Leavitt Path Algebras & Talented monoids via Lie Brackels and Adjacency Matrices

Alfilgen N. Sebandal

Mindanao State University - IIT (Philippines) Western Sydney University (Australia)

- W. Bock, C.G. Canto, I.R. Campos, D. Martin Barquero, C. Martin Gonzalez and Sebandal, A. (2022). Algebraic Entropy and A Complete Classification of Path Algebras over Finite Graphs by Growth. preprint
- Bock, W., Sebandal, A. (2022). An Adjacency Matrix Perspective of Talented monoids and Leavitt path algebras. To appear in *Linear Algebra* and its Applications
- Bock, W., Sebandal, A., & Vilela, J. (2022). A talented monoid view on Lie bracket algebras over Leavitt path algebras. Journal of Algebra and Its Applications
- Hazrat, R., Sebandal, A., & Vilela, J. P. (2022). Graphs with disjoint cycles classification via the talented monoid. *Journal of Algebra*
- Sebandal, A., & Vilela, J. (2022). **The Jordan– Hölder theorem for monoids with group action.** *Journal of Algebra and Its Applications*

Roozbeh Hazrat WSU, Australia

Jocelyn Vilela MSU-IIT, Philippines

Wolfgang Bock RPTU, Germany

Candido Martin Dolores Martin Barquero Cristobal Gil Canto Ivan Ruiz Campos UMA, Spain

◆□▶▲□▶▲□▶▲□▶▲□▼

▲□▶▲□▶▲□▶▲□▶▲□ ♪ ④ ◆ ◎

Graded Classification Conjecture

For finite graphs *E* and *F*:

 $T_E \cong T_F \iff Gr-L_K(E) \approx_{gr} Gr-L_K(F)$

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr-L_K(E) \approx_{gr} Gr-L_K(F)$$

 \mathbb{Z} -isomorphism of talented monoids

Graded equivalence of categories of graded modules over the Leavitt path algebra

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr-L_K(E) \approx_{gr} Gr-L_K(F)$$

 \mathbb{Z} -isomorphism of talented monoids

Graded equivalence of categories of graded modules over the Leavitt path algebra

Graded Classification Theorem: Polycephaly Graphs (Hazrat, circa 2013)

◆□▶▲□▶▲□▶▲□▶▲□▼

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ 少々?

▲□▶▲□▶▲□▶▲□▶ □ のへで

Ant

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ - 콜

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ 少へぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ 少へぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

・・・

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ (?)

Abrams, Sklar (2010)

a = b b = a + b + cc = a + b

Abrams, Sklar (2010)

Let *E* be a row-finite directed graph. The graph monoid of *E*, denoted by M_E , is the abelian monoid generated by $\{v : v \in E^0\}$, subject to

$$v = \sum_{e \in s^{-1}(v)} r(e)$$

for every $v \in E^0$ that is not a sink.

In M_E :

a = b = a + b + c = c + c = 2c

$$a = b = a + b + c = c + c = 2c$$

 $M_E = \mathcal{V}(L_K(E))$

– monoid of finitely generated projective module of $L_K(E)$

[Ara, Moreno, Pardo (2007)]

Hazrat and Li (2019) modified the puzzle as follows:

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う く ()・

Hazrat and Li (2019) modified the puzzle as follows:

 $\begin{aligned} a(2) &= b(3) \\ &= a(4) + b(4) + c(4) \\ &= c(3) + c(4) \end{aligned}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

Talented Monoid

Let *E* be a row-finite graph. The *talented monoid* of *E*, denoted by T_E , is the abelian monoid generated by $\{v(i) : v \in E^0, i \in \mathbb{Z}\}$, subject to

$$v(i) = \sum_{e \in s^{-1}(v)} r(e)(i+1)$$

for every $i \in \mathbb{Z}$ and every $v \in E^0$ that is not a sink.

- < ⊒ >

Talented Monoid

Let *E* be a row-finite graph. The *talented monoid* of *E*, denoted by T_E , is the abelian monoid generated by $\{v(i) : v \in E^0, i \in \mathbb{Z}\}$, subject to

$$v(i) = \sum_{e \in s^{-1}(v)} r(e)(i+1)$$

for every $i \in \mathbb{Z}$ and every $v \in E^0$ that is not a sink.

$$T_E = \mathcal{V}^{gr}(L_K(E))$$

- monoid of graded finitely generated
projective module of $L_K(E)$

[Ara, Hazrat, Li, 2018]

 $M_E \cong M_F$

 $T_E \not\cong T_F$

< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ??</p>

▲□▶▲□▶▲□▶▲□▶ □ シッペ

####

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

 $\checkmark Q (\sim$

Saturated

 $x, y, z \in H \implies u \in H$

▲□▶▲□▶▲□▶▲□▶ ▲□▼

\mathbb{Z} acts on T_E : ${}^n v(i) = v(i+n) \qquad \Rightarrow \qquad T_E$ is a \mathbb{Z} -monoid

Example

A **Z**-order ideal of T_E is a subset *I* of T_E such that for $\alpha, \beta \in \mathbb{Z}$,

$${}^{\alpha}a + {}^{\beta}b \in I \quad \Longleftrightarrow \quad a, b \in I.$$

▲□▶▲□▶▲□▶▲□▶ □ ● ◇◇◇

Theorem

Let *E* be an arbitrary graph with countably many vertices and $\emptyset \neq H \subset E^0$. Then *H* is a hereditary saturated subset of E^0 if and only if up to a permutation on E^0 , the adjacency matrix of *E* could be written of the form

$$\operatorname{Adj}(E) = \left(\begin{array}{cc} \operatorname{Adj}(H) & 0\\ A & B \end{array}\right),$$

where for each *i*, $A_{i,s} = 0$ for all *s* if $B_{i,t} = 0$ for all *t*.

・ロ・・日・・日・・日・・日・シックへ

・ ロ ・ ・ 白 ・ ・ 山 ・ ・ 白 ・ ・ 日 ・

E:

$$H_{1} \subset H_{2} \subset E^{0}$$
$$\langle H_{1} \rangle \subset \langle H_{2} \rangle \subset T_{E}$$
$$\mathsf{Adj}(E) = \begin{pmatrix} \left(\begin{array}{c} \mathsf{Adj}(H_{1}) & 0 \\ A_{2} & B_{2} \end{array} \right) & 0 \\ A_{3} & B_{3} \end{pmatrix}$$

・ ロ ト ・ 酉 ト ・ 重 ト ・ 恒 ト ・ 日 ト

sequence of hereditary saturated subsets of *E*

$$\emptyset \neq H_1 \subset H_2 \subset \cdots \subset H_n \subset E^0$$

chain of \mathbb{Z} -order ideals of T_E

$$0 \subset \langle H_1 \rangle \subset \langle H_2 \rangle \subset \langle H_3 \rangle \subset \cdots \subset \langle H_n \rangle \subset T_E.$$

chain of hereditary saturated submatrices of Adj(E)

$$\operatorname{Adj}(E) = \begin{pmatrix} \left(\begin{pmatrix} \operatorname{Adj}(H_1) & 0 \\ A_2 & B_2 \end{pmatrix} & 0 \\ A_3 & B_3 \end{pmatrix} & 0 \\ A_4 & B_4 \end{pmatrix} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ A_n & & B_n \end{pmatrix} & 0 \\ A_{n+1} & & B_{n+1} \end{pmatrix}$$

 $0 \subset_{fp} \operatorname{Adj}(H_1) \subset_{fp} \operatorname{Adj}(H_2) \subset_{fp} \operatorname{Adj}(H_3) \subset_{fp} \cdots \subset_{fp} \operatorname{Adj}(H_n) \subset_{fp} \operatorname{Adj}(E)$

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = T. \tag{(*)}$$

Furthermore, we say (*) is a **Z**-composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple **Z**-monoids.

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = T. \tag{(*)}$$

Furthermore, we say (*) is a **Z**-composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple **Z**-monoids.

chain of \mathbb{Z} -order ideals of T_E

$$0 \subset \langle H_1 \rangle \subset \langle H_2 \rangle \subset \langle H_3 \rangle \subset \cdots \subset \langle H_n \rangle \subset T_E.$$

chain of hereditary saturated submatrices of Adj(*E*)

$$\operatorname{Adj}(E) = \begin{pmatrix} \left(\begin{pmatrix} \operatorname{Adj}(H_1) & 0 \\ A_2 & B_2 \end{pmatrix} & 0 \\ A_3 & B_3 \end{pmatrix} & 0 \\ A_4 & B_4 \end{pmatrix} & \cdots & 0 \\ \vdots & & \ddots & \\ A_n & & & B_n \end{pmatrix} & 0 \\ \vdots & & & \ddots & \\ A_{n+1} & & & & B_{n+1} \end{pmatrix}$$

 $0 \subset_{fp} \operatorname{Adj}(H_1) \subset_{fp} \operatorname{Adj}(H_2) \subset_{fp} \operatorname{Adj}(H_3) \subset_{fp} \cdots \subset_{fp} \operatorname{Adj}(H_n) \subset_{fp} \operatorname{Adj}(E) \quad \text{we can set a star of the set of t$

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = T. \tag{(*)}$$

Furthermore, we say (*) is a **Z**-composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple **Z**-monoids.

Jordan-Hölder Theorem

Two Γ -series of a refinement Γ -monoid T have equivalent refinement. Thus, any Γ -composition series are equivalent and a Γ -monoid having a composition series determines a unique list of simple Γ -monoids.

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = T. \tag{(*)}$$

Furthermore, we say (*) is a **Z**-composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple **Z**-monoids.

chain of \mathbb{Z} -order ideals of T_E

$$0 \subset \langle H_1 \rangle \subset \langle H_2 \rangle \subset \langle H_3 \rangle \subset \cdots \subset \langle H_n \rangle \subset T_E.$$

chain of hereditary saturated submatrices of Adj(*E*)

$$\operatorname{Adj}(E) = \begin{pmatrix} \left(\begin{pmatrix} \operatorname{Adj}(H_1) & 0 \\ A_2 & B_2 \end{pmatrix} & 0 \\ A_3 & B_3 \end{pmatrix} & 0 \\ A_4 & B_4 \end{pmatrix} & \cdots & 0 \\ \vdots & & \ddots & \\ A_n & & & B_n \end{pmatrix} & 0 \\ \vdots & & & \ddots & \\ A_{n+1} & & & & B_{n+1} \end{pmatrix}$$

 $0 \subset_{fp} \operatorname{Adj}(H_1) \subset_{fp} \operatorname{Adj}(H_2) \subset_{fp} \operatorname{Adj}(H_3) \subset_{fp} \cdots \subset_{fp} \operatorname{Adj}(H_n) \subset_{fp} \operatorname{Adj}(E) \quad \text{we can set a star of the set of t$

Proposition

If *E* is a finite graph with $E^0 = \{v_1, v_2, ..., v_n\}$ and where the vertices $v_m, v_{m+1}, ..., v_n$ are the sinks in *E*, and Adj(*E*) its adjacency matrix. Then for all $k \in \mathbb{N}$,

$$\begin{pmatrix} v_1(0) \\ \vdots \\ v_n(0) \end{pmatrix} = \operatorname{Adj}(E)^k \begin{pmatrix} v_1(k) \\ \vdots \\ v_n(k) \end{pmatrix} + \sum_{l=1}^{k-1} \operatorname{Adj}(E)^l B_l$$

where B_l is an $n \times 1$ matrix with $(B_l)_{i,1} = v_i(l)$ for all $i = m, \dots, n$ and $(B_m)_{i,1} = 0$ for i < m. Notice that under these computations, $v_i(0) = 0$ if and only if v_i is a sink.

Theorem

Let *E* be a finite graph *A* its adjacency matrix. Then for each k > 1, the number linearly independent elements of $L_K(E)$ of the form $\alpha\beta^*$ where $l(\alpha) + l(\beta) = k$ is

$$p_k(E) = \sum_{s+t=k} \left(\sum_{j=1}^n \left(||A^s||_j^c \right) \left(||A^t||_j^c \right) \right) - \sum_{\substack{s+t=k\\s,t>0}} \left(\sum_{\substack{||A||_j^r = 1}} \left(||A^{s-1}||_j^c \right) \left(||A^{t-1}||_j^c \right) \right).$$

Let *A* be an algebra (not necessarily unital), which is generated by a finite dimensional subspace *V*. Let V^n denote the span of all products $v_1v_2 \cdots v_n$, $v_i \in V$, $k \leq n$. Then $V = V^1 \subseteq V^2 \subseteq \cdots$,

$$A = \bigcup_{n \ge 1} V^n$$
 and $g_{V(n)} = \dim V^n < \infty$.

If $g_{(V(n))}$ is polynomially bounded, then the *Gelfand-Kirillov dimension* of *A* is defined as

$$\operatorname{GKdim} A = \limsup_{n \to \infty} \frac{\ln g_{V(n)}}{\ln n}.$$

$$E: \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right) \left(\left(\begin{array}{c} \\ \end{array} \right) \left(\left(\begin{array}{c}$$

$$\operatorname{GKdim} L_K(E) = 5$$

We define the *algebraic entropy of a filtered algebra* (A, \mathcal{F}) where $\mathcal{F} = \{V_n\}$, by

$$h(A,\mathcal{F}) := \begin{cases} 0 & \text{if A is finite dimensional,} \\ \limsup_{n \to \infty} \frac{\log \dim(V_n/V_{n-1})}{n} & \text{otherwise.} \end{cases}$$

For $L_K(E)$ we define its *standard filtration* $\{W_i\}_{i \in \mathbb{N}}$ so that W_0 is the linear span of the set of vertices of E, being W_1 the sum of W_0 plus the linear span of the set $E^1 \cup (E^1)^*$. For W_k we take the linear span of the set of elements: $\lambda \mu^*$ with $l(\lambda) + l(\mu) \le k$.

$$F: \quad \bigoplus \quad \bigoplus \quad h(L_K(E)) = \log(2)$$

We define the *algebraic entropy of a filtered algebra* (A, \mathcal{F}) where $\mathcal{F} = \{V_n\}$, by

$$h(A,\mathcal{F}) := \begin{cases} 0 & \text{if A is finite dimensional,} \\ \limsup_{n \to \infty} \frac{\log \dim(V_n/V_{n-1})}{n} & \text{otherwise.} \end{cases}$$

For $L_K(E)$ we define its *standard filtration* $\{W_i\}_{i \in \mathbb{N}}$ so that W_0 is the linear span of the set of vertices of E, being W_1 the sum of W_0 plus the linear span of the set $E^1 \cup (E^1)^*$. For W_k we take the linear span of the set of elements: $\lambda \mu^*$ with $l(\lambda) + l(\mu) \le k$.

GKdim 5 00 Entropy 0 log(2)

$T_E \cong T_F \implies GKdim(L_k(E)) = GKdim(L_k(F))$

 $T_{E} \cong T_{F} \implies GKdim(L_{k}(E)) = GKdim(L_{k}(F))$ $T_{E} \cong T_{F} \implies h(L_{k}(E)) = h(L_{k}(F))$

Theorem

Let *E* be a finite graph, *A* its corresponding adjacency matrix and fix $k \in \mathbb{N}$. In $L_K(E)$, dim (V_k/V_{k-1}) is equal to:

$$p'_k(E) = \sum_{s+t=k} \left(\sum_{j=1}^n \left(||A^s||_j^c \right) \left(||A^t||_j^c \right) \right) - \sum_{\substack{s+t=k\\s,t>0}} \left(\sum_{j=1}^n \left(||A^{s-1}||_j^c \right) \left(||A^{t-1}||_j^c \right) \right).$$

Therefore,

$$h(L_K(E)) = \limsup_{n \to \infty} \frac{\log p'_n(E)}{n}$$

▲□▶▲□▶▲□▶▲□▶ □ の�?

Balloon

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if

- (i) *v* ∉ *W*
- (ii) there is a loop $C \in E(v, v)$
- (iii) $E(v, W) \neq \emptyset$
- (iv) $E(v, E^0) = \{C\} \cup E(v, W)$
- (v) $E(E^0, v) = \{C\}.$

Balloon

We call a vertex v in a connected graph E a *balloon* over a nonempty set $W \subseteq E^0$ if

- (i) *v* ∉ *W*
- (ii) there is a loop $C \in E(v, v)$
- (iii) $E(v, W) \neq \emptyset$

(iv)
$$E(v, E^0) = \{C\} \cup E(v, W)$$

(v) $E(E^0, v) = \{C\}.$

Theorem 💙

Let *E* be a connected graph and $W \subseteq E^0$. A vertex $v \notin W$ is a balloon over *W* if and only if

- (i) $\langle E \setminus \{v\} \rangle$ is the maximal \mathbb{Z} -order-ideal of T_E which does not contain v;
- (ii) $r(s^{-1}(v)) \setminus W = \{v\};$
- (iii) $T_{E/H}$ is simple cyclic.

Theorem

Let *E* be connected row-finite graph with $L_K(E)$ not simple.

$[L_{K}(E), L_{K}(E)] \text{ is simple}$ $(I) for every vertex v \notin I \text{ for some } \mathbb{Z}\text{-order-ideal } I,$ Theorem \P (i)-(iii) are satisfied and $(I) = \sum_{W \in [L_{K}(W), L_{K}(W)]} W \in [L_{K}(W), L_{K}(W)]$

$$\sum_{w \in r(E(v,W))} w \in [L_K(W), L_K(W)]$$

where $W = E^{\circ} \cap J$, *J* the minimal non-cyclic \mathbb{Z} -order-ideal of T_E .

Theorem

Let *E* be a finite graph and T_E its talented monoid. Then the following are equivalent:

- (i) $[L_K(E), L_K(E)]$ is simple and T_E is simple.
- (ii) $L_K(E)$ is simple and

$$1_{L_K(E)} = \sum_{v \in E^0} v \notin [L_K(E), L_K(E)].$$

What's on and poppin'?

Graded Classification Conjecture

For finite graphs *E* and *F*:

 $T_E \cong T_F \iff Gr-L_K(E) \approx_{gr} Gr-L_K(F)$

What's on and poppin'?

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

The Graded Classification is true for finite-dimensional case!

What's on and poppin'?

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

The Graded Classification is true for finite-dimensional case!

$$\operatorname{dim}\left(\bigoplus_{i\in\mathbb{Z}}M_i\right)<\infty$$
What's on and poppin'?

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

The Graded Classification is true for finite-dimensional case!

$$\operatorname{dim}\left(\bigoplus_{i\in\mathbb{Z}}M_i\right)<\infty$$

 $\dim(M_i) < \infty$ for each *i*

Tenchu!

A \mathbb{Z} -series for T_E is a sequence of \mathbb{Z} -order-ideals

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n = T.$$
 (*)

Furthermore, we say (*) is a **Z**-composition series if for each $i = 0, 1 \cdots, n - 1, I_i \subsetneq I_{i+1}$ and each of quotients I_{i+1}/I_i are simple **Z**-monoids.

Jordan-Hölder Theorem

Two Γ -series of a refinement Γ -monoid T have equivalent refinement. Thus, any Γ -composition series are equivalent and a Γ -monoid having a composition series determines a unique list of simple Γ -monoids.

[Sebandal, Vilela (2021)]

 $T = \{0, 1, x, y, z, s, b\}$ and an operation (+) on given by

+	0	1	x	y	Z	S	b
0	0	1	x	y	Z	S	b
1	1	1	1	S	S	S	b
x	x	1	1	S	S	S	b
y	<i>y</i>	S	S	y	y	S	b
Z	z	S	S	y	y	S	b
S	S	S	S	S	S	S	b
b	b	b	b	b	b	b	S

Non-refinement $\Gamma\text{-monoid}$ where the action is trivial from a trivial group Γ

<ロ > < 同 > < 回 > < 回 > < 回 > <

⊒

 $\checkmark Q (\checkmark$

What's on and poppin'?

Graded Classification Conjecture

For finite graphs *E* and *F*:

$$T_E \cong T_F \iff Gr - L_K(E) \approx_{gr} Gr - L_K(F)$$

The Graded Classification is true for finite-dimensional case!

•
$$\dim\left(\bigoplus_{i\in\mathbb{Z}}M_i\right)<\infty$$

Sinkless graphs:

 $\dim(M_i) < \infty$ for each *i*

LECENE KEX,XJ $v \mapsto 1$ $e \mapsto x$ $c^* \mapsto x^{-1}$

LK(F)= Mn(K) $\nu_i \mapsto e_{\nu_i}$ fi h > Ci, in fit in Cini

Definition 2.9. Let T be a Γ -monoid. The *upper cyclic series* of T is a chain of Γ -orderideals

$$0 = I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n,$$

where I_{i+1}/I_i is the largest cyclic ideal of T/I_i , $0 \le i \le n-1$. We call I_n the *leading ideal* of the series and denote n by $l_c(T)$.