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R. Hazrat (2013)

Graded Classification Conjecture

For finite graphs E and F:
ITrp=1lr GT-LK(E) oy G?’-LK(F)

v

Z-isomorphism of Graded equivalence of categories of
talented monoids graded modules over the
Leavitt path algebra

Graded Classification Theorem:
Polycephaly Graphs (Hazrat, circa 201 3)
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Leavitt path algebra

LK(E) Abrams, Pino (2005)
Ara, Moreno, Pardo (2007)

Directed graph —> Talented monoid
E T Hazrat (2013)
£ Hazrat, Li (2020)
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Graph Monoid

Abrams, Sklar (2010)
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Graph Monoid

Abrams, Sklar (2010)
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Let E be a row-finite directed graph. The graph monoid of E,
denoted by M, is the abelian monoid generated by {v : v € E'},

subject to
U= Z r(e)

ecs~1(v)

for every v € EV that is not a sink.
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Mg = V(Lk(E))

— monoid of finitely generated projective module of Lg(E)

[Ara, Moreno, Pardo (2007)]
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Talented Monoid

Let E be a row-finite graph. The talented monoid of E, denoted
by Tk, is the abelian monoid generated by {v(i) : v € E°,i € Z},
subject to

(i) = Z re)(i + 1)

ecs~1(v)

for every i € Z and every v € E' that is not a sink.

/' u(R) = xGa) ¥ ylrd) ¥ 2l




Talented Monoid

Let E be a row-finite graph. The talented monoid of E, denoted
by Tk, is the abelian monoid generated by {v(i) : v € E°,i € Z},
subject to

(i) = Z re)(i + 1)

ecs~1(v)

for every i € Z and every v € E' that is not a sink.

Te = V¥(Lk(E))
— monoid of graded finitely generated

projective module of Lx(E)

[Ara, Hazrat, Li, 2018]
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Leavitt path algebra Graded Ideal
LK( E) I(H)
[Abrams, Ara, Molina (2017)]
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Z. acts on TE: — Tt is a Z-monoid
"o(1) = v(1 +n)

A Z-order ideal of Tg is a subset I of Tg such that for o, € Z,

q+Phe] — abel




Leavitt path algebra Graded Ideal
LK( E) I(H)
[Abrams, Ara, Molina (2017)]

Directed graph —— Talented monoid Z-order-ideal
15 T, (H)

Hereditary Saturated Set [Ara, Hazrat, Li, Sims (2018)]

H

Adj acency Matrix Hereditary Saturated
submatrix

AdJ (E ) [Bock, Sebandal (2022)]




Let E be an arbitrary graph with countably many vertices and
@ # H c E'. Then H is a hereditary saturated subset of E° if and
only if up to a permutation on E°, the adjacency matrix of E
could be written of the form

Adj(E) =( AdXH) g )

where for each i, A;; = 0 for all s if B;; = 0 for all ¢.
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H c H, c EY

(Hy) C(Hy) CTg

Adi(H)) 0)

AdI(E) = ( A
2 B2

A, B
3



sequence of hereditary saturated subsets of E
@+ H,cHyc---cH,cE°
chain of Z-order ideals of Tk
0 C(Hy) C(Hz) C(H3) C--- C(Hy) CTE.

chain of hereditary saturated submatrices of Adj(E)

(W(Adj(Hl) o) 0\ ) ) )
A B> 0 0
\ As B,
Adj(E) = ||\ Ay By, 0
\ Ay By
L An+1 Bn+1}

0 cp, Adj(H1) 5, Adj(H2) C, Adj(Hs) Cp, - -+ C, Adj(Hy) C, Adj(E)



A Z-series for T is a sequence of Z-order-ideals

O=hhchChc---CI,=T. ()

Furthermore, we say (%) is a Z-composition series if for each
1=0,1---,n—-1,[; C [;41; and each of quotients I;;1/I; are simple
Z-monoids.
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A Z-series for TE is a sequence of Z-order-ideals
O=hhchChc---CI,=T. ()

Furthermore, we say (%) is a Z-composition series if for each
1=0,1---,n—-1,[; C [;41; and each of quotients I;;1/I; are simple
Z-monoids.

Jordan-Holder Theorem

Two I'-series of a refinement I-monoid T have equivalent
refinement. Thus, any I'-composition series are equivalent and

a I'-monoid having a composition series determines a unique
list of simple I'-monoids.
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Where else can we use the notion of
adjacency matrices?

Proposition

If E is a finite graph with EY = {v1,v,,...,v,} and where the
vertices Uy, Um+1, - - - , Uy are the sinks in E, and Adj(E) its
adjacency matrix. Then for all k € IN,

/ 01 (O) |

\ Unko) )

where B; is an n X 1 matrix with (B;);1 = v;(l) foralli =m, - - -

= AdJ(E)}

( 01 (k) \

\ Unkk) )

k—1
+ Z Adj(E)' B,
[=1

Al

and (B;;)i1 = 0 for i < m. Notice that under these computations,
0;(0) = 0 if and only if v; is a sink.

v




Where else can we use the notion of
adjacency matrices?

Let E be a finite graph A its adjacency matrix. Then for each
k > 1, the number linearly independent elements of Lx(E) of the
form aff* where I(a) + [(8) = k is

. \ ( )

pe(E) = ) 1 2L (1) (1) (= D2 | X (i) (a1 ) |

s+t=k \ =1 s+t=k | ||A|l'=1
: S Al )




Where else can we use the notion of
adjacency matrices?



Let A be an algebra (not necessarily unital), which is generated
by a finite dimensional subspace V. Let V" denote the span of
all products v1v2---v,, v; € V,k<n. ThenV = VicV?c

A=U;>1 V" and gy@) = dimV" < eo.

If g(vn)) 1s polynomially bounded, then the Gelfand-Kirillov
dimension of A is defined as

In
GKdimA = lim sup liv(n).

n—00

Q Q ) GKdimL(E) = 5

O —>p 0o —mDo
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Fr (el D

We define the algebraic entropy of a filtered algebra (A, F) where
T — {Vn}/ by

0 if A is finite dimensional,

A = logdim(V,,/V,_
HA,T) lim sup og dim(V/ V1) otherwise.

n—00 n

For Lx(E) we define its standard filtration {W,};eN so that W
is the linear span of the set of vertices of E, being W the sum of
Wy plus the linear span of the set E! U (E')*. For Wy we take the
linear span of the set of elements: Au* with I(A) + I(u) < k.



Fr (el D ML(E)) = log(2)

We define the algebraic entropy of a filtered algebra (A, F) where
T — {Vn}/ by

0 if A is finite dimensional,

A = logdim(V,,/V,_
HAT) lim sup 0g dim(Vi/Vn-1) otherwise.

300 n

For Lx(E) we define its standard filtration {W,};eN so that Wy
is the linear span of the set of vertices of E, being W the sum of
Wy plus the linear span of the set E! U (E')*. For Wy we take the
linear span of the set of elements: Au* with I(A) + I(u) < k.
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Where else can we use the notion of
adjacency matrices?

Let E be a finite graph, A its corresponding adjacency matrix
and fix k € N. In Lg(E), dim(V/Vk-1) is equal to:

( n y (n |
pB) =Y (Y (k) (at) | = Y 1) (1asie) (A=) |-
s+t=k \ j=1 ) stt=k\ j=1 )
s, t>0
Therefore,
log p;,(E)

h(Lg(E)) = lim sup

n—00 n
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Balloon

We call a vertex v in a connected graph E a balloon over a
nonempty set W C E? if

i) vg W

(i1) there is a loop C € E(v, )
(iii) E(v, W) # @
(iv) E(v,E®) = {C} U E(v, W)
(v) E(E°,v) = {C).




Balloon )

We call a vertex v in a connected graph E a balloon over a
nonempty set W C E? if

(i1) there is a loop C € E(v, )
(iii) E(v, W) # @

(iv) E(v,E°) = {C} U E(v, W) \/\/
(v) E(E’,0) = (C). \

Let E be a connected graph and W C E°. A vertexv ¢ Wisa
balloon over W if and only if

(i) (E \ {v}) is the maximal Z-order-ideal of Tr which does not
contain v;

(i) (s~ (@) \ W = {o};
(iii) Tg/y is simple cyclic.




Let E be connected row-finite graph with Lx(E) not simple. I

|Lx(E), Lx(E)] is simple
()

for every vertex v € I for some Z-order-ideal I,
Theorem ¥ (i)-(iii) are satisfied and

Y, welLk(W), Lx(W)]

wer(E(v,W))

where W = E° N ], | the minimal non-cyclic Z-order-ideal of TE.



Let E be a finite graph and TF% its talented monoid. Then the
following are equivalent:

(i) [Lx(E),Lx(E)] is simple and TE is simple.
(i1) Lk(E) is simple and

Inee) = Y 0 ¢ [Lk(E), L(E)].

veEQ
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What’s on and poppin’?

Graded Classification Conjecture

For finite graphs E and F:
Trp=lTr GT-LK(E) oy GT-LK(F)

The Graded Classification is true
for finite-dimensional case!

WVl dim (@Mi) < 00 R4 Sinkless graphs:

€L dim(M,) < oo foreach i



Tenchu !









A Z-series for Tk is a sequence of Z-order-ideals
O=ph<CL<CLC---Cl,=T. (%)

Furthermore, we say (*) is a Z-composition series if for each
1=0,1---,n—1, I; € I;;1 and each of quotients I;;1/I; are simple
Z-monoids.

Jordan-Holder Theorem

Two I'-series of a refinement I'-monoid T have equivalent
refinement. Thus, any I'-composition series are equivalent and
a I'-monoid having a composition series determines a unique
list of simple I-monoids.

[Sebandal, Vilela (2021)]
T =1{0,1,x,vy,z,5,b} and an operation (+) on given by

<<

Non-refinement
I -monoid where the action is
trivial from a trivial group 1"

SO N R RO+
ST NS R = OO
S Y
S~ L v »n|n
n TS S

STV Y S

ORGSR I



What’s on and poppin’?

Graded Classification Conjecture

For finite graphs E and F:
Trp=lTr GT-LK(E) oy GT-LK(F)

The Graded Classification is true
for finite-dimensional case!

° dim(@Ml) <

€/

® Sinkless graphs:

dim(M;) < oo for each i
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Definition 2.9. Let T" be a I'-monoid. The upper cyclic series of T is a chain of I'-order-
ideals

O=Iy,cl,Cl,c---Cl,,

where I;11/1; is the largest cyclic ideal of T'/I;, 0 < i < n — 1. We call I,, the leading
ideal of the series and denote n by [.(T).





















