Row-factorization matrices and type of almost Gorenstein monomial curves

Alessio Moscariello
Università di Catania
July 14th, 2023

Preliminaries

Notation:

- \mathcal{S} is a numerical semigroup (submonoid of \mathbb{N} such that $\mathbb{N} \backslash \mathcal{S}$ is finite)
- $\mathcal{G}=\left\{g_{1}, \ldots, g_{e}\right\}$ are the minimal generators \mathcal{S};
- $e=|\mathcal{G}|$ is the embedding dimension of \mathcal{S};
- $F(\mathcal{S})=\max \mathbb{Z} \backslash \mathcal{S}$ is the Frobenius number of \mathcal{S};
- The set of pseudo-Frobenius numbers

$$
P F(\mathcal{S})=\left\{x \notin \mathcal{S} \mid x+g_{i} \in \mathcal{S} \text { for all } i=1, \ldots, e\right\} .
$$

- $t(\mathcal{S})=|P F(\mathcal{S})|$ is the type of \mathcal{S}.

Preliminaries

Notation:

- \mathcal{S} is a numerical semigroup (submonoid of \mathbb{N} such that $\mathbb{N} \backslash \mathcal{S}$ is finite)
- $\mathcal{G}=\left\{g_{1}, \ldots, g_{e}\right\}$ are the minimal generators \mathcal{S};
- $e=|\mathcal{G}|$ is the embedding dimension of \mathcal{S};
- $F(\mathcal{S})=\max \mathbb{Z} \backslash \mathcal{S}$ is the Frobenius number of \mathcal{S};
- The set of pseudo-Frobenius numbers

$$
P F(\mathcal{S})=\left\{x \notin \mathcal{S} \mid x+g_{i} \in \mathcal{S} \text { for all } i=1, \ldots, e\right\} .
$$

- $t(\mathcal{S})=|P F(\mathcal{S})|$ is the type of \mathcal{S}.

Main topic

Study the boundedness of $t(\mathcal{S})$ in terms of e.

The general case

In the general case of semigroup rings it is known that:
(1) if $e=2$, then $t(\mathcal{S})=1$.
(2) if $e=3$, then $t(\mathcal{S}) \leq 2$.

The general case

In the general case of semigroup rings it is known that:
(1) if $e=2$, then $t(\mathcal{S})=1$.
(2) if $e=3$, then $t(\mathcal{S}) \leq 2$.
(3) if $e=4$

Example (Bresinsky, 1975)

The family of numerical semigroups

$$
\mathcal{S}_{h}=\langle(2 h-1) 2 h,(2 h-1)(2 h+1), 2 h(2 h+1), 2 h(2 h+1)+2 h-1\rangle
$$

is such that $t\left(\mathcal{S}_{h}\right)=4 h-3$.
\Longrightarrow In the general case the type is not bounded.

Almost symmetric semigroups

We say that \mathcal{S} is almost symmetric if, for every $x \notin \mathcal{S}$, we have either $F(\mathcal{S})-x \in \mathcal{S}$ or $\{x, F(\mathcal{S})-x\} \subseteq \operatorname{PF}(\mathcal{S})$.

Question (Numata, 2013)

Let \mathcal{S} be an almost symmetric numerical semigroup with $e(\mathcal{S})=4$. Is it true that $t(\mathcal{S}) \leq 3$?

Families of almost symmetric semigroups such that $t(\mathcal{S})$ is large are present in the literature [García-Sánchez and Ojeda, 2019], but for all of them we have $2 e \geq t$.

Row-factorization matrices

We say that a matrix $\Lambda=\left(\lambda_{i j}\right) \in M_{e}(\mathbb{Z})$ is a RF-matrix for $f \in \operatorname{PF}(\mathcal{S})$ if for every $i=1, \ldots, e, \lambda_{i j}=-1 \lambda_{i j} \in \mathbb{N}$ if $i \neq j$ and $\lambda_{i 1} g_{1}+\ldots+\lambda_{i e} g_{e}=f$.

Row-factorization matrices

We say that a matrix $\Lambda=\left(\lambda_{i j}\right) \in M_{e}(\mathbb{Z})$ is a RF-matrix for $f \in \operatorname{PF}(\mathcal{S})$ if for every $i=1, \ldots, e, \lambda_{i i}=-1 \lambda_{i j} \in \mathbb{N}$ if $i \neq j$ and $\lambda_{i 1} g_{1}+\ldots+\lambda_{i e} g_{e}=f$.

Example

Take $\mathcal{S}=\langle 6,7,9,10\rangle, \operatorname{PF}(\mathcal{S})=\{3,8,11\}$. The two matrices

$$
\Lambda_{1}=\left(\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & -1
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
3 & 0 & 0 & -1
\end{array}\right)
$$

are both RF-matrices for $8 \in P F(\mathcal{S})$.

RF-matrices: key property

Proposition

Let $\Lambda_{1}=\left(a_{i j}\right)$ be a RF-matrix for f and $\Lambda_{2}=\left(b_{i j}\right)$ a RF-matrix for $F(\mathcal{S})-f$. Then for every $i \neq j$ we have $a_{i j} b_{j i}=0$.

Example

Take $\mathcal{S}=\langle 6,7,9,10\rangle$. We have $\operatorname{PF}(\mathcal{S})=\{3,8,11\}$. The matrix Λ_{1} is a RF-matrix for 3 , while Λ_{2} is a RF-matrix for $8=F(\mathcal{S})-3$.

$$
\Lambda_{1}=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
2 & 0 & -1 & 0 \\
1 & 1 & 0 & -1
\end{array}\right), \quad \Lambda_{2}=\left(\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & -1
\end{array}\right)
$$

Simple case: $e=4$

$$
\begin{aligned}
& \text { Let } i, j \in\{1, \ldots, e\}, i \neq j \text { and } \\
& \qquad m_{i j}=\max \left\{K \in \mathbb{N} \mid K g_{j}-g_{i} \notin \mathcal{S}\right\}, \quad M_{i j}=m_{i j} g_{j}-g_{i} \notin \mathcal{S},
\end{aligned}
$$

$$
\text { and } \mathcal{M}=\left\{M_{i j} \mid i \neq j\right\},|\mathcal{M}| \leq e(e-1)
$$

Simple case: $e=4$

$$
\begin{aligned}
& \text { Let } i, j \in\{1, \ldots, e\}, i \neq j \text { and } \\
& \qquad m_{i j}=\max \left\{K \in \mathbb{N} \mid K g_{j}-g_{i} \notin \mathcal{S}\right\}, \quad M_{i j}=m_{i j} g_{j}-g_{i} \notin \mathcal{S},
\end{aligned}
$$

$$
\text { and } \mathcal{M}=\left\{M_{i j} \mid i \neq j\right\},|\mathcal{M}| \leq e(e-1)
$$

$$
\text { Let } f, F(\mathcal{S})-f \in P F(\mathcal{S}) \text {. }
$$

- If $f=k g_{j}-g_{i} \in \operatorname{PF}(\mathcal{S})$, then $f \in \mathcal{M}$.
- If there is a row with at least $e-2$ zeroes, then the element associated to that RF-matrix belongs to \mathcal{M}.
- In every couple of RF-matrices there are at least $e(e-1)$ zeroes distributed over $2 e$ rows.

Simple case: $e=4$

Let $i, j \in\{1, \ldots, e\}, i \neq j$ and

$$
m_{i j}=\max \left\{K \in \mathbb{N} \mid K g_{j}-g_{i} \notin \mathcal{S}\right\}, \quad M_{i j}=m_{i j} g_{j}-g_{i} \notin \mathcal{S}
$$

and $\mathcal{M}=\left\{M_{i j} \mid i \neq j\right\},|\mathcal{M}| \leq e(e-1)$.
Let $f, F(\mathcal{S})-f \in P F(\mathcal{S})$.

- If $f=k g_{j}-g_{i} \in \operatorname{PF}(\mathcal{S})$, then $f \in \mathcal{M}$.
- If there is a row with at least $e-2$ zeroes, then the element associated to that RF-matrix belongs to \mathcal{M}.
- In every couple of RF-matrices there are at least $e(e-1)$ zeroes distributed over $2 e$ rows.

Theorem

If \mathcal{S} is almost symmetric and $e=4$ then $t(\mathcal{S})$ is bounded.

Simple case: $e=4$

Let $i, j \in\{1, \ldots, e\}, i \neq j$ and

$$
m_{i j}=\max \left\{K \in \mathbb{N} \mid K g_{j}-g_{i} \notin \mathcal{S}\right\}, \quad M_{i j}=m_{i j} g_{j}-g_{i} \notin \mathcal{S}
$$

and $\mathcal{M}=\left\{M_{i j} \mid i \neq j\right\},|\mathcal{M}| \leq e(e-1)$.
Let $f, F(\mathcal{S})-f \in P F(\mathcal{S})$.

- If $f=k g_{j}-g_{i} \in \operatorname{PF}(\mathcal{S})$, then $f \in \mathcal{M}$.
- If there is a row with at least $e-2$ zeroes, then the element associated to that RF-matrix belongs to \mathcal{M}.
- In every couple of RF-matrices there are at least $e(e-1)$ zeroes distributed over $2 e$ rows.

Theorem

If \mathcal{S} is almost symmetric and $e=4$ then $t(\mathcal{S})$ is bounded.
(Actually, $t(\mathcal{S}) \leq 3$)

Advanced case: $e=5$

Computational evidence [Garcia-Sànchez]

If \mathcal{S} is almost symmetric, $e=5$ and $g_{5} \leq 200$, then $t(\mathcal{S}) \leq 5$.
If $e=5$ then $e(e-1)=20=2 e(e-3)$, so the previous argument leaves out one case:
(1) Every row and column of Λ_{1}, Λ_{2} has exactly 2 zeroes.

Example

For instance we could have
$\Lambda_{1}=\left(\begin{array}{ccccc}-1 & 0 & 0 & * & * \\ 0 & -1 & 0 & * & * \\ * & * & -1 & 0 & 0 \\ 0 & * & * & -1 & 0 \\ * & 0 & * & 0 & -1\end{array}\right) \Lambda_{2}=\left(\begin{array}{ccccc}-1 & * & 0 & * & 0 \\ * & -1 & 0 & 0 & * \\ * & * & -1 & 0 & 0 \\ 0 & 0 & * & -1 & * \\ 0 & 0 & * & * & -1\end{array}\right)$

Advanced case: $e=5$

Lemma

For every possible distribution of zeroes of the form described before, there are at most two elements of $\operatorname{PF}(\mathcal{S})$ having a RF-matrix of that shape.

Advanced case: $e=5$

Lemma

For every possible distribution of zeroes of the form described before, there are at most two elements of $\operatorname{PF}(\mathcal{S})$ having a RF-matrix of that shape.

Theorem

If \mathcal{S} is almost symmetric and $e=5$ then $t(\mathcal{S})$ is bounded.

Advanced case: $e=5$

Lemma

For every possible distribution of zeroes of the form described before, there are at most two elements of $\operatorname{PF}(\mathcal{S})$ having a RF-matrix of that shape.

Theorem

If \mathcal{S} is almost symmetric and $e=5$ then $t(\mathcal{S})$ is bounded.
(Actually, $t(\mathcal{S}) \leq 473$)

Unknown case: $e=6$ and beyond

Until now we worked in a very special setting.

Unknown case: $e=6$ and beyond

Until now we worked in a very special setting.

- If $e=4$ we could easily determine the shape of the factorization of all elements in $\operatorname{PF}(\mathcal{S})$, showing that $f=k g_{i}-g_{j}$.

Unknown case: $e=6$ and beyond

Until now we worked in a very special setting.

- If $e=4$ we could easily determine the shape of the factorization of all elements in $\operatorname{PF}(\mathcal{S})$, showing that $f=k g_{i}-g_{j}$.
- If $e=5$ we could bound the number of elements of $\operatorname{PF}(\mathcal{S})$ associated to a fixed shape of the RF-matrix.

Unknown case: $e=6$ and beyond

Until now we worked in a very special setting.

- If $e=4$ we could easily determine the shape of the factorization of all elements in $\operatorname{PF}(\mathcal{S})$, showing that $f=k g_{i}-g_{j}$.
- If $e=5$ we could bound the number of elements of $\operatorname{PF}(\mathcal{S})$ associated to a fixed shape of the RF-matrix.

If $e \geq 6$ all of this does not work anymore.

- There are a lot of elements not of the form $f=k g_{i}-g_{j}$.
- It seems that there are more elements associated to RF-matrices with the same shape.
It is not clear whether $t(\mathcal{S})$ is bounded if $e \geq 6$.

Unknown case: $e=6$

Example

Take $\mathcal{S}=\langle 455,497,574,589,631,708\rangle$. Then $t(\mathcal{S})=14$ and

$$
\begin{aligned}
P F(\mathcal{S})= & \{3079,3289,3521,3655,3674,3789,3923,4057, \\
& 4172,4191,4325,4557,4767,7846\}
\end{aligned}
$$

The elements $\{3521,3655,3789,3923,4057,4191\} \subset \operatorname{PF}(\mathcal{S})$ all have RF-matrices sharing the same shape.

Some remarks:

- The example above is the first known example of almost symmetric numerical semigroup such that $t>2 e$.
- "Bad" examples occur for very high values of g_{i} - very hard to find by computer.

Unknown case: $e=6$ - potential route

Next we propose a potential route to prove that $t(\mathcal{S})$ is not bounded if $e \geq 6$.

Unknown case: $e=6$ - potential route

Next we propose a potential route to prove that $t(\mathcal{S})$ is not bounded if $e \geq 6$.

- Fix the shape of a matrix.

Unknown case: $e=6$ - potential route

Next we propose a potential route to prove that $t(\mathcal{S})$ is not bounded if $e \geq 6$.

- Fix the shape of a matrix.
- Play with the non-zero entries, and create a set of potential RF-matrices in this way.

Unknown case: $e=6$ - potential route

Next we propose a potential route to prove that $t(\mathcal{S})$ is not bounded if $e \geq 6$.

- Fix the shape of a matrix.
- Play with the non-zero entries, and create a set of potential RF-matrices in this way.
- [Easy part] Solve the linear system given by the rows of the matrices, finding the generators g_{i} and the elements f_{j} associated to those matrices (make sure that $f_{j} \notin \mathcal{S}$).

Unknown case: $e=6$ - potential route

Next we propose a potential route to prove that $t(\mathcal{S})$ is not bounded if $e \geq 6$.

- Fix the shape of a matrix.
- Play with the non-zero entries, and create a set of potential RF-matrices in this way.
- [Easy part] Solve the linear system given by the rows of the matrices, finding the generators g_{i} and the elements f_{j} associated to those matrices (make sure that $f_{j} \notin \mathcal{S}$).
- [Hard part] Check that the numerical semigroup generated by the $g_{i} s$ is almost symmetric.

Unknown case: $e=6$ - potential route

Next we propose a potential route to prove that $t(\mathcal{S})$ is not bounded if $e \geq 6$.

- Fix the shape of a matrix.
- Play with the non-zero entries, and create a set of potential RF-matrices in this way.
- [Easy part] Solve the linear system given by the rows of the matrices, finding the generators g_{i} and the elements f_{j} associated to those matrices (make sure that $f_{j} \notin \mathcal{S}$).
- [Hard part] Check that the numerical semigroup generated by the $g_{i} s$ is almost symmetric.
The previous example was built using this construction. It is not known if this can be done for arbitrarily large sets of RF-matrices.

Thank you for your attention.

