Metric dimension of zero divisor graphs

S. Pirzada

Department of Mathematics, University of Kashmir, India

pirzadasd@kashmiruniversity.net

Conference on Rings and Factorizations
University of Graz, Austria

February 19-23, 2018
Figure: Model
Overview

Introduction

Metric dimension

Relation between Diameter, Girth and Metric Dimension

Metric dimension of Compressed Zero-divisor Graphs
A graph G is a pair (V, E) where V is a non-empty set of vertices of G and E is the edge set, each joined by a pair of distinct vertices u and v of G.
A graph G is a pair (V, E) where V is a non-empty set of vertices of G and E is the edge set, each joined by a pair of distinct vertices u and v of G.

A graph G is connected if there exists a path between every pair of vertices in G.
A graph G is a pair (V, E) where V is a non-empty set of vertices of G and E is the edge set, each joined by a pair of distinct vertices u and v of G.

A graph G is connected if there exists a path between every pair of vertices in G.

The *distance* between two vertices u and v in G, denoted by $d(u, v)$ is the length of the shortest $u - v$ path in G. If such a path does not exist, we define $d(u, v)$ to be infinite.
The *diameter* of G is $\sup\{d(u, v)\}$, where u and v are distinct vertices of G.

The *girth* of a graph G, denoted by $gr(G)$, is the length of a smallest cycle in G.

A cycle passing through all the vertices of a graph G is called a *Hamiltonian cycle* and a graph containing a Hamiltonian cycle is called a *Hamiltonian graph*.
The diameter of G is $\sup\{d(u, v)\}$, where u and v are distinct vertices of G.

The girth of a graph G, denoted by $gr(G)$, is the length of a smallest cycle in $G.$
The *diameter* of G is $\sup\{d(u,v)\}$, where u and v are distinct vertices of G.

The girth of a graph G, denoted by $gr(G)$, is the length of a smallest cycle in G.

A cycle passing through all the vertices of a graph G is called a *Hamiltonian cycle* and a graph containing a Hamiltonian cycle is called a *Hamiltonian graph*.
An element $x \in R$ is called a zero divisor if there is some non-zero $y \in R$ such that $xy = 0$.
An element $x \in R$ is called a zero divisor if there is some non-zero $y \in R$ such that $xy = 0$.

Zero divisor graph

A zero divisor graph $\Gamma(R)$ is the undirected graph with vertex set $Z^*(R) = Z(R) \setminus \{0\}$ the set of non-zero zero divisors of a commutative ring R with $1 \neq 0$ and the two vertices x and y are adjacent if and only if $xy = 0$.
Example. Consider $R = \mathbb{Z}_{12}$.
Here $\mathbb{Z}^*(R) = \{2, 3, 4, 6, 8, 9, 10\}$ is the vertex set of $\Gamma(R)$.
Beck [5] introduced the notion of zero divisor graphs of a commutative ring R and he was mainly interested in colorings. Even more, the concept has been extended to the ideal based zero divisor graphs [5], unit graphs [3], zero-divisor graphs of non-commutative rings [1], lattices and several others.

For realizable graphs it is shown [2] that
Beck [5] introduced the notion of zero divisor graphs of a commutative ring R and he was mainly interested in colorings. Even more, the concept has been extended to the ideal based zero divisor graphs [5], unit graphs [3], zero-divisor graphs of non-commutative rings [1], lattices and several others.

For realizable graphs it is shown [2] that

$\Gamma(R)$ is connected, $diam(\Gamma(R)) \leq 3$ and $gr(\Gamma(R)) \leq 4$.
Beck [5] introduced the notion of zero divisor graphs of a commutative ring R and he was mainly interested in colorings. Even more, the concept has been extended to the ideal based zero divisor graphs [5], unit graphs [3], zero-divisor graphs of non-commutative rings [1], lattices and several others.

For realizable graphs it is shown [2] that

- $\Gamma(R)$ is connected, $\text{diam}(\Gamma(R)) \leq 3$ and $\text{gr}(\Gamma(R)) \leq 4$.
- $\Gamma(R) \cong K_{1,n}$ (star graph) if and only if $R \cong \mathbb{Z}_2 \times \mathbb{F}$, where \mathbb{F} is a finite field.
Beck [5] introduced the notion of zero divisor graphs of a commutative ring \(R \) and he was mainly interested in colorings. Even more, the concept has been extended to the ideal based zero divisor graphs [5], unit graphs [3], zero-divisor graphs of non-commutative rings [1], lattices and several others.

For realizable graphs it is shown [2] that

\(\Gamma(R) \) is connected, \(diam(\Gamma(R)) \leq 3 \) and \(gr(\Gamma(R)) \leq 4 \).

\(\Gamma(R) \cong K_{1,n} \) (star graph) if and only if \(R \cong \mathbb{Z}_2 \times \mathbb{F} \), where \(\mathbb{F} \) is a finite field.

\(\Gamma(R) \) is complete graph or complete bipartite graph if it is regular.
Metric Dimension
Let G be a connected graph with $n \geq 2$ vertices. For an ordered subset $W = \{w_1, w_2, \ldots, w_k\}$ of $V(G)$, we refer to the k-vector as the metric representation of v with respect to W as

$$r(v \mid W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k))$$

The set W is a resolving set of G if distinct vertices have distinct metric representations.
Metric Dimension

Let G be a connected graph with $n \geq 2$ vertices. For an ordered subset $W = \{w_1, w_2, \ldots, w_k\}$ of $V(G)$, we refer to the k-vector as the metric representation of v with respect to W as

$$r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k))$$

The set W is a resolving set of G if distinct vertices have distinct metric representations.
A resolving set containing the minimum number of vertices is called a *metric basis* for G.
A resolving set containing the minimum number of vertices is called a *metric basis* for G.

The *metric dimension*, denoted by $\dim(G)$ of G is the cardinality of a metric basis.
A resolving set containing the minimum number of vertices is called a *metric basis* for G.

The *metric dimension*, denoted by $\dim(G)$ of G is the cardinality of a metric basis.

If W is a finite metric basis, we say that $r(v|W)$ are the metric coordinates of vertex v with respect to W.
A resolving set containing the minimum number of vertices is called a \textit{metric basis} for G.

The \textit{metric dimension}, denoted by $\text{dim}(G)$ of G is the cardinality of a metric basis.

If W is a finite metric basis, we say that $r(v|W)$ are the metric coordinates of vertex v with respect to W.

In fact, for every connected graph G of order $n \geq 2$,

$$1 \leq \text{dim}(G) \leq n - 1$$
Example. Consider the graph \((G)\) given in Figure 2. Take \(W_1 = \{v_1, v_3\}\). So, \(r(v_1|W_1) = (0, 1)\), \(r(v_2|W_1) = (1, 1)\), \(r(v_3|W_1) = (1, 0)\), \(r(v_4|W_1) = (1, 1)\), \(r(v_5|W_1) = (2, 1)\). Notice, \(r(v_2|W_1) = (1, 1) = r(v_4|W_1)\), therefore \(W_1\) is not a resolving set. However, if we take \(W_2 = \{v_1, v_2\}\), then \(r(v_1|W_2) = (0, 1)\), \(r(v_2|W_2) = (1, 0)\), \(r(v_3|W_2) = (1, 1)\), \(r(v_4|W_2) = (1, 2)\), \(r(v_5|W_2) = (2, 1)\). Since distinct vertices have distinct metric representations, \(W_2\) is a minimum resolving set and thus this graph has metric dimension 2.
The metric dimension of a single vertex graph 0.
The metric dimension of a single vertex graph is 0.

The metric dimension for an empty graph G is not defined.
The metric dimension of a single vertex graph 0.

The metric dimension for an empty graph G is not defined.

A connected graph G of order n has metric dimension 1 if and only if $G \cong P_n$, where P_n is a path on n vertices.
The metric dimension of a single vertex graph is 0.

The metric dimension for an empty graph G is not defined.

A connected graph G of order n has metric dimension 1 if and only if $G \cong P_n$, where P_n is a path on n vertices.

A connected graph G of order $n \geq 2$ has metric dimension $n - 1$ if and only if $G \cong K_n$.
The metric dimension of a single vertex graph is 0.

The metric dimension for an empty graph \(G \) is not defined.

A connected graph \(G \) of order \(n \) has metric dimension 1 if and only if \(G \cong P_n \), where \(P_n \) is a path on \(n \) vertices.

A connected graph \(G \) of order \(n \geq 2 \) has metric dimension \(n - 1 \) if and only if \(G \cong K_n \).

For a connected graph \(G \) of order \(n \geq 3 \), the metric dimension of a cycle graph \(C_n \) is 2.
Figure: Pink Colored vertices correspond to metric basis
Theorem. \(\dim(\Gamma(R)) \) is finite if and only if \(R \) is finite and is undefined if and only if \(R \) is an integral domain.
Theorem. $\dim(\Gamma(R))$ is finite if and only if R is finite and is undefined if and only if R is an integral domain.

Theorem. If R is a finite commutative ring and $\Gamma(R)$ is a regular graph, then $\dim(\Gamma(R)) = |\mathbb{Z}^*(R)| - 1$ or $|\mathbb{Z}^*(R)| - 2$.
Theorem. \(\dim(\Gamma(R)) \) is finite if and only if \(R \) is finite and is undefined if and only if \(R \) is an integral domain.

Theorem. If \(R \) is a finite commutative ring and \(\Gamma(R) \) is a regular graph, then \(\dim(\Gamma(R)) = |Z^*(R)| - 1 \) or \(|Z^*(R)| - 2 \).

Theorem. The graph \(\Gamma(\mathbb{Z}_n) \) is Hamiltonian graph if and only if \(\dim(\Gamma(\mathbb{Z}_n)) = |Z^*(\mathbb{Z}_n)| - 1 \).
If G is a connected graph of order $n \geq 2$, we say two distinct vertices u and v of G are distance similar, if $d(u, x) = d(v, x)$ for all $x \in V(G) - \{u, v\}$.
If G is a connected graph of order $n \geq 2$, we say two distinct vertices u and v of G are distance similar, if $d(u, x) = d(v, x)$ for all $x \in V(G) - \{u, v\}$.

It can be easily checked that the distance similar relation (\sim) is an equivalence relation on $V(G)$.

Theorem. Let G be a connected graph partitioned into k distinct distance similar classes V_1, V_2, \ldots, V_k, then $\dim(G) \geq |V(G)| - k$ and $|V(G)| - k \leq \dim(G) \leq |V(G)| - k + m$, where m is the number of distance similar classes that consist of a single vertex.
If G is a connected graph of order $n \geq 2$, we say two distinct vertices u and v of G are distance similar, if $d(u, x) = d(v, x)$ for all $x \in V(G) - \{u, v\}$.

It can be easily checked that the distance similar relation (\sim) is an equivalence relation on $V(G)$.

Theorem. Let G be a connected graph partitioned into k distinct distance similar classes V_1, V_2, \ldots, V_k, then $\dim(G) \geq |V(G)| - k$ and $|V(G)| - k \leq \dim(G) \leq |V(G)| - k + m$, where m is the number of number of distance similar classes that consist of a single vertex.
Theorem. For connected graph G of order $n \geq 3$, the metric dimension of bipartite graph $K_{1,n-1}$ is $n-2$ and for for $r \geq 2, n \geq 5$, metric dimension of $K_{r,n-r} = K_{n,m}$ is $n-2$, with $n = r$ and $m = n - r$.
Theorem. For connected graph G of order $n \geq 3$, the metric dimension of bipartite graph $K_{1,n-1}$ is $n - 2$ and for for $r \geq 2, n \geq 5$, metric dimension of $K_{r,n-r} = K_{n,m}$ is $n - 2$, with $n = r$ and $m = n - r$.

Theorem. Let R be a finite commutative ring with 1 and odd characteristics and let $\Gamma(R)$ be partitioned into k distance similar classes. Then $\dim(\Gamma(R)) = |Z^*(R)| - k$.
Theorem. For connected graph G of order $n \geq 3$, the metric dimension of bipartite graph $K_{1,n-1}$ is $n - 2$ and for for $r \geq 2, n \geq 5$, metric dimension of $K_{r,n-r} = K_{n,m}$ is $n - 2$, with $n = r$ and $m = n - r$.

Theorem. Let R be a finite commutative ring with 1 and odd characteristics and let $\Gamma(R)$ be partitioned into k distance similar classes. Then $\dim(\Gamma(R)) = |Z^*(R)| - k$.

Corollary. Let p be a prime number.
(i) If $n = 2p$, then $\dim(\Gamma(\mathbb{Z}_n)) = p - 2$
(ii) If $n = p^2$ and $p > 2$, then $\dim(\Gamma(\mathbb{Z}_n))p - 2$
(iii) If $n = p^k$ and $k \geq 3$, then $\dim(\Gamma(\mathbb{Z}_n)) = |Z^*(\mathbb{Z}_n)| - (k - 1) = p^{k-1} - k$.
Lemma. Let R be a commutative ring and let x, y be adjacent vertices of $\Gamma(R)$. Then $|d(x, z) - d(y, z)| \leq 1$ for every vertex $z \in \Gamma(R)$.

Theorem. Let R be a commutative ring and $\Gamma(R)$ be the corresponding zero-divisor graph of R such that $|Z^*(R)| \geq 2$. Then $\lceil \log_3(\Delta + 1) \rceil \leq \dim(\Gamma(R)) \leq |Z^*(R)| - d$, where Δ is the maximum degree and d is the diameter of $\Gamma(R)$.

Corollary. Let R be a commutative ring with unity 1 such that $\dim(\Gamma(R)) = k$ where k is any non-negative integer. Then $|Z(R)| \leq 4^k + 1$.
Lemma. Let R be a commutative ring and let x, y be adjacent vertices of $\Gamma(R)$. Then $|d(x, z) - d(y, z)| \leq 1$ for every vertex $z \in \Gamma(R)$.

Theorem. Let R be a commutative ring and $\Gamma(R)$ be the corresponding zero-divisor graph of R such that $|Z^*(R)| \geq 2$. Then

$$\left\lceil \log_3(\triangle + 1) \right\rceil \leq \dim(\Gamma(R)) \leq |Z^*(R)| - d$$

, where \triangle is the maximum degree and d is the diameter of $\Gamma(R)$.
Lemma. Let R be a commutative ring and let x, y be adjacent vertices of $\Gamma(R)$. Then $|d(x, z) - d(y, z)| \leq 1$ for every vertex $z \in \Gamma(R)$.

Theorem. Let R be a commutative ring and $\Gamma(R)$ be the corresponding zero-divisor graph of R such that $|Z^*(R)| \geq 2$. Then

$$\lceil \log_3(\triangle + 1) \rceil \leq dim(\Gamma(R)) \leq |Z^*(R)| - d$$

, where \triangle is the maximum degree and d is the diameter of $\Gamma(R)$.

Corollary. Let R be a commutative ring with unity 1 such that $dim(\Gamma(R)) = k$ where k is any non-negative integer. Then $|Z(R)| \leq 4^k + 1$.
An ideal I is a subring of R such that $ar \in I$ for all $a \in I, r \in R$.
An ideal \(I \) is a subring of \(R \) such that \(ar \in I \) for all \(a \in I, r \in R \).

A ring \(R \) is said to be a local ring if it has a unique maximal ideal. Example \(\mathbb{Z}_9 \)
An ideal I is a subring of R such that $ar \in I$ for all $a \in I, r \in R$.

A ring R is said to be a local ring if it has a unique maximal ideal. Example \mathbb{Z}_9

A ring R is said to be a reduced ring if it contains no non-zero nilpotent elements. Example \mathbb{Z}_{12}
An ideal I is a subring of R such that $ar \in I$ for all $a \in I, r \in R$.

A ring R is said to be a local ring if it has a unique maximal ideal. Example \mathbb{Z}_9

A ring R is said to be a reduced ring if it contains no non-zero nilpotent elements. Example \mathbb{Z}_{12}

A ring R is called Boolean ring if $a^2 = a$ for every $a \in R$.
Lemma. Let R be a finite commutative ring with identity. Then every element of R is either a unit or a zero divisor.
Lemma. Let R be a finite commutative ring with identity. Then every element of R is either a unit or a zero divisor.

Theorem. Let R be a finite commutative local ring with unity 1 and for prime q let \mathbb{F}_q be a finite field. Then

$$|\mathbb{Z}^*(R \times \mathbb{F}_q)| = |U(R)| + (|\mathbb{Z}^*(R)| + 1)q - 1.$$
Lemma. Let R be a finite commutative ring with identity. Then every element of R is either a unit or a zero divisor.

Theorem. Let R be a finite commutative local ring with unity 1 and for prime q let \mathbb{F}_q be a finite field. Then
\[|\mathbb{Z}^*(R \times \mathbb{F}_q)| = |U(R)| + (|\mathbb{Z}^*(R)| + 1)q - 1. \]

Example. Let
\[\mathbb{F}_2[x]/(x^3, xy, y^2) = \{ ax^2 + bx + cy + d | a, b, c, d \in \mathbb{F}_2 \} \]
and let $\mathbb{F}_q = \mathbb{Z}_5$.
Clearly, R is a local ring of order 16 with
\[Z(R) = \{ 0, x, y, x^2, x+y, x+x^2, y+x^2, x+x^2+y \}. \]
Therefore,
\[|\mathbb{Z}^*(R \times \mathbb{F}_q)| = |U(R)| + (|\mathbb{Z}^*(R)| + 1)q - 1 = 8 + (8)5 - 1 = 47. \]
Theorem. Let R_1, R_2, \ldots, R_n be n finite commutative rings (not domains) each having unity 1 with none of R_i, $1 \leq i \leq n$, being isomorphic to $\prod_{i=1}^{n} \mathbb{Z}_2$ for any positive integer n. Then for a commutative ring R with unity 1 and for any prime field \mathbb{F}_q,
(a) $\dim(\Gamma(R_1 \times R_2 \times \cdots \times R_n)) \geq \sum_{i=1}^{n} \dim(\Gamma(R_i))$
(b) $\dim(R \times \mathbb{F}_q) = |Z^*(R \times \mathbb{F}_q)| - 2^{n+1} + 2$ or $|Z^*(R \times \mathbb{F}_q)| - 2$ or at least $|U(R)| + (|Z^*(R)| + 1)q - t + 3$, where t is any positive integer.
Example. Consider the zero divisor graph shown in Fig.6 associated with the ring $\mathbb{Z}_8 \times \mathbb{Z}_2$. Partition the graph $\Gamma(\mathbb{Z}_8 \times \mathbb{Z}_2)$ into the distance similar equivalence classes which are given by sets, $\{(1,0), (3,0), (5,0), (7,0)\}$, $\{(2,1), (6,1)\}$, $\{(0,1)\}$, $\{(2,0), (6,0)\}$, $\{(4,0)\}$ and $\{(4,1)\}$. Therefore, by theorem, $\text{dim}(\Gamma(\mathbb{Z}_8 \times \mathbb{Z}_2)) \geq 4 + (4)2 - 4 - 3 = 5$. From Fig.6, it can be easily verified that $\{(1,0), (3,0), (5,0), (7,0), (2,0), (6,1)\}$ is the metric basis and consequently $\text{dim}(\Gamma(\mathbb{Z}_8 \times \mathbb{Z}_2)) = 6$.

Figure: $\text{dim}(\Gamma(\mathbb{Z}_8 \times \mathbb{Z}_2)) = 6$
Theorem. Let R_1, R_2, \ldots, R_k be integral domains with 1 and $|R_i| > 2$ for some i. Then

\[\dim(\Gamma(R_1 \times R_2 \times \cdots \times R_k)) = |Z(R)| - 2^k + 2. \]
Theorem. Let R_1, R_2, \ldots, R_k be integral domains with 1 and $|R_i| > 2$ for some i. Then
\[
\text{dim}(\Gamma(R_1 \times R_2 \times \cdots \times R_k)) = |Z(R)| - 2^k + 2.
\]

Remark. If $R \not\cong \prod_{i=1}^{n} \mathbb{Z}_2$, then $|W|$ is equal to this sum. In light of above theorem, one should consider the metric dimension of $\prod_{i=1}^{n} \mathbb{Z}_2$.

Theorem. For any $k \geq 2$, \[\text{dim}(\Gamma(\prod_{i=1}^{k} \mathbb{Z}_2)) \leq k.\]
Theorem. Let R_1, R_2, \ldots, R_k be integral domains with 1 and $|R_i| > 2$ for some i. Then
\[
dim(\Gamma(R_1 \times R_2 \times \cdots \times R_k)) = |Z(R)| - 2^k + 2.
\]

Remark. If $R \cong \prod_{i=1}^{n} \mathbb{Z}_2$, then $|W|$ is equal to this sum. In light of above theorem, one should consider the metric dimension of $\prod_{i=1}^{n} \mathbb{Z}_2$.

Theorem. For any $k \geq 2$, $\dim(\Gamma(\prod_{i=1}^{k} \mathbb{Z}_2)) \leq k$.

\[
dim(\Gamma(\prod_{i=1}^{n} \mathbb{Z}_2 = n - 1)) \text{ for } n = 2, 3, 4
\]
Theorem. Let R_1, R_2, \ldots, R_k be integral domains with 1 and $|R_i| > 2$ for some i. Then
\[\dim(\Gamma(R_1 \times R_2 \times \cdots \times R_k)) = |Z(R)| - 2^k + 2. \]

Remark. If $R \not\cong \prod_{i=1}^n \mathbb{Z}_2$, then $|W|$ is equal to this sum. In light of above theorem, one should consider the metric dimension of $\prod_{i=1}^n \mathbb{Z}_2$.

Theorem. For any $k \geq 2$, $\dim(\Gamma(\prod_{i=1}^k \mathbb{Z}_2)) \leq k$.

\[\dim(\Gamma(\prod_{i=1}^n \mathbb{Z}_2 = n - 1)) \text{ for } n = 2, 3, 4 \]
\[\dim(\Gamma(\prod_{i=1}^5 \mathbb{Z}_2 = 5)) \]
Theorem. Let R_1, R_2, \ldots, R_k be integral domains with 1 and $|R_i| > 2$ for some i. Then
\[\dim(\Gamma(R_1 \times R_2 \times \cdots \times R_k)) = |Z(R)| - 2^k + 2. \]

Remark. If $R \not\cong \prod_{i=1}^{n} \mathbb{Z}_2$, then $|\mathcal{W}|$ is equal to this sum. In light of above theorem, one should consider the metric dimension of $\prod_{i=1}^{n} \mathbb{Z}_2$.

Theorem. For any $k \geq 2$, $\dim(\Gamma(\prod_{i=1}^{k} \mathbb{Z}_2)) \leq k$.

\[\dim(\Gamma(\prod_{i=1}^{n} \mathbb{Z}_2 = n - 1)) \text{ for } n = 2, 3, 4 \]
\[\dim(\Gamma(\prod_{i=1}^{5} \mathbb{Z}_2 = 5)) \]

For $n > 5$, the case is still open.
The cartesian product $\Gamma(R_1) \times \Gamma(R_2)$ of two zero divisor graphs $\Gamma(R_1)$ and $\Gamma(R_2)$ with vertex set as $Z^*(R_1) \times Z^*(R_2)$ and the edge set $\{ (x_1, x - 2) \mid x_1 = y_1 \text{ and } x_2 y_2 \in E(\Gamma(R_2)) \text{ or } x_2 = y_2 \text{ and } x_1 y_1 \in E(\Gamma(R_1)) \}$
The cartesian product $\Gamma(R_1) \times \Gamma(R_2)$ of two zero divisor graphs $\Gamma(R_1)$ and $\Gamma(R_2)$ with vertex set as $\mathbb{Z}^*(R_1) \times \mathbb{Z}^*(R_2)$ and the edge set $\{(x_1, x-2) \mid x_1 = y_1 \text{ and } x_2y_2 \in E(\Gamma(R_2)) \text{ or } x_2 = y_2 \text{ and } x_1y_1 \in E(\Gamma(R_1))\}$

Theorem. If R is any finite commutative ring with unity 1 (not a domain), then

$$\dim(\Gamma(R)) \leq \dim(\Gamma(R) \times \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)) \leq \dim(\Gamma(R)) + 1$$
The cartesian product $\Gamma(R_1) \times \Gamma(R_2)$ of two zero divisor graphs $\Gamma(R_1)$ and $\Gamma(R_2)$ with vertex set as $\mathbb{Z}^*(R_1) \times \mathbb{Z}^*(R_2)$ and the edge set $\{(x_1, x - 2) \mid x_1 = y_1 \text{ and } x_2y_2 \in E(\Gamma(R_2)) \text{ or } x_2 = y_2 \text{ and } x_1y_1 \in E(\Gamma(R_1))\}$

Theorem. If R is any finite commutative ring with unity 1 (not a domain), then

$$dim(\Gamma(R)) \leq dim(\Gamma(R) \times \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)) \leq dim(\Gamma(R)) + 1$$

. The equality is possible for either bound in the above theorem is possible. For example, $dim(R \cong \mathbb{Z}_3 \times \mathbb{Z}_3) = 2$, where as the $dim(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3) \times \Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)) = 3$.
Girth, diameter and metric dimension

Theorem. Let R be a finite commutative ring with $gr(\Gamma(R)) = \infty$.

$$dim(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)) = dim(\Gamma(\mathbb{Z}_9)) = dim(\Gamma(\mathbb{Z}_3[x]/(x^3))) = 1.$$

If R is reduced and $R \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$, then $dim(\Gamma(R)) = |\mathbb{Z}^*(R)| - 2$.
If $R \cong \mathbb{Z}_4)$ or $\mathbb{Z}_2[x]/(x^3)$, then $dim(\Gamma(R)) = 0$.

Girth, diameter and metric dimension

Theorem. Let R be a finite commutative ring with $gr(\Gamma(R)) = \infty$.

$dim(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)) = dim(\Gamma(\mathbb{Z}_9)) = dim(\Gamma(\mathbb{Z}_3[x]/(x^3))) = 1$.

If R is reduced and $R \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$, then $dim(\Gamma(R)) = |\mathbb{Z}^*(R)| - 2$.

If $R \cong \mathbb{Z}_4$ or $\mathbb{Z}_2[x]/(x^3)$, then $dim(\Gamma(R)) = 0$.

Theorem. If R is reduced Artinian commutative ring and $gr(\Gamma(R)) = 4$, then $dim(\Gamma(R)) = |\mathbb{Z}^*(R)| - 2$ and $R \cong \mathbb{F}_1 \times \mathbb{F}_2$, where each \mathbb{F}_i is a field with $\mathbb{F}_i \geq 3$.
Theorem. Let \(R \) be a commutative ring. Then

(i) \(\text{diam}(\Gamma(R)) = 0 \) if and only if \(\text{dim}(\Gamma(R)) = 0 \).

(ii) \(\text{diam}(\Gamma(R)) = 1 \) if and only if \(\text{dim}(\Gamma(R)) = |\mathbb{Z}^*(R)| - 1 \).

(iii) \(\text{dim}(\Gamma(R)) = 1 \) or \(|\mathbb{Z}^*(R)| - 2 \) if \(R \cong \mathbb{F}_1 \times \mathbb{F}_2 \).
Compressed zero divisor graph
Let R be a commutative ring with $1 \neq 0$.

A zero-divisor graph determined by equivalence classes or simply a compressed zero-divisor graph of a ring R is the undirected graph $\Gamma_E(R)$ with vertex set $Z(R_E) \setminus \{[0]\} = R_E \setminus \{[0], [1]\}$ defined by $R_E = \{[x] : x \in R\}$, where $[x] = \{y \in R : \text{ann}(x) = \text{ann}(y)\}$ and the two distinct vertices $[x]$ and $[y]$ of $Z(R_E)$ are adjacent if and only if $[x][y] = [xy] = [0]$, that is, if and only if $xy = 0$.
Example Consider $R = \mathbb{Z}_{12}$. For the vertex set of $\Gamma_E(R)$, we have $\text{ann}(2) = \{6\}$, $\text{ann}(3) = \{4, 8\}$, $\text{ann}(4) = \{3, 6, 9\}$, $\text{ann}(6) = \{2, 4, 6, 8, 10\}$, $\text{ann}(8) = \{3, 6, 9\}$, $\text{ann}(9) = \{4, 8\}$, $\text{ann}(10) = \{6\}$.

So, $Z(R_E) = \{[2], [3], [4], [6]\}$ is the vertex set of $\Gamma_E(R)$.

Graph of equivalence classes of zero divisors of R, $\Gamma_E(R)$.

Figure: $\Gamma_E(\mathbb{Z}_{12})$
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

- $\Gamma_E(R)$ is connected, $\text{diam}(\Gamma_E(R)) \leq 3$ and $\text{gr}(\Gamma_E(R)) \leq 3$.
- $\text{diam}(\Gamma_E(R)) \leq \text{diam}(\Gamma(R))$.
- If $|\Gamma_E(R)| \geq 3$, then $\Gamma_E(R)$ is not complete.
- If $\Gamma_E(R)$ is complete r-partite, then $r = 2$ and $\Gamma_E(R) = K_n^1$.
- $\Gamma_E(R)$ is not a cycle graph C_n.
- $\Gamma_E(R)$ may be finite when $\Gamma(R)$ is infinite.
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

$\Gamma_E(R)$ is connected, $diam(\Gamma_E(R)) \leq 3$ and $gr(\Gamma_E(R)) \leq 3$.

$\Gamma_E(R)$ is not complete.

If $\Gamma_E(R)$ is complete r-partite, then $r = 2$ and $\Gamma_E(R) = K_{n,1}$.

$\Gamma_E(R)$ is not a cycle graph C_n.

$\Gamma_E(R)$ may be finite when $\Gamma(R)$ is infinite.
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

$\Gamma_E(R)$ is connected, $diam(\Gamma_E(R)) \leq 3$ and $gr(\Gamma_E(R)) \leq 3$.

$diam(\Gamma_E(R)) \leq diam(\Gamma(R))$.
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

$\Gamma_E(R)$ is connected, $diam(\Gamma_E(R)) \leq 3$ and $gr(\Gamma_E(R)) \leq 3$.

$diam(\Gamma_E(R)) \leq diam(\Gamma(R))$.

If $|\Gamma_E(R)| \geq 3$, then $\Gamma_E(R)$ is not complete.
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

$\Gamma_E(R)$ is connected, $diam(\Gamma_E(R)) \leq 3$ and $gr(\Gamma_E(R)) \leq 3$.

$diam(\Gamma_E(R)) \leq diam(\Gamma(R))$.

If $|\Gamma_E(R)| \geq 3$, then $\Gamma_E(R)$ is not complete.

If $\Gamma_E(R)$ is complete r-partite, then $r = 2$ and $\Gamma_E(R) = K_{n,1}$.
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

$\Gamma_E(R)$ is connected, $diam(\Gamma_E(R)) \leq 3$ and $gr(\Gamma_E(R)) \leq 3$.

$diam(\Gamma_E(R)) \leq diam(\Gamma(R))$.

If $|\Gamma_E(R)| \geq 3$, then $\Gamma_E(R)$ is not complete.

If $\Gamma_E(R)$ is complete r-partite, then $r = 2$ and $\Gamma_E(R) = K_{n,1}$.

$\Gamma_E(R)$ is not a cycle graph C_n.
Observations: [3, 6] For realizable graphs $\Gamma_E(R)$:

$\Gamma_E(R)$ is connected, $diam(\Gamma_E(R)) \leq 3$ and $gr(\Gamma_E(R)) \leq 3$.

$diam(\Gamma_E(R)) \leq diam(\Gamma(R))$.

If $|\Gamma_E(R)| \geq 3$, then $\Gamma_E(R)$ is not complete.

If $\Gamma_E(R)$ is complete r-partite, then $r = 2$ and $\Gamma_E(R) = K_{n,1}$.

$\Gamma_E(R)$ is not a cycle graph C_n.

$\Gamma_E(R)$ may be finite when $\Gamma(R)$ is infinite.
In contrast to the zero divisor graph, the authors [6] pose the question of whether, given a positive integer n, the graph $K_{1,n}$ can be realized as $\Gamma_E(R)$ for some ring R.

$K_{1,35}$ is the smallest star graph that is currently not known to be as $\Gamma_E(R)$. $K_{1,5}$ is the smallest star graph that can be realized as a $\Gamma_E(R)$, but not as a $\Gamma(R)$.
In contrast to the zero divisor graph, the authors [6] pose the question of whether, given a positive integer n, the graph $K_{1,n}$ can be realized as $\Gamma_E(R)$ for some ring R.

$K_{1,35}$ is the smallest star graph that is currently not known to be as $\Gamma_E(R)$.
In contrast to the zero divisor graph, the authors [6] pose the question of whether, given a positive integer n, the graph $K_{1,n}$ can be realized as $\Gamma_E(R)$ for some ring R.

$K_{1,35}$ is the smallest star graph that is currently not known to be as $\Gamma_E(R)$.

$K_{1,5}$ is the smallest star graph that can be realized as a $\Gamma_E(R)$, but not as a $\Gamma(R)$.
A *Prime ideal*, P is a proper ideal such that if $ab \in P$, then $a \in P$ or $b \in P$.

An *Associated Prime*, P is a prime ideal of R such that $P = \text{ann}(x)$ for some $x \in R$.

The associated primes of R correspond to vertices in $\Gamma_{E}(R)$.

A ring R satisfies the a.c.c for ideals if given any sequence of ideals I_1, I_2, \ldots of R with $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ there exists an integer m such that $I_m = I_n$ for all $m \geq n$.

A ring in which every ascending chain holds for right (left) as well as left ideals is called a *Noetherian Ring*.

Example. The ring of integers \mathbb{Z}, \mathbb{Z}_n.
A Prime ideal, P is a proper ideal such that if $ab \in P$, then $a \in P$ or $b \in P$.

An Associated Prime, P is a prime ideal of R such that $P = \text{ann}(x)$ for some $x \in R$.

A ring R satisfies the a.c.c for ideals if given any sequence of ideals I_1, I_2, \ldots of R with $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ there exists an integer m such that $I_m = I_n$ for all $m \geq n$.

A ring in which every ascending chain holds for right(left) as well as left ideals is called a Noetherian Ring.

Example. The ring of integers \mathbb{Z}, \mathbb{Z}_n.
A Prime ideal, \(P \) is a proper ideal such that if \(ab \in P \), then \(a \in P \) or \(b \in P \).

An Associated Prime, \(P \) is a prime ideal of \(R \) such that \(P = \text{ann}(x) \) for some \(x \in R \).

The associated primes of \(R \) correspond to vertices in \(\Gamma_E(R) \).
A *Prime ideal*, P is a proper ideal such that if $ab \in P$, then $a \in P$ or $b \in P$.

An *Associated Prime*, P is a prime ideal of R such that $P = \text{ann}(x)$ for some $x \in R$.

The associated primes of R correspond to vertices in $\Gamma_E(R)$.

A ring R satisfies the a.c.c for ideals if given any sequence of ideals I_1, I_2, \ldots of R with $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ there exists an integer m such that $I_m = I_n$ for all $m \geq n$.
A *Prime ideal*, P is a proper ideal such that if $ab \in P$, then $a \in P$ or $b \in P$.

An *Associated Prime*, P is a prime ideal of R such that $P = \text{ann}(x)$ for some $x \in R$.

The associated primes of R correspond to vertices in $\Gamma_E(R)$.

A ring R satisfies the a.c.c for ideals if given any sequence of ideals I_1, I_2, \ldots of R with $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ there exists an integer m such that $I_m = I_n$ for all $m \geq n$.

A ring in which every ascending chain holds for right(left) as well as left ideals is called a *Noetherian Ring*.
A *Prime ideal*, P is a proper ideal such that if $ab \in P$, then $a \in P$ or $b \in P$.

An *Associated Prime*, P is a prime ideal of R such that $P = \text{ann}(x)$ for some $x \in R$.

The associated primes of R correspond to vertices in $\Gamma_E(R)$.

A ring R satisfies the a.c.c for ideals if given any sequence of ideals I_1, I_2, \ldots of R with $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$ there exists an integer m such that $I_m = I_n$ for all $m \geq n$.

A ring in which every ascending chain holds for right(left) as well as left ideals is called a *Noetherian Ring*.

Example. The ring of integers \mathbb{Z}, \mathbb{Z}_n.
The vertices of the graph $\Gamma_E(R)$ correspond to *annihilator ideals* in the ring and hence prime ideals if R is Noetherian ring.
The vertices of the graph $\Gamma_E(R)$ correspond to *annihilator ideals* in the ring and hence prime ideals if R is Noetherian ring.

Theorem $\dim(\Gamma_E(R)) = \dim(\Gamma(R))$, if R is a Boolean ring.
The vertices of the graph $\Gamma_E(R)$ correspond to *annihilator ideals* in the ring and hence prime ideals if R is Noetherian ring.

Theorem $\dim(\Gamma_E(R)) = \dim(\Gamma(R))$, if R is a Boolean ring.

$\dim(\Gamma_E(R)) \leq \dim(\Gamma(R))$ for any ring R.

The vertices of the graph $\Gamma_E(R)$ correspond to annihilator ideals in the ring and hence prime ideals if R is Noetherian ring.

Theorem $\dim(\Gamma_E(R)) = \dim(\Gamma(R))$, if R is a Boolean ring.

$\dim(\Gamma_E(R)) \leq \dim(\Gamma(R))$ for any ring R.

Theorem If R is a finite local ring with unity 1 and \mathbb{F}_q is a finite prime filed, then

$$|Z^*(R \times \mathbb{F}_q)_E| = 2k \text{ or } 2(1 + |Z^*(R_E)|)$$

.

References

S. Pirzada, An Introduction to Graph Theory, University Press, Orient Blackswan, India, 2012.

Thanks for your attention