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Preliminaries

Notation:
e S is a numerical semigroup (submonoid of N such that N\ S
is finite)
G ={g1,...,8e} are the minimal generators S;
e = |G| is the embedding dimension of S;
F(S) = maxZ\ S is the Frobenius number of S;

The set of pseudo-Frobenius numbers

PF(S)={x¢S|x+geSforalli=1,...,e}.

t(S) = |PF(S)] is the type of S.
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is finite)
G ={g1,...,8e} are the minimal generators S;
e = |G| is the embedding dimension of S;
F(S) = maxZ\ S is the Frobenius number of S;

The set of pseudo-Frobenius numbers

PF(S)={x¢S|x+geSforalli=1,...,e}.

t(S) = |PF(S)] is the type of S.

Study the boundedness of t(S) in terms of e.
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The general case

In the general case of semigroup rings it is known that:
Q if e =2, then t(S) = 1.
@ if e =3, then t(S) < 2.
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The general case

In the general case of semigroup rings it is known that:
Q if e =2, then t(S) = 1.
@ if e =3, then t(S) < 2.
Qife=4

Example (Bresinsky, 1975)

The family of numerical semigroups
Sp={((2h—1)2h,(2h—1)(2h+1),2h(2h+1),2h(2h+1)+2h—1)

is such that t(Sp) = 4h — 3.

= In the general case the type is not bounded.
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Almost symmetric semigroups

We say that S is almost symmetric if, for every x ¢ S, we have
either F(S) —x € S or {x, F(S) — x} C PF(S).

Question (Numata, 2013)

Let S be an almost symmetric numerical semigroup with e(S) = 4.
Is it true that t(S) < 37

Families of almost symmetric semigroups such that t(S) is large
are present in the literature [Garcia-Sanchez and Ojeda, 2019], but
for all of them we have 2e > t.
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Row-factorization matrices

We say that a matrix A = () ) e( ) is a RF-matrix for
f € PF(S) if for every i =1,.. i=—1XjeNifi#jand
)\ilgl +...+ >\lege =f.
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Row-factorization matrices

We say that a matrix A = () ) e( ) is a RF-matrix for
f € PF(S) if for every i =1,.. i=—1XjeNifi#jand
)\ilgl +...+ >\lege =f.

Take § = (6,7,9,10), PF(S) = {3,8,11}. The two matrices

1 2 0 0 1 2 0 o0
1 -1 1 0 1 -1 1 0
M=lo 1 1 1Mo 1 1 1
0o 0 2 -1 3 0 0 -1

are both RF-matrices for 8 € PF(S).

A
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RF-matrices: key property

Proposition

Let Ay = (a,’j) be a RF-matrix for f and Ay = (bu) a RF-matrix for
F(S) — f. Then for every i # j we have a;jbj;; = 0.

V,

Take § = (6,7,9,10). We have PF(S) = {3,8,11}. The matrix
A1 is a RF-matrix for 3, while Az is a RF-matrix for 8 = F(S) — 3

1 0 1 0 -1 2 0 0
0 -1 0 1 1 -1 1 0
M=l, o 1 o ™=|0o 1 1 1
1 1 0 -1 0 0 2 -1
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Simple case: e =4

Leti,je{l,...,e}, i #j and
mj =max{K e N| Kgj —gi ¢S}, Mj=mjgi—gi &S,

and M = {Mjl|i # j}, IM| < e(e—1).
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Simple case: e =4

Leti,je{l,...,e}, i #j and
mj =max{K e N| Kgj —gi ¢S}, Mj=mjgi—gi &S,

and M = {Myli # j}, |M| < e(e — 1)
Let £, F(S) — f € PF(S).
o If f =kgj — gi € PF(S), then f € M.

@ If there is a row with at least e — 2 zeroes, then the element
associated to that RF-matrix belongs to M.

@ In every couple of RF-matrices there are at least e(e — 1)
zeroes distributed over 2e rows.
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@ If there is a row with at least e — 2 zeroes, then the element
associated to that RF-matrix belongs to M.
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Advanced case: e =5

Computational evidence [Garcia-Sanchez]

If S is almost symmetric, e =5 and g5 < 200, then t(S) <5.

If e =5 then e(e — 1) = 20 = 2e(e — 3), so the previous argument
leaves out one case:

@ Every row and column of A, A> has exactly 2 zeroes.

For instance we could have
-1 0 0 * * -1 =« 0 * 0
0 -1 O * * *x —1 0 0 *
AN =] * * —1 0 0| o= = *x —1 0 0
0 * *x —1 0 0 0 e
* 0 * 0 -1 0 0 * *  —1




Advanced case: e =5

For every possible distribution of zeroes of the form described
before, there are at most two elements of PF(S) having a
RF-matrix of that shape.
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Advanced case: e =5

For every possible distribution of zeroes of the form described
before, there are at most two elements of PF(S) having a
RF-matrix of that shape.

If S is almost symmetric and e = 5 then t(S) is bounded.
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Advanced case: e =5

For every possible distribution of zeroes of the form described
before, there are at most two elements of PF(S) having a
RF-matrix of that shape.

If S is almost symmetric and e = 5 then t(S) is bounded.
(Actually, t(S) < 473)
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Unknown case: e = 6 and beyond

Until now we worked in a very special setting.
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Unknown case: e = 6 and beyond

Until now we worked in a very special setting.

o If e = 4 we could easily determine the shape of the
factorization of all elements in PF(S), showing that

f=kgi—g.
e If e =5 we could bound the number of elements of PF(S)
associated to a fixed shape of the RF-matrix.

If e > 6 all of this does not work anymore.
@ There are a lot of elements not of the form f = kg; — g;.

@ It seems that there are more elements associated to
RF-matrices with the same shape.

It is not clear whether t(S) is bounded if e > 6.
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Unknown case: e = 6

Take S = (455,497, 574,589, 631,708). Then t(S) = 14 and

PF(S) = {3079, 3289, 3521, 3655, 3674, 3789, 3923, 4057,

4172,4191,4325,4557,4767,7846}.

The elements {3521, 3655, 3789, 3923, 4057,4191} C PF(S) all
have RF-matrices sharing the same shape.

Some remarks:

@ The example above is the first known example of almost
symmetric numerical semigroup such that t > 2e.

@ "Bad" examples occur for very high values of g; - very hard to
find by computer.

11/13



Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e > 6.

12 /13



Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e > 6.

@ Fix the shape of a matrix.

12 /13



Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e > 6.

@ Fix the shape of a matrix.

@ Play with the non-zero entries, and create a set of potential
RF-matrices in this way.

12 /13



Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e > 6.

@ Fix the shape of a matrix.

@ Play with the non-zero entries, and create a set of potential
RF-matrices in this way.

@ [Easy part] Solve the linear system given by the rows of the
matrices, finding the generators g; and the elements f;
associated to those matrices (make sure that f; ¢ S).

12 /13



Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e > 6.

@ Fix the shape of a matrix.

@ Play with the non-zero entries, and create a set of potential
RF-matrices in this way.

@ [Easy part] Solve the linear system given by the rows of the
matrices, finding the generators g; and the elements f;
associated to those matrices (make sure that f; ¢ S).

e [Hard part] Check that the numerical semigroup generated by
the gjs is almost symmetric.

12 /13



Unknown case: e = 6 - potential route

Next we propose a potential route to prove that t(S) is not
bounded if e > 6.

@ Fix the shape of a matrix.

Play with the non-zero entries, and create a set of potential
RF-matrices in this way.

[Easy part] Solve the linear system given by the rows of the
matrices, finding the generators g; and the elements f;
associated to those matrices (make sure that f; ¢ S).

[Hard part] Check that the numerical semigroup generated by
the gjs is almost symmetric.

The previous example was built using this construction. It is not
known if this can be done for arbitrarily large sets of RF-matrices.
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Thank you for your attention.
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