p dividing $\prod_{i=0}^{k-1} (a_k - a_i)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Fact

A *p*-ordering of any set need not be unique but the highest power of *p* dividing $\prod_{i=0}^{k-1} (a_k - a_i)$ is always unique.

・ロト ・聞 ト ・ ヨト ・ ヨト

Fact

A *p*-ordering of any set need not be unique but the highest power of *p* dividing $\prod_{i=0}^{k-1} (a_k - a_i)$ is always unique.

generalized factorials

the generalized factorial of index $k \forall k \ge 0$ is defined as

$$k!_{5} = \prod_{a} w_{p}((a_{k} - a_{0})(a_{k} - a_{1}) \dots (a_{k} - a_{k-1})).$$

where $w_p(d)$ denotes the highest power of p dividing d for a given integer d. For instance, $w_2(12) = 2^2$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let $S = \mathbb{Z}$, then for all positive integers k, we have $k!_{\mathbb{Z}} = k!$.

E

ヘロト 人間 とくほとくほとう

Let $S = \mathbb{Z}$, then for all positive integers k, we have $k!_{\mathbb{Z}} = k!$.

Ex.2

Let $S = 2\mathbb{Z}$, then for all positive integers k, we have $k!_S = 2^k k!$.

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト

Let $S = \mathbb{Z}$, then for all positive integers k, we have $k!_{\mathbb{Z}} = k!$.

Ex.2

Let $S = 2\mathbb{Z}$, then for all positive integers k, we have $k!_S = 2^k k!$.

Ex.3

Let $S = 2\mathbb{Z} + 1$, then for all positive integers k, we have $k!_S = 2^k k!$.

・ロト ・ 同ト ・ ヨト・

Ex . 1

Let $S = \mathbb{Z}$, then for all positive integers k, we have $k!_{\mathbb{Z}} = k!$.

Ex . 2

Let $S = 2\mathbb{Z}$, then for all positive integers k, we have $k!_S = 2^k k!$.

Ex.3

Let $S = 2\mathbb{Z} + 1$, then for all positive integers k, we have $k!_S = 2^k k!$.

Ex.4

Let $S = \{2^n : n \in \mathbb{Z}\}$, then for all positive integers k, we have $k!_S = (2^n - 2^0)(2^n - 2^1) \dots (2^k - 2^{k-1}).$

SHIV NADAR

the ring of integer-valued polynomials over a subset $S\subseteq\mathbb{Z}$ is defined as

$$\operatorname{Int}(S,\mathbb{Z}) = \{f \in \mathbb{Q}[x] : f(S) \subset \mathbb{Z}\}.$$

◆□ ▶ ◆問 ▶ ◆注 ▶ ◆注 ▶

the ring of integer-valued polynomials over a subset $S\subseteq\mathbb{Z}$ is defined as

$$\operatorname{Int}(S,\mathbb{Z}) = \{f \in \mathbb{Q}[x] : f(S) \subset \mathbb{Z}\}.$$

Denote the set of polynomials of $Int(S, \mathbb{Z})$ of degree k by $Int_k(S, \mathbb{Z})$. It turns out that

 $k!_{S} = \operatorname{gcd}\{a : a \operatorname{Int}_{k}(S, \mathbb{Z}) \subseteq \mathbb{Z}[x].$

・ロト ・ 同ト ・ ヨト ・ ヨト

the ring of integer-valued polynomials over a subset $S\subseteq\mathbb{Z}$ is defined as

$$\operatorname{Int}(S,\mathbb{Z}) = \{f \in \mathbb{Q}[x] : f(S) \subset \mathbb{Z}\}.$$

Denote the set of polynomials of $Int(S, \mathbb{Z})$ of degree k by $Int_k(S, \mathbb{Z})$. It turns out that

$$k!_S = \operatorname{gcd}\{a : a \operatorname{Int}_k(S, \mathbb{Z}) \subseteq \mathbb{Z}[x].$$

d_k-orderings

For given integers *d* and *k*, let p_1, p_2, \ldots, p_r be all the prime divisors of *d*. For $1 \le j \le r$, let $\{u_{ij}\}_{i \ge 0}$ be a p_j -ordering of $S \subset \mathbb{Z}$. Then a d_k -ordering $\{x_i\}_{0 \le i \le k}$ of *S* is a solution to the following congruences

$$x_i \equiv u_{ij} \mod \pi_i^{e_{kj}+1} \ \forall \ 1 \leq j \leq r,$$

where $p_j^{e_{kj}} = w_{p_j}(k!_S)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

(1) SHIV NADA

Let $S = \mathbb{Z}$, then $0, 1, \ldots, k$ is a d_k - ordering for all positive integers d and k.

Ξ.

▲ロト ▲圖ト ▲温ト ▲温ト

Let $S = \mathbb{Z}$, then $0, 1, \ldots, k$ is a d_k - ordering for all positive integers d and k.

Ex . 2

Let $S = 2\mathbb{Z}$, then $0, 2, 4, \dots, 2k$ is a d_k - ordering for all positive integers d and k.

・ロト ・聞 ト ・ ヨト ・ ヨト

Let $S = \mathbb{Z}$, then $0, 1, \ldots, k$ is a d_k - ordering for all positive integers d and k.

Ex . 2

Let $S = 2\mathbb{Z}$, then $0, 2, 4, \dots, 2k$ is a d_k - ordering for all positive integers d and k.

Ex.3

Let $S = 2\mathbb{Z} + 1$, then $1, 3, 5, \dots, 2k + 1$ is a d_k - ordering for all positive integers d and k.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $S = \mathbb{Z}$, then $0, 1, \ldots, k$ is a d_k - ordering for all positive integers d and k.

Ex . 2

Let $S = 2\mathbb{Z}$, then $0, 2, 4, \dots, 2k$ is a d_k - ordering for all positive integers d and k.

Ex.3

Let $S = 2\mathbb{Z} + 1$, then $1, 3, 5, \dots, 2k + 1$ is a d_k - ordering for all positive integers d and k.

Ex.4

Let $S = \{2^n : n \in \mathbb{Z}\}$, then $2^0, 2^1, 2^2, \ldots, 2^k$ is a d_k - ordering for all positive integers d and k.

SHIV NADAR

・ロト ・ 同ト ・ ヨト ・ ヨト

For a given polynomial $f = \frac{g}{d} \in \mathbb{Q}[x]$, define $\mu_i(d, p)$ by

 $\mu_i(d,p)w_p(i!_S) = w_p(d).$

Э

▲ロト ▲御 ト ▲注 ト ▲注 ト

For a given polynomial $f = \frac{g}{d} \in \mathbb{Q}[x]$, define $\mu_i(d, p)$ by

$$\mu_i(d,p)w_p(i!s)=w_p(d).$$

The function $\mu_i(d, p)$ also depends on the set since $i!_S$ depends. Therefore, we assume that in the notation $\mu_i(d, p)$, the subset and the underlying ring automatically come from the context (see Prasad [3]).

・ロト ・ 戸 ト ・ ヨ ト ・ 日 ト

For a given polynomial $f = \frac{g}{d} \in \mathbb{Q}[x]$, define $\mu_i(d, p)$ by

$$\mu_i(d,p)w_p(i!s)=w_p(d).$$

The function $\mu_i(d, p)$ also depends on the set since $i!_S$ depends. Therefore, we assume that in the notation $\mu_i(d, p)$, the subset and the underlying ring automatically come from the context (see Prasad [3]).

A Z-module basis

Let a_0, a_1, \ldots, a_k is a d_k -ordering of $S \subseteq \mathbb{Z}$, then $S_i(x) = (x - a_0)(x - a_1) \ldots (x - a_k)$ where $0 \le i \le k$ is a Z-module basis for $Int_k(S, \mathbb{Z})$.

[3] Devendra Prasad. Bhargava factorials and irreducibility of integer-valued polynomials. Rocky Mountain J. Math. 52 (3) 1031 - 1038, June 2022.

イロト (同下) (日下) (日下)

Some results

Lemma

For every polynomial $f = \frac{g}{d} \in \mathbb{Q}[x]$ of degree k, the following holds

 $f \in \text{Int}(S, \mathbb{Z}) \Leftrightarrow f(\underline{a}_i) \in \mathbb{Z} \ \forall \ 0 \leq i \leq k,$

where a_0, a_1, \ldots, a_k is a d_k -ordering of $S \subseteq \mathbb{Z}$.

3

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と …

Some results

Lemma

For every polynomial $f = \frac{g}{d} \in \mathbb{Q}[x]$ of degree k, the following holds

 $f \in \operatorname{Int}(S, \mathbb{Z}) \Leftrightarrow f(\underline{a}_i) \in \mathbb{Z} \ \forall \ 0 \leq i \leq k,$

where a_0, a_1, \ldots, a_k is a d_k -ordering of $S \subseteq \mathbb{Z}$.

Lemma

A polynomial $f = \frac{\sum_{i=0}^{k} b_i S_i(x)}{d} \in \mathbb{Q}[x]$ is integer-valued iff $\forall p \mid d, w_p(d) \le w_p(b_i i!_S) \forall 0 \le i \le k.$

SHIV NADAR

(日)

Some results

Lemma

For every polynomial $f = \frac{g}{d} \in \mathbb{Q}[x]$ of degree k, the following holds

 $f \in \operatorname{Int}(S, \mathbb{Z}) \Leftrightarrow f(\underline{a}_i) \in \mathbb{Z} \ \forall \ 0 \leq i \leq k,$

where a_0, a_1, \ldots, a_k is a d_k -ordering of $S \subseteq \mathbb{Z}$.

Lemma

A polynomial
$$f = \frac{\sum_{i=0}^{k} b_i S_i(x)}{d} \in \mathbb{Q}[x]$$
 is integer-valued iff $\forall p \mid d, w_p(d) \le w_p(b_i i!_S) \forall 0 \le i \le k.$

Definition

A polynomial $f \in \text{Int}(S, \mathbb{Z})$ is said to be "image primitive " iff the ideal $\{f(s) : s \in \mathbb{Z}\}$ is the whole ring \mathbb{Z} .

Lemma

A polynomial $f = \frac{\sum_{i=0}^{k} b_i S_i(x)}{d} \in \text{Int}(S, \mathbb{Z})$ is image primitive iff $\forall p \mid d, \exists 0 \le i \le k$ such that $w_p(d) = w_p(b_i i!_S)$.

Irreducibility condition

Let $f = \frac{g}{d} \in \operatorname{Int}(S, \mathbb{Z})$ be a polynomial of degree k and a_0, a_1, \ldots, a_k be a d_k -ordering. Then f is irreducible iff for any factorization $g = (\sum_{i=0}^{k_1} b_i S_i(x))(\sum_{j=0}^{k_2} c_i S_i(x))$ there exist a prime $p \mid d$ and non-zero positive integers $r \leq k_1$ and $s \leq k_2$ such that $\frac{\mu_r(d,p)\mu_s(d,p)}{w_p(d)} \nmid w_p(b_rc_s)$.

Irreducibility condition

Let $f = \frac{g}{d} \in \operatorname{Int}(S, \mathbb{Z})$ be a polynomial of degree k and a_0, a_1, \ldots, a_k be a d_k -ordering. Then f is irreducible iff for any factorization $g = (\sum_{i=0}^{k_1} b_i S_i(x))(\sum_{j=0}^{k_2} c_i S_i(x))$ there exist a prime $p \mid d$ and non-zero positive integers $r \leq k_1$ and $s \leq k_2$ such that $\frac{\mu_r(d,p)\mu_s(d,p)}{w_p(d)} \nmid w_p(b_rc_s)$.

Example

Let us check the irreducibility of the polynomial

$$f = \frac{18x^6 - 48x^5 + 47x^4 - 29x^2 + 41x + 6}{6}$$

in $Int(\mathbb{Z})$. We have only the following way of factoring f

$$f=\tfrac{f_1f_2}{6},$$

where $f_1 = 2 + 3x + 6x(x - 1) + 2x(x - 1)(x - 2)$ and $f_2 = 3 + 4x + 3x(x - 1) + 9x(x - 1)(x - 2)$. Since $b_0 = 2$ and $c_1 = 4$ are not multiple of three, it follows that $w_3(b_0c_1) = w_3(2 \times 4) = 3^0$. However, $\frac{\mu_0(6,3)\mu_1(6,3)}{w_3(6)} = \frac{3^13^1}{3^1} > w_p(b_rc_s)$, which implies that the polynomial is irreducible.

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

(Shiv Nadar University Chennai)

Bhargava factorials and irreducibility of IVPs