On the Smith normal form of dual integer matrices

Baraah Maya

Brno University of Technology - Czech Republic

Graz (10 - 14 July, 2023)

Smith normal form of a matrix

• Let *A* be a nonzero matrix over a **principal ideal domain PID**. There exist two matrices *U* and *V* such that:

$$UAV = \begin{pmatrix} \alpha_0 & 0 & 0 & & & 0 \\ 0 & \alpha_1 & 0 & & & 0 \\ 0 & 0 & \ddots & & & 0 \\ & & & \alpha_r & & & \\ & & & & 0 & & \\ & & & & \ddots & \\ & & & & & & 0 \end{pmatrix}$$

where U and V are invertible matrices.

• Let A be a nonzero matrix over a **principal ideal domain PID**. There exist two matrices U and V such that:

$$UAV = \begin{pmatrix} \alpha_0 & 0 & 0 & & & 0 \\ 0 & \alpha_1 & 0 & & & 0 \\ 0 & 0 & \ddots & & & 0 \\ & & & \alpha_r & & & \\ & & & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 0 \end{pmatrix}$$

where U and V are invertible matrices.

• The Smith normal form over a PID is unique.

Smith normal form of a matrix

$$UAV = \begin{pmatrix} \alpha_0 & 0 & 0 & & & 0 \\ 0 & \alpha_1 & 0 & & & 0 \\ 0 & 0 & \ddots & & & 0 \\ & & & \alpha_r & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0 \end{pmatrix}$$

イロト イポト イヨト イヨト

2

Finding Smith normal form of a matrix over a ring which is not a principal ideal domain.

• Let us consider the ring:

$$\mathbb{Z}[\varepsilon] = \{ a + b\varepsilon; \quad a, b \in \mathbb{Z}, \quad \varepsilon^2 = 0 \}$$

э

• Let us consider the ring:

$$\mathbb{Z}[\varepsilon] = \{ a + b\varepsilon; \quad a, b \in \mathbb{Z}, \quad \varepsilon^2 = 0 \}$$

• Let us consider the polynomial:

$$f(x) = x^2 - 2ax + a^2; \qquad a \in \mathbb{Z}$$

• Let us consider the ring:

$$\mathbb{Z}[\varepsilon] = \{ a + b\varepsilon; \quad a, b \in \mathbb{Z}, \quad \varepsilon^2 = 0 \}$$

• Let us consider the polynomial:

$$f(x) = x^2 - 2ax + a^2; \qquad a \in \mathbb{Z}$$

• This polynomial has one root in \mathbb{Z} :

$$x = a$$

• Let us consider the ring:

$$\mathbb{Z}[\varepsilon] = \{ a + b\varepsilon; \quad a, b \in \mathbb{Z}, \quad \varepsilon^2 = 0 \}$$

• Let us consider the polynomial:

$$f(x) = x^2 - 2ax + a^2; \qquad a \in \mathbb{Z}$$

• This polynomial has one root in \mathbb{Z} :

x = a

• It has infinitely many roots in $\mathbb{Z}[\varepsilon]$:

$$x = a + b\varepsilon$$

where $b \in \mathbb{Z}$.

$$\mathbb{Z}[\varepsilon] = \{ \mathbf{a} + \mathbf{b}\varepsilon; \quad \mathbf{a}, \mathbf{b} \in \mathbb{Z}, \quad \varepsilon^2 = 0 \}$$

۲

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

۲

$$\mathbb{Z}[\varepsilon] = \{ a + b\varepsilon; \quad a, b \in \mathbb{Z}, \quad \varepsilon^2 = 0 \}$$

• The set of zero divisors:

$$Z(\mathbb{Z}[\varepsilon]) = \{b\varepsilon; b \in \mathbb{Z}\} = \varepsilon \mathbb{Z}[\varepsilon]$$

< □ > < 同 > < 回 > < 回 > < 回 >

æ

$$\mathbb{Z}[\varepsilon] = \{ \mathbf{a} + \mathbf{b}\varepsilon; \quad \mathbf{a}, \mathbf{b} \in \mathbb{Z}, \quad \varepsilon^2 = \mathbf{0} \}$$

• The set of units:

۲

$$U(\mathbb{Z}[arepsilon]) = \{\pm 1 + barepsilon; \quad b \in \mathbb{Z}\}$$

2

A D N A B N A B N A B N

Let
$$a = a_0 + a_1\varepsilon$$
, $b = b_0 + b_1\varepsilon$ be two dual integers.

$$\frac{a}{b} = \frac{(a_0 + a_1\varepsilon)(b_0 - b_1\varepsilon)}{(b_0 + b_1\varepsilon)(b_0 - b_1\varepsilon)} = \frac{a_0}{b_0} + \frac{a_1b_0 - a_0b_1}{b_0^2}\varepsilon$$

where $b_0 \neq 0$.

æ

• Let $a, b \in \mathbb{Z}$. There exits a unique pair (q, r) such that:

$$a = bq + r$$

where r = 0 or |r| < |b|.

• Let $a, b \in \mathbb{Z}$. There exits a unique pair (q, r) such that:

$$a = bq + r$$

where r = 0 or |r| < |b|.

• Let $a, b \in \mathbb{Z}[\varepsilon]$. There exit infinitely many (q, r) such that:

$$a = bq + r$$

• Let $a, b \in \mathbb{Z}$. There exits a unique pair (q, r) such that:

$$a = bq + r$$

where r = 0 or |r| < |b|.

• Let $a, b \in \mathbb{Z}[\varepsilon]$. There exit infinitely many (q, r) such that:

$$a = bq + r$$

• Let $a = a_0 + a_1 \varepsilon$. The pseudo-norm of a is:

 $N(a) = \sqrt{a_0^2 + a_1^2}$

The division with remainder

To divide $a = a_0 + a_1 \varepsilon$ by $b = b_0 + b_1 \varepsilon$:

• Find q_0 and r_0 such that $a_0 = b_0 q_0 + r_0$.

• Compute:

$$Q_r = \lfloor \frac{a_1 - b_1 q_0}{b_0} \rfloor, \qquad r_1 = a_1 - b_1 q_0 - b_0 Q_r$$

$$Q_s = \lfloor rac{a_1 - b_1 q_0}{b_0}
floor - 1, \qquad s_1 = a_1 - b_1 q_0 - b_0 Q_s$$

• Put:

$$r = r_0 + r_1\varepsilon, \qquad q_r = q_0 + Q_1\varepsilon$$
$$s = r_0 + s_1\varepsilon, \qquad q_s = q_0 + Q_s\varepsilon$$

Then:

$$a = bq_r + r$$

 $a = bq_s + s$

The divisors of a dual integer

Let $a = a_0 + a_1 \varepsilon$ be a dual integer.

• Find all divisors of a_0 in \mathbb{Z} :

$$\{d_0 = 1, d_1, d_2, \dots, d_m\}$$

• For $1 \le i \le m$, solve the congruence:

$$\frac{a_0}{d_i}X \equiv a_1(mod \quad d_i)$$

If X is a solution in {0, 1, 2, ..., d_i − 1}, then there exist infinitely many divisors of the form:

$$d_i + (X + rac{d_i}{c}k)arepsilon; \qquad k \in \mathbb{Z}$$

where $c = \text{gcd}(\frac{a_0}{d_i}, a_1, d_i)$.

• Let $p = p_0 + p_1 \varepsilon$ be a dual integer. Then p is a prime in $\mathbb{Z}[\varepsilon]$ if:

$$p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$$

• There are no primes in $\mathbb{Z}[\varepsilon]$.

Graz (10 - 14 July, 2023)

11/23

- The dual integer $a = a_0 + a_1 \varepsilon$ is an irreducible element in $\mathbb{Z}[\varepsilon]$ if: $a = bc \Rightarrow b$ is a unit or c is a unit.
- The irreducible elements in $\mathbb{Z}[\varepsilon]$ are the primes in \mathbb{Z} or:

 $a = p^k + a_1 \varepsilon$

where p is a prime in \mathbb{Z} , $k \ge 1$ and $gcd(p, a_1) = 1$.

The common divisors of two dual integers

Let $a = a_0 + a_1 \varepsilon$, $b = b_0 + b_1 \varepsilon$ be two dual integers.

• Find all common divisors of the integers a_0 and b_0 in \mathbb{Z} :

$$\{d_0=1,d_1,d_2,\ldots,d_m\}$$

• For $1 \le i \le m$, solve the system:

$$rac{a_0}{d_i}X\equiv a_1(mod \quad d_i)$$
 $rac{b_0}{d_i}X\equiv b_1(mod \quad d_i)$

If X is a solution in {0, 1, 2, ..., d_i − 1}, then there exist infinitely many common divisors of the form:

$$d_i + (X + rac{d_i}{c}k)arepsilon; \qquad k \in \mathbb{Z}$$

where $c = \operatorname{gcd}(\frac{a_0}{d_i}, \frac{b_0}{d_i}, a_1, b_1, d_i)$.

Let $a = a_0 + a_1\varepsilon$, $b = b_0 + b_1\varepsilon$, $g = g_0 + g_1\varepsilon$ be dual integers such that: • $g \mid a$ and $g \mid b$ in $\mathbb{Z}[\varepsilon]$.

- If $d = d_0 + d_1 \varepsilon$ is another common divisor of *a* and *b*, then $d \mid g$ in $\mathbb{Z}[\varepsilon]$.
- There exist two dual integers x and y such that:

$$ax + by = g$$

The dual integer g is called **good greatest common divisor** of a and b in $\mathbb{Z}[\varepsilon]$.

Let $a = a_0 + a_1\varepsilon$, $b = b_0 + b_1\varepsilon$ be two dual integers and $g = g_0 + g_1\varepsilon$ a common divisor of a and b with the greatest real part among all other common divisors. Let $m = m_0 + m_1\varepsilon$ be another common divisor such that:

- $m_0 \mid g_0$ in \mathbb{Z} ,
- $m \nmid g$ in $\mathbb{Z}[\varepsilon]$.

Then there does not exist the greatest common divisor of *a* and *b* in $\mathbb{Z}[\varepsilon]$.

The existence of the greatest common divisor of two dual integers

Let a = a₀ + a₁ε, b = b₀ + b₁ε be two dual integers, and let d be the greatest integer for which the system:

$$\frac{a_0}{d}X \equiv a_1(mod \quad d)$$
$$\frac{b_0}{d}X \equiv b_1(mod \quad d)$$

is solvable. The greatest common divisor of *a* and *b* in $\mathbb{Z}[\varepsilon]$ exists if and only if the considered system has a **unique solution** *X* in $\mathbb{Z}_d = \{0, 1, 2, \dots, d-1\}$. Then:

 $gcd(a, b) = \{d + (X + dk)\varepsilon; k \in \mathbb{Z}\}$

The existence of the greatest common divisor of two dual integers

Let a = a₀ + a₁ε, b = b₀ + b₁ε be two dual integers, and let d be the greatest integer for which the system:

$$\frac{a_0}{d}X \equiv a_1(mod \quad d)$$
$$\frac{b_0}{d}X \equiv b_1(mod \quad d)$$

is solvable. The greatest common divisor of *a* and *b* in $\mathbb{Z}[\varepsilon]$ exists if and only if the considered system has a **unique solution** *X* in $\mathbb{Z}_d = \{0, 1, 2, \dots, d-1\}$. Then:

$$gcd(a, b) = \{d + (X + dk)\varepsilon; k \in \mathbb{Z}\}$$

• gcd(a, b) is a good $gcd \Leftrightarrow gcd(a_0, b_0) = d$

• Let $a, b \in \mathbb{Z}$ and gcd(a, b) = d. Then:

• Let $a, b \in \mathbb{Z}$ and gcd(a, b) = d. Then:

Let a = a₀ + a₁ε, b = b₀ + b₁ε be two dual integers. The ideal
 < a, b > is a principal ideal in ℤ[ε] if and only if there exists a good greatest common divisor of a and b in ℤ[ε].

• Let $a, b \in \mathbb{Z}$ and gcd(a, b) = d. Then:

Let a = a₀ + a₁ε, b = b₀ + b₁ε be two dual integers. The ideal
 < a, b > is a principal ideal in ℤ[ε] if and only if there exists a good greatest common divisor of a and b in ℤ[ε].

• The ring $\mathbb{Z}[\varepsilon]$ is not a principal ideal ring.

Graz (10 - 14 July, 2023)

17/23

Let $A = A_0 + A_1 \varepsilon$ be a dual integer matrix. The matrix A is invertible if and only if its determinant is of the form

$$\det(A) = \pm 1 + k\varepsilon$$

Then:

$$A^{-1} = A_0^{-1} - A_0^{-1} A_1 A_0^{-1} \varepsilon$$

Let $A = A_0 + A_1 \varepsilon$ be a dual integer matrix. The matrix A can be written in the Smith normal form if there are two invertible matrices $U = U_0 + U_1 \varepsilon$ and $V = V_0 + V_1 \varepsilon$ and a diagonal matrix $S = S_0 + S_1 \varepsilon$ such that:

$$UAV = S$$

Let $A = A_0 + A_1 \varepsilon$ be a dual integer matrix. The matrix A can be written in the Smith normal form if there are two invertible matrices $U = U_0 + U_1 \varepsilon$ and $V = V_0 + V_1 \varepsilon$ and a diagonal matrix $S = S_0 + S_1 \varepsilon$ such that:

$$UAV = S$$

The matrix S_0 is the Smith normal form of A_0 .

Let $A = A_0 + A_1 \varepsilon$ be a dual integer matrix. The necessary and sufficient condition for the existence of the Smith normal form of a dual integer matrix is the existence of a **good greatest common divisor** Δ_i of all $i \times i$ minors of the matrix A, i.e.,

$$\Delta_i = d_i + s_i \varepsilon$$

where d_i is the greatest common divisor of all $i \times i$ minors of the matrix A_0 . Then:

$$\alpha_i = \frac{\Delta_i}{\Delta_{i-1}}$$

for $1 \leq i \leq r$ and $\Delta_{i-1} = 1$.

Let $A = A_0 + A_1 \varepsilon$ be a dual integer matrix. If the matrix A can be written in the Smith normal form, then its representation in the Smith normal form is unique.

Thank you

<u> イロト</u> イ 🗇 ト イ ミ ト イ ミ ト