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Preliminaries

Notation:

S is a numerical semigroup (submonoid of N such that N \ S
is finite)

G = {g1, . . . , ge} are the minimal generators S;
e = |G| is the embedding dimension of S;
F (S) = maxZ \ S is the Frobenius number of S;
The set of pseudo-Frobenius numbers

PF (S) = {x ̸∈ S | x + gi ∈ S for all i = 1, . . . , e}.

t(S) = |PF (S)| is the type of S.

Main topic

Study the boundedness of t(S) in terms of e.
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The general case

In the general case of semigroup rings it is known that:

1 if e = 2, then t(S) = 1.

2 if e = 3, then t(S) ≤ 2.

3 if e = 4

Example (Bresinsky, 1975)

The family of numerical semigroups

Sh = ⟨(2h−1)2h, (2h−1)(2h+1), 2h(2h+1), 2h(2h+1)+2h−1⟩

is such that t(Sh) = 4h − 3.

=⇒ In the general case the type is not bounded.
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Almost symmetric semigroups

We say that S is almost symmetric if, for every x ̸∈ S, we have
either F (S)− x ∈ S or {x ,F (S)− x} ⊆ PF (S).

Question (Numata, 2013)

Let S be an almost symmetric numerical semigroup with e(S) = 4.
Is it true that t(S) ≤ 3?

Families of almost symmetric semigroups such that t(S) is large
are present in the literature [Garćıa-Sánchez and Ojeda, 2019], but
for all of them we have 2e ≥ t.
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Row-factorization matrices

We say that a matrix Λ = (λij) ∈ Me(Z) is a RF-matrix for
f ∈ PF (S) if for every i = 1, . . . , e, λii = −1 λij ∈ N if i ̸= j and
λi1g1 + . . .+ λiege = f .

Example

Take S = ⟨6, 7, 9, 10⟩, PF (S) = {3, 8, 11}. The two matrices

Λ1 =


−1 2 0 0
1 −1 1 0
0 1 −1 1
0 0 2 −1

 , Λ2 =


−1 2 0 0
1 −1 1 0
0 1 −1 1
3 0 0 −1


are both RF-matrices for 8 ∈ PF (S).
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RF-matrices: key property

Proposition

Let Λ1 = (aij) be a RF-matrix for f and Λ2 = (bij) a RF-matrix for
F (S)− f . Then for every i ̸= j we have aijbji = 0.

Example

Take S = ⟨6, 7, 9, 10⟩. We have PF (S) = {3, 8, 11}. The matrix
Λ1 is a RF-matrix for 3, while Λ2 is a RF-matrix for 8 = F (S)− 3.

Λ1 =


−1 0 1 0
0 −1 0 1
2 0 −1 0
1 1 0 −1

 , Λ2 =


−1 2 0 0
1 −1 1 0
0 1 −1 1
0 0 2 −1

 .
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Simple case: e = 4

Let i , j ∈ {1, . . . , e}, i ̸= j and

mij = max{K ∈ N | Kgj − gi ̸∈ S}, Mij = mijgj − gi ̸∈ S,

and M = {Mij |i ̸= j}, |M| ≤ e(e − 1).

Let f ,F (S)− f ∈ PF (S).
If f = kgj − gi ∈ PF (S), then f ∈ M.

If there is a row with at least e − 2 zeroes, then the element
associated to that RF-matrix belongs to M.

In every couple of RF-matrices there are at least e(e − 1)
zeroes distributed over 2e rows.

Theorem

If S is almost symmetric and e = 4 then t(S) is bounded.
(Actually, t(S) ≤ 3)
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Advanced case: e = 5

Computational evidence [Garc̀ıa-Sànchez]

If S is almost symmetric, e = 5 and g5 ≤ 200, then t(S) ≤ 5.

If e = 5 then e(e − 1) = 20 = 2e(e − 3), so the previous argument
leaves out one case:

1 Every row and column of Λ1,Λ2 has exactly 2 zeroes.

Example

For instance we could have

Λ1 =


−1 0 0 ∗ ∗
0 −1 0 ∗ ∗
∗ ∗ −1 0 0
0 ∗ ∗ −1 0
∗ 0 ∗ 0 −1

 Λ2 =


−1 ∗ 0 ∗ 0
∗ −1 0 0 ∗
∗ ∗ −1 0 0
0 0 ∗ −1 ∗
0 0 ∗ ∗ −1


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Advanced case: e = 5

Lemma

For every possible distribution of zeroes of the form described
before, there are at most two elements of PF (S) having a
RF-matrix of that shape.

Theorem

If S is almost symmetric and e = 5 then t(S) is bounded.
(Actually, t(S) ≤ 473)
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Unknown case: e = 6 and beyond

Until now we worked in a very special setting.

If e = 4 we could easily determine the shape of the
factorization of all elements in PF (S), showing that
f = kgi − gj .

If e = 5 we could bound the number of elements of PF (S)
associated to a fixed shape of the RF-matrix.

If e ≥ 6 all of this does not work anymore.

There are a lot of elements not of the form f = kgi − gj .

It seems that there are more elements associated to
RF-matrices with the same shape.

It is not clear whether t(S) is bounded if e ≥ 6.
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Unknown case: e = 6

Example

Take S = ⟨455, 497, 574, 589, 631, 708⟩. Then t(S) = 14 and

PF (S) = {3079, 3289, 3521, 3655, 3674, 3789, 3923, 4057,

4172, 4191, 4325, 4557, 4767, 7846}.

The elements {3521, 3655, 3789, 3923, 4057, 4191} ⊂ PF (S) all
have RF-matrices sharing the same shape.

Some remarks:

The example above is the first known example of almost
symmetric numerical semigroup such that t > 2e.

”Bad” examples occur for very high values of gi - very hard to
find by computer.
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Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e ≥ 6.

Fix the shape of a matrix.

Play with the non-zero entries, and create a set of potential
RF-matrices in this way.

[Easy part] Solve the linear system given by the rows of the
matrices, finding the generators gi and the elements fj
associated to those matrices (make sure that fj ̸∈ S).
[Hard part] Check that the numerical semigroup generated by
the gi s is almost symmetric.

The previous example was built using this construction. It is not
known if this can be done for arbitrarily large sets of RF-matrices.
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Thank you for your attention.
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