On the Smith normal form of dual integer matrices

Baraah Maya

Brno University of Technology - Czech Republic

$$
\text { Graz (} 10-14 \text { July, } 2023 \text {) }
$$

Smith normal form of a matrix

- Let A be a nonzero matrix over a principal ideal domain PID. There exist two matrices U and V such that:

where U and V are invertible matrices.

Smith normal form of a matrix

- Let A be a nonzero matrix over a principal ideal domain PID. There exist two matrices U and V such that:

where U and V are invertible matrices.
- The Smith normal form over a PID is unique.

Smith normal form of a matrix

$$
U A V=\left(\begin{array}{ccccccc}
\alpha_{0} & 0 & 0 & & & & 0 \\
0 & \alpha_{1} & 0 & & & & 0 \\
0 & 0 & \ddots & & & & 0 \\
& & & \alpha_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & \\
& & & & & & 0
\end{array}\right)
$$

- $\alpha_{i} \mid \alpha_{i+1}$ for all $1 \leq i \leq r$.
- $\alpha_{i}=\frac{d_{i}(A)}{d_{i-1}(A)}$.
$d_{i}(A)$ is the greatest common divisor of all $i \times i$ minors of A and $d_{0}(A):=1$.

The goal

Finding Smith normal form of a matrix over a ring which is not a principal ideal domain.

The ring of dual integers

- Let us consider the ring:

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

The ring of dual integers

- Let us consider the ring:

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

- Let us consider the polynomial:

$$
f(x)=x^{2}-2 a x+a^{2} ; \quad a \in \mathbb{Z}
$$

The ring of dual integers

- Let us consider the ring:

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

- Let us consider the polynomial:

$$
f(x)=x^{2}-2 a x+a^{2} ; \quad a \in \mathbb{Z}
$$

- This polynomial has one root in \mathbb{Z} :

$$
x=a
$$

The ring of dual integers

- Let us consider the ring:

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

- Let us consider the polynomial:

$$
f(x)=x^{2}-2 a x+a^{2} ; \quad a \in \mathbb{Z}
$$

- This polynomial has one root in \mathbb{Z} :

$$
x=a
$$

- It has infinitely many roots in $\mathbb{Z}[\varepsilon]$:

$$
x=a+b \varepsilon
$$

where $b \in \mathbb{Z}$.

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

- The set of zero divisors:

$$
Z(\mathbb{Z}[\varepsilon])=\{b \varepsilon ; \quad b \in \mathbb{Z}\}=\varepsilon \mathbb{Z}[\varepsilon]
$$

$$
\mathbb{Z}[\varepsilon]=\left\{a+b \varepsilon ; \quad a, b \in \mathbb{Z}, \quad \varepsilon^{2}=0\right\}
$$

- The set of units:

$$
U(\mathbb{Z}[\varepsilon])=\{ \pm 1+b \varepsilon ; \quad b \in \mathbb{Z}\}
$$

The division in $\mathbb{Z}[\varepsilon]$

Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers.

$$
\frac{a}{b}=\frac{\left(a_{0}+a_{1} \varepsilon\right)\left(b_{0}-b_{1} \varepsilon\right)}{\left(b_{0}+b_{1} \varepsilon\right)\left(b_{0}-b_{1} \varepsilon\right)}=\frac{a_{0}}{b_{0}}+\frac{a_{1} b_{0}-a_{0} b_{1}}{b_{0}^{2}} \varepsilon
$$

where $b_{0} \neq 0$.

- Let $a, b \in \mathbb{Z}$. There exits a unique pair (q, r) such that:

$$
a=b q+r
$$

where $r=0$ or $|r|<|b|$.

- Let $a, b \in \mathbb{Z}$. There exits a unique pair (q, r) such that:

$$
a=b q+r
$$

where $r=0$ or $|r|<|b|$.

- Let $a, b \in \mathbb{Z}[\varepsilon]$. There exit infinitely many (q, r) such that:

$$
a=b q+r
$$

- Let $a, b \in \mathbb{Z}$. There exits a unique pair (q, r) such that:

$$
a=b q+r
$$

where $r=0$ or $|r|<|b|$.

- Let $a, b \in \mathbb{Z}[\varepsilon]$. There exit infinitely many (q, r) such that:

$$
a=b q+r
$$

- Let $a=a_{0}+a_{1} \varepsilon$. The pseudo-norm of a is:

$$
N(a)=\sqrt{a_{0}^{2}+a_{1}^{2}}
$$

The division with remainder

To divide $a=a_{0}+a_{1} \varepsilon$ by $b=b_{0}+b_{1} \varepsilon$:

- Find q_{0} and r_{0} such that $a_{0}=b_{0} q_{0}+r_{0}$.
- Compute:

$$
\begin{gathered}
Q_{r}=\left\lfloor\frac{a_{1}-b_{1} q_{0}}{b_{0}}\right\rfloor, \quad r_{1}=a_{1}-b_{1} q_{0}-b_{0} Q_{r} \\
Q_{s}=\left\lfloor\frac{a_{1}-b_{1} q_{0}}{b_{0}}\right\rfloor-1, \quad s_{1}=a_{1}-b_{1} q_{0}-b_{0} Q_{s}
\end{gathered}
$$

- Put:

$$
\begin{array}{ll}
r=r_{0}+r_{1} \varepsilon, & q_{r}=q_{0}+Q_{1} \varepsilon \\
s=r_{0}+s_{1} \varepsilon, & q_{s}=q_{0}+Q_{s} \varepsilon
\end{array}
$$

Then:

$$
\begin{aligned}
& a=b q_{r}+r \\
& a=b q_{s}+s
\end{aligned}
$$

The divisors of a dual integer

Let $a=a_{0}+a_{1} \varepsilon$ be a dual integer.

- Find all divisors of a_{0} in \mathbb{Z} :

$$
\left\{d_{0}=1, d_{1}, d_{2}, \ldots, d_{m}\right\}
$$

- For $1 \leq i \leq m$, solve the congruence:

$$
\frac{a_{0}}{d_{i}} X \equiv a_{1}\left(\bmod \quad d_{i}\right)
$$

- If X is a solution in $\left\{0,1,2, \ldots, d_{i}-1\right\}$, then there exist infinitely many divisors of the form:

$$
d_{i}+\left(X+\frac{d_{i}}{c} k\right) \varepsilon ; \quad k \in \mathbb{Z}
$$

where $c=\operatorname{gcd}\left(\frac{a_{0}}{d_{i}}, a_{1}, d_{i}\right)$.

The primes in $\mathbb{Z}[\varepsilon]$

- Let $p=p_{0}+p_{1} \varepsilon$ be a dual integer. Then p is a prime in $\mathbb{Z}[\varepsilon]$ if:

$$
p|a b \quad \Rightarrow \quad p| a \quad \text { or } \quad p \mid b
$$

- There are no primes in $\mathbb{Z}[\varepsilon]$.

The irreducible elements in $\mathbb{Z}[\varepsilon]$

- The dual integer $a=a_{0}+a_{1} \varepsilon$ is an irreducible element in $\mathbb{Z}[\varepsilon]$ if:

$$
a=b c \Rightarrow b \text { is a unit or } c \text { is a unit. }
$$

- The irreducible elements in $\mathbb{Z}[\varepsilon]$ are the primes in \mathbb{Z} or:

$$
a=p^{k}+a_{1} \varepsilon
$$

where p is a prime in $\mathbb{Z}, k \geq 1$ and $\operatorname{gcd}\left(p, a_{1}\right)=1$.

The common divisors of two dual integers

Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers.

- Find all common divisors of the integers a_{0} and b_{0} in \mathbb{Z} :

$$
\left\{d_{0}=1, d_{1}, d_{2}, \ldots, d_{m}\right\}
$$

- For $1 \leq i \leq m$, solve the system:

$$
\begin{aligned}
& \frac{a_{0}}{d_{i}} X \equiv a_{1}\left(\bmod \quad d_{i}\right) \\
& \frac{b_{0}}{d_{i}} X \equiv b_{1}\left(\bmod \quad d_{i}\right)
\end{aligned}
$$

- If X is a solution in $\left\{0,1,2, \ldots, d_{i}-1\right\}$, then there exist infinitely many common divisors of the form:

$$
d_{i}+\left(X+\frac{d_{i}}{c} k\right) \varepsilon ; \quad k \in \mathbb{Z}
$$

where $c=\operatorname{gcd}\left(\frac{a_{0}}{d_{i}}, \frac{b_{0}}{d_{i}}, a_{1}, b_{1}, d_{i}\right)$.

The greatest common divisor of two dual integers

Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon, g=g_{0}+g_{1} \varepsilon$ be dual integers such that:

- $g \mid a$ and $g \mid b$ in $\mathbb{Z}[\varepsilon]$.
- If $d=d_{0}+d_{1} \varepsilon$ is another common divisor of a and b, then $d \mid g$ in $\mathbb{Z}[\varepsilon]$.
- There exist two dual integers x and y such that:

$$
a x+b y=g
$$

The dual integer g is called good greatest common divisor of a and b in $\mathbb{Z}[\varepsilon]$.

Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers and $g=g_{0}+g_{1} \varepsilon$ a common divisor of a and b with the greatest real part among all other common divisors. Let $m=m_{0}+m_{1} \varepsilon$ be another common divisor such that:

- $m_{0} \mid g_{0}$ in \mathbb{Z},
- $m \nmid g$ in $\mathbb{Z}[\varepsilon]$.

Then there does not exist the greatest common divisor of a and b in $\mathbb{Z}[\varepsilon]$.

The existence of the greatest common divisor of two dual

 integers- Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers, and let d be the greatest integer for which the system:

$$
\left.\begin{array}{l}
\frac{a_{0}}{d} X \equiv a_{1}(\bmod \\
\frac{b_{0}}{d} X \equiv b_{1}(\bmod
\end{array} \quad d\right)
$$

is solvable. The greatest common divisor of a and b in $\mathbb{Z}[\varepsilon]$ exists if and only if the considered system has a unique solution X in $\mathbb{Z}_{d}=\{0,1,2, \ldots, d-1\}$. Then:

$$
\operatorname{gcd}(a, b)=\{d+(X+d k) \varepsilon ; k \in \mathbb{Z}\}
$$

The existence of the greatest common divisor of two dual

 integers- Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers, and let d be the greatest integer for which the system:

$$
\left.\begin{array}{l}
\frac{a_{0}}{d} X \equiv a_{1}(\bmod \\
\frac{b_{0}}{d} X \equiv b_{1}(\bmod
\end{array} \quad d\right)
$$

is solvable. The greatest common divisor of a and b in $\mathbb{Z}[\varepsilon]$ exists if and only if the considered system has a unique solution X in $\mathbb{Z}_{d}=\{0,1,2, \ldots, d-1\}$. Then:

$$
\operatorname{gcd}(a, b)=\{d+(X+d k) \varepsilon ; k \in \mathbb{Z}\}
$$

- $\operatorname{gcd}(a, b)$ is a good $\operatorname{gcd} \Leftrightarrow \operatorname{gcd}\left(a_{0}, b_{0}\right)=d$
- Let $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=d$. Then:

$$
<a, b>=<d>
$$

- Let $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=d$. Then:

$$
<a, b>=<d>
$$

- Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers. The ideal $<a, b>$ is a principal ideal in $\mathbb{Z}[\varepsilon]$ if and only if there exists a good greatest common divisor of a and b in $\mathbb{Z}[\varepsilon]$.
- Let $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=d$. Then:

$$
<a, b>=<d>
$$

- Let $a=a_{0}+a_{1} \varepsilon, b=b_{0}+b_{1} \varepsilon$ be two dual integers. The ideal $<a, b>$ is a principal ideal in $\mathbb{Z}[\varepsilon]$ if and only if there exists a good greatest common divisor of a and b in $\mathbb{Z}[\varepsilon]$.
- The ring $\mathbb{Z}[\varepsilon]$ is not a principal ideal ring.

The inverse of a dual matrix

Let $A=A_{0}+A_{1} \varepsilon$ be a dual integer matrix. The matrix A is invertible if and only if its determinant is of the form

$$
\operatorname{det}(A)= \pm 1+k \varepsilon
$$

Then:

$$
A^{-1}=A_{0}^{-1}-A_{0}^{-1} A_{1} A_{0}^{-1} \varepsilon
$$

The Smith normal form of a dual integer matrix

Let $A=A_{0}+A_{1} \varepsilon$ be a dual integer matrix. The matrix A can be written in the Smith normal form if there are two invertible matrices $U=U_{0}+U_{1} \varepsilon$ and $V=V_{0}+V_{1} \varepsilon$ and a diagonal matrix $S=S_{0}+S_{1} \varepsilon$ such that:

$$
U A V=S
$$

The Smith normal form of a dual integer matrix

Let $A=A_{0}+A_{1} \varepsilon$ be a dual integer matrix. The matrix A can be written in the Smith normal form if there are two invertible matrices $U=U_{0}+U_{1} \varepsilon$ and $V=V_{0}+V_{1} \varepsilon$ and a diagonal matrix $S=S_{0}+S_{1} \varepsilon$ such that:

$$
U A V=S
$$

The matrix S_{0} is the Smith normal form of A_{0}.

The existence of the Smith normal form of a dual matrix

Let $A=A_{0}+A_{1} \varepsilon$ be a dual integer matrix. The necessary and sufficient condition for the existence of the Smith normal form of a dual integer matrix is the existence of a good greatest common divisor Δ_{i} of all $i \times i$ minors of the matrix A, i.e.,

$$
\Delta_{i}=d_{i}+s_{i} \varepsilon
$$

where d_{i} is the greatest common divisor of all $i \times i$ minors of the matrix A_{0}. Then:

$$
\alpha_{i}=\frac{\Delta_{i}}{\Delta_{i-1}}
$$

for $1 \leq i \leq r$ and $\Delta_{i-1}=1$.

The uniqueness of the Smith normal form

Let $A=A_{0}+A_{1} \varepsilon$ be a dual integer matrix. If the matrix A can be written in the Smith normal form, then its representation in the Smith normal form is unique.

Thank you

