Products of idempotent matrices over Prüfer domains

Laura Cossu based on a joint work with P. Zanardo

Conference on Rings and Factorizations Graz, February 19-23, 2018

The property (ID_n)

An integral domain R satisfies property (ID_n) if any singular (det = 0) $n \times n$ matrix over R is a product of IDEMPOTENT matrices.

The property (ID_n)

An integral domain R satisfies property (ID_n) if any singular (det = 0) $n \times n$ matrix over R is a product of IDEMPOTENT matrices.

IDEMPOTENT MATRIX: square matrix \mathbf{M} such that $\mathbf{M}^2 = \mathbf{M}$.

The property (ID_n)

An integral domain R satisfies property (ID_n) if any singular (det = 0) $n \times n$ matrix over R is a product of IDEMPOTENT matrices.

IDEMPOTENT MATRIX: square matrix M such that $M^2 = M$.

Standard form of a 2×2 non-identity idempotent matrix over R:

$$\begin{pmatrix} a & b \\ c & 1-a \end{pmatrix}$$
, with $a(1-a) = bc$.

The problem of characterizing integral domains satisfying property (ID_n) has been considered since the middle of the 1960's:

The problem of characterizing integral domains satisfying property (ID_n) has been considered since the middle of the 1960's:

J.A. Erdos, On products of idempotent matrices, Glasgow Math. J., 8: 118–122, 1967.

- Fields satisfy property (ID_n) for every n > 0.

The problem of characterizing integral domains satisfying property (ID_n) has been considered since the middle of the 1960's:

J.A. Erdos, On products of idempotent matrices, Glasgow Math. J., 8: 118-122, 1967.

- Fields satisfy property (ID_n) for every n > 0.

T.J. LAFFEY, Products of idempotent matrices, *Linear and Multilinear Algebra*, 14 (4): 309–314, 1983.

- Euclidean domains satisfy property (ID_n) for every n > 0.

The problem of characterizing integral domains satisfying property (ID_n) has been considered since the middle of the 1960's:

J.A. Erdos, On products of idempotent matrices, Glasgow Math. J., 8: 118-122, 1967.

- Fields satisfy property (ID_n) for every n > 0.

T.J. Laffey, Products of idempotent matrices, *Linear and Multilinear Algebra*, 14 (4): 309–314, 1983.

- Euclidean domains satisfy property (ID_n) for every n > 0.

J. FOUNTAIN, Products of idempotent integer matrices, *Math. Proc. Cambridge Philos. Soc.*, 110: 431–441, 1991.

- (ID_n) is equivalent to other properties in the class of PID's.
- The ring of integers Z and DVR's satisfy property (ID_n) for every n > 0.

The property (GE_n)

An integral domain R satisfies property (GE_n) if any INVERTIBLE $n \times n$ matrix over R is a product of ELEMENTARY matrices.

The property (GE_n)

An integral domain R satisfies property (GE_n) if any INVERTIBLE $n \times n$ matrix over R is a product of ELEMENTARY matrices.

Note: fields and Euclidean domains satisfy (GE_n) for every n > 0, not every PID satisfies (GE_n) for every n > 0.

The property (GE_n)

An integral domain R satisfies property (GE_n) if any INVERTIBLE $n \times n$ matrix over R is a product of ELEMENTARY matrices.

Note: fields and Euclidean domains satisfy (GE_n) for every n > 0, not every PID satisfies (GE_n) for every n > 0.

Theorem (Ruitenburg - 1993)

For a Bézout domain R (every f.g. ideal of R is principal) TFAE:

- (i) R satisfies (GE_n) for every integer n > 0;
- (ii) R satisfies (ID_n) for every integer n > 0.

W. Ruitenburg, Products of idempotent matrices over Hermite domains, *Semigroup Forum*, 46(3): 371–378, 1993.

If R is a Bézout domain:

 R satisfies (ID₂) ⇔ it satisfies (ID_n) for all n > 0 (Laffey's lift - 1983);

If R is a Bézout domain:

- R satisfies (ID₂) ⇔ it satisfies (ID_n) for all n > 0 (Laffey's lift - 1983);
- R satisfies (GE₂)

 it satisfies (GE_n) for all n > 0
 (Kaplansky's lift -1949).

If R is a Bézout domain:

- R satisfies (ID₂) ⇔ it satisfies (ID_n) for all n > 0 (Laffey's lift - 1983);
- R satisfies (GE₂)

 it satisfies (GE_n) for all n > 0
 (Kaplansky's lift -1949).

Thus, in a Bézout domain

$$(ID_2) \Leftrightarrow (ID_n)_{\forall n} \Leftrightarrow (GE_n)_{\forall n} \Leftrightarrow (GE_2).$$

If R is a Bézout domain:

- R satisfies (ID₂) ⇔ it satisfies (ID_n) for all n > 0 (Laffey's lift - 1983);
- R satisfies (GE₂)

 it satisfies (GE_n) for all n > 0
 (Kaplansky's lift -1949).

Thus, in a Bézout domain

$$(ID_2) \Leftrightarrow (ID_n)_{\forall n} \Leftrightarrow (GE_n)_{\forall n} \Leftrightarrow (GE_2).$$

Note: $(GE_2) \Leftrightarrow (ID_2)$ outside Bézout domains: local non-valuation domains satisfy (GE_2) but not (ID_2) .

Question: What about (ID_n) outside the class of Bézout domains?

QUESTION: What about (ID₂) outside the class of Bézout domains?

QUESTION: What about (ID₂) outside the class of Bézout domains?

Theorem (Bhaskara Rao - 2009)

Let R be a projective-free domain (every projective R-module is free). If R satisfies property (ID₂), then R is a Bézout domain.

K.P.S. Bhaskara Rao, Products of idempotent matrices over integral domains, *Linear Algebra Appl.*, 430(10): 2690–2695, 2009.

QUESTION: What about (ID₂) outside the class of Bézout domains?

Theorem (Bhaskara Rao - 2009)

Let R be a projective-free domain (every projective R-module is free). If R satisfies property (ID₂), then R is a Bézout domain.

K.P.S. Bhaskara Rao, Products of idempotent matrices over integral domains, *Linear Algebra Appl.*, 430(10): 2690–2695, 2009.

This result and those by Laffey and Ruitenburg suggested the following:

Conjecture (Salce, Zanardo - 2014)

If an integral domain R satisfies property (ID_2), then it is a Bézout domain.

L. Salce, P. Zanardo, Products of elementary and idempotent matrices over integral domains, *Linear Algebra Appl.*, 452:130–152, 2014.

The conjecture (ID₂)⇒ Bézout

Note:

 In view of Laffey's lift, if this conjecture would be true, then every domain satisfying property (ID₂) would satisfy property (ID_n) for any n > 0.

Note:

- In view of Laffey's lift, if this conjecture would be true, then every domain satisfying property (ID₂) would satisfy property (ID_n) for any n > 0.
- (GE₂) ⇒ Bézout
 Local non-valuation domains are non-Bézout domains satisfying (GE₂).

Note:

- In view of Laffey's lift, if this conjecture would be true, then every domain satisfying property (ID₂) would satisfy property (ID_n) for any n > 0.
- (GE₂) ⇒ Bézout
 Local non-valuation domains are non-Bézout domains satisfying
 (GE₂).

EXAMPLES:

Unique factorization domains Projective-free domains Local domains PRINC domains (introduced by Salce and Zanardo)

$(ID_2) \Rightarrow Prüfer$

Our first result in support of the conjecture is the following

Theorem 1

If R is an integral domain satisfying property (ID₂), then R is a Prüfer domain (a domain in which every finitely generated ideal is invertible).

$(ID_2) \Rightarrow Prüfer$

Our first result in support of the conjecture is the following

Theorem 1

If R is an integral domain satisfying property (ID_2), then R is a Prüfer domain (a domain in which every finitely generated ideal is invertible).

Thus, it is **NOT RESTRICTIVE** to study the conjecture inside the class of Prüfer domains.

Sketch of the proof of Th.1

Idea of the proof of Theorem 1:

■ we first prove as a preliminary result that, given $a, b \in R$ non-zero

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$
 product of idempotents \Rightarrow (a, b) invertible.

Sketch of the proof of Th.1

Idea of the proof of Theorem 1:

■ we first prove as a preliminary result that, given $a, b \in R$ non-zero

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$
 product of idempotents \Rightarrow (a, b) invertible.

■ If we assume that *R* has (ID₂), then every two-generated ideal of *R* is invertible.

Sketch of the proof of Th.1

Idea of the proof of Theorem 1:

■ we first prove as a preliminary result that, given $a, b \in R$ non-zero

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$
 product of idempotents \Rightarrow (a, b) invertible.

- If we assume that *R* has (ID₂), then every two-generated ideal of *R* is invertible.
- We conclude since *R* is a Prüfer domain iff every two-generated ideal of *R* is invertible.

A new relation between (ID₂) and (GE₂)

A new relation between (ID_2) and (GE_2)

Proving a preliminary technical result and using a characterization of the property (GE₂) over an arbitrary domain proved by Salce and Zanardo in 2014, we get that

Theorem 2

If an integral domain R satisfies property (ID₂), then it also satisfies property (GE₂).

A new relation between (ID_2) and (GE_2)

Proving a preliminary technical result and using a characterization of the property (GE₂) over an arbitrary domain proved by Salce and Zanardo in 2014, we get that

Theorem 2

If an integral domain R satisfies property (ID₂), then it also satisfies property (GE₂).

Corollary 1

If R is an integral domain satisfying property (ID₂), then R is a Prüfer domain satisfying property (GE₂).

Conjecture: an equivalent formulation

Conjecture - Equivalent formulation

If R is a Prüfer non-Bézout domain, then there exist invertible 2×2 matrices over R that are not products of elementary matrices, i.e. R does not satisfy property (GE_2).

Conjecture: an equivalent formulation

Conjecture - Equivalent formulation

If R is a Prüfer non-Bézout domain, then there exist invertible 2×2 matrices over R that are not products of elementary matrices, i.e. R does not satisfy property (GE_2).

We prove that the coordinate rings of a large class of plane curves and the ring of integer-valued polynomials $Int(\mathbb{Z})$ satisfy the conjecture in this last formulation.

The case of the coordinate rings

The case of the coordinate rings

Let C be a smooth projective curve over the perfect field k, C_0 an affine part of C and $C \setminus C_0$ be the set of its points at infinity.

The case of the coordinate rings

Let C be a smooth projective curve over the perfect field k, C_0 an affine part of C and $C \setminus C_0$ be the set of its points at infinity.

Theorem 3

Let C be a plane smooth curve over the field k, having degree ≥ 2 , such that all the points at infinity are conjugate by elements of the Galois group $G_{\bar{k}/k}$. Then, the coordinate ring $R = k[C_0] = k[x, y]$ of C_0 does not satisfy property (GE₂).

The case of the coordinate rings

Let C be a smooth projective curve over the perfect field k, C_0 an affine part of C and $C \setminus C_0$ be the set of its points at infinity.

Theorem 3

Let C be a plane smooth curve over the field k, having degree ≥ 2 , such that all the points at infinity are conjugate by elements of the Galois group $G_{\bar{k}/k}$. Then, the coordinate ring $R = k[C_0] = k[x, y]$ of C_0 does not satisfy property (GE₂).

STRATEGY OF THE PROOF:

we prove that the group of units of R is k (i.e. R is a k-ring) and that $d = -\sum_{P \in C_{\infty}} \operatorname{ord}_{P}$ is a degree-function. We conclude applying a Cohn's proposition on k-rings with degree functions.

An example

From the previous theorem, given a plane smooth curve C of degree ≥ 2 having conjugate points at infinity,

■ if its coordinate ring *R* is not a PID, then *R* is a Dedekind domain that satisfies the conjecture.

An example

From the previous theorem, given a plane smooth curve C of degree ≥ 2 having conjugate points at infinity,

■ if its coordinate ring R is not a PID, then R is a Dedekind domain that satisfies the conjecture.

EXAMPLE:

Let $x^4 + y^4 + 1 = 0$ be the defining equation of C over \mathbb{R} . Then R is a non-UFD Dedekind domain:

$$(x^2 + y^2 - 1)(x^2 + y^2 + 1) = 2(xy - 1)(xy + 1)$$

is a non-unique factorization into indecomposable factors. R does not satisfy properties (GE₂) and (ID₂).

Remark 1

In 1966, Cohn proved that the rings of integers I in $\mathbb{Q}(\sqrt{-d})$, with d squarefree positive integer, do not satisfy property (GE₂), unless d = 1, 2, 3, 7, 11.

Remark 1

In 1966, Cohn proved that the rings of integers I in $\mathbb{Q}(\sqrt{-d})$, with d squarefree positive integer, do not satisfy property (GE₂), unless d = 1, 2, 3, 7, 11.

If d is also different from 19, 43, 67, 163, then the ring of integers I in $\mathbb{Q}(\sqrt{-d})$ is a Dedekind domain, non UFD, that does not satisfy (GE₂) thus satisfying the conjecture.

P.M. Cohn, On the structure of the GL_2 of a ring, *Inst. Hautes Études Sci. Publ. Math.*, 30: 5–53, 1966.

Remark 2

Remark 2

■ If the coordinate ring R of a plane smooth curve C of degree ≥ 2 having conjugate points at infinity is a PID, then R is a non-Euclidean PID not satisfying (GE₂).

Remark 2

■ If the coordinate ring R of a plane smooth curve C of degree ≥ 2 having conjugate points at infinity is a PID, then R is a non-Euclidean PID not satisfying (GE₂).

Examples:

The coordinate ring over $\mathbb R$ of the curve $x^2+y^2+1=0$ and the coordinate ring over $\mathbb Q$ of the curve $x^2-3y^2+1=0$ are non-Euclidean PID's not satisfying (GE₂).

Remark 2

■ If the coordinate ring R of a plane smooth curve C of degree ≥ 2 having conjugate points at infinity is a PID, then R is a non-Euclidean PID not satisfying (GE₂).

EXAMPLES:

The coordinate ring over \mathbb{R} of the curve $x^2 + y^2 + 1 = 0$ and the coordinate ring over \mathbb{Q} of the curve $x^2 - 3y^2 + 1 = 0$ are non-Euclidean PID's not satisfying (GE₂).

■ The rings of integers I in $\mathbb{Q}(\sqrt{-d})$ with d = 19, 43, 67, 163 are non-Euclidean PID's not satisfying (GE₂).

Remark 2

■ If the coordinate ring R of a plane smooth curve C of degree ≥ 2 having conjugate points at infinity is a PID, then R is a non-Euclidean PID not satisfying (GE₂).

Examples:

The coordinate ring over \mathbb{R} of the curve $x^2 + y^2 + 1 = 0$ and the coordinate ring over \mathbb{Q} of the curve $x^2 - 3y^2 + 1 = 0$ are non-Euclidean PID's not satisfying (GE₂).

■ The rings of integers I in $\mathbb{Q}(\sqrt{-d})$ with d = 19, 43, 67, 163 are non-Euclidean PID's not satisfying (GE₂).

These classes of non-Euclidean PID's verify another conjecture proposed by Salce and Zanardo in 2014: "every non-Euclidean PID does not satisfy (GE_2) ".

L.Cossu, P. Zanardo, U. Zannier, Products of elementary matrices and non-Euclidean principal ideal domains, *Journal of Algebra*, *501*: 182 - 205, 2018.

We consider now the ring of integer-valued polynomials

$$\operatorname{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subseteq \mathbb{Z} \}.$$

We consider now the ring of integer-valued polynomials

$$\operatorname{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subseteq \mathbb{Z} \}.$$

■ $Int(\mathbb{Z})$ is a \mathbb{Z} -module such that

$$\mathbb{Z}[X] \subseteq \operatorname{Int}(\mathbb{Z}) \subseteq \mathbb{Q}[X];$$

We consider now the ring of integer-valued polynomials

$$\operatorname{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subseteq \mathbb{Z} \}.$$

■ $Int(\mathbb{Z})$ is a \mathbb{Z} -module such that

$$\mathbb{Z}[X] \subseteq \operatorname{Int}(\mathbb{Z}) \subseteq \mathbb{Q}[X];$$

■ the polynomials

$$\binom{X}{n} = \frac{X(X-1)\cdots(X-n+1)}{n!},$$

with $\binom{X}{0} = 1$ and $\binom{X}{1} = X$, form a basis of $Int(\mathbb{Z})$ as a \mathbb{Z} -module;

We consider now the ring of integer-valued polynomials

$$Int(\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subseteq \mathbb{Z} \}.$$

■ $Int(\mathbb{Z})$ is a \mathbb{Z} -module such that

$$\mathbb{Z}[X] \subseteq \operatorname{Int}(\mathbb{Z}) \subseteq \mathbb{Q}[X];$$

■ the polynomials

$$\binom{X}{n} = \frac{X(X-1)\cdots(X-n+1)}{n!},$$

with $\binom{X}{0} = 1$ and $\binom{X}{1} = X$, form a basis of $Int(\mathbb{Z})$ as a \mathbb{Z} -module;

■ $Int(\mathbb{Z})$ is a Prüfer domain but it is not a Bézout domain.

Discretely ordered rings

A ring R is discretely ordered if it is totally ordered and, for any $r \in R$, if r > 0, then $r \ge 1$.

Discretely ordered rings

A ring R is discretely ordered if it is totally ordered and, for any $r \in R$, if r > 0, then $r \ge 1$.

Example: \mathbb{Z} is the most obvious example of discretely ordered ring.

Discretely ordered rings

A ring R is discretely ordered if it is totally ordered and, for any $r \in R$, if r > 0, then $r \ge 1$.

Example: \mathbb{Z} is the most obvious example of discretely ordered ring.

Proposition

The ring of integer-valued polynomials $Int(\mathbb{Z})$ is a discretely ordered ring.

Discretely ordered rings

A ring R is discretely ordered if it is totally ordered and, for any $r \in R$, if r > 0, then $r \ge 1$.

Example: \mathbb{Z} is the most obvious example of discretely ordered ring.

Proposition

The ring of integer-valued polynomials $Int(\mathbb{Z})$ is a discretely ordered ring.

STRATEGY OF THE PROOF:

Every $f \in \text{Int}(\mathbb{Z})$ is of the form $f = a_0 + a_1 X + \cdots + a_n {X \choose n}$, with $a_0, \ldots, a_n \in \mathbb{Z}$ for some $n \in \mathbb{N}$.

Set f > 0 if and only if $a_n > 0$ and f > g if and only if f - g > 0, with $f, g \in Int(\mathbb{Z})$. Then $f > 0 \Rightarrow f \geq 1$.

Using a collection of Cohn's results which characterize the products of elementary matrices over discretely ordered rings, we proved that the invertible matrix

$$\mathbf{M} = \begin{pmatrix} 1 + 2X & 4 \\ 1 + 4X + 2\binom{X}{2} & 5 + 2X \end{pmatrix}$$

over $Int(\mathbb{Z})$ cannot be written as a product of elementary matrices.

Using a collection of Cohn's results which characterize the products of elementary matrices over discretely ordered rings, we proved that the invertible matrix

$$\mathbf{M} = \begin{pmatrix} 1 + 2X & 4 \\ 1 + 4X + 2 {X \choose 2} & 5 + 2X \end{pmatrix}$$

over $\text{Int}(\mathbb{Z})$ cannot be written as a product of elementary matrices. Then:

Theorem 4

The ring $Int(\mathbb{Z})$ does not satisfy property (GE_2) . Thus, it is a Prüfer non-Bézout domain satisfying the conjecture $(ID_2) \Rightarrow$ Bézout in its equivalent formulation.

■ Prove the validity of the conjecture for other natural classes of Prüfer/Dedekind domains:

- Prove the validity of the conjecture for other natural classes of Prüfer/Dedekind domains:
 - the ring of integers in number fields;
 - more general classes of coordinate rings of smooth curves;
 - the ring Int(D), generalization of Int(Z) to a generic integral domain D;

- Prove the validity of the conjecture for other natural classes of Prüfer/Dedekind domains:
 - the ring of integers in number fields;
 - more general classes of coordinate rings of smooth curves;
 - the ring Int(D), generalization of Int(Z) to a generic integral domain D;
 - the Prüfer-Schülting domains obtained as intersections of formally-real valuation domains.

- Prove the validity of the conjecture for other natural classes of Prüfer/Dedekind domains:
 - the ring of integers in number fields;
 - more general classes of coordinate rings of smooth curves;
 - the ring Int(D), generalization of Int(Z) to a generic integral domain D;
 - the Prüfer-Schülting domains obtained as intersections of formally-real valuation domains.
- Identify relations between elements of R preserved under idempotent factorizations.

- Prove the validity of the conjecture for other natural classes of Prüfer/Dedekind domains:
 - the ring of integers in number fields;
 - more general classes of coordinate rings of smooth curves;
 - the ring Int(D), generalization of Int(Z) to a generic integral domain D;
 - the Prüfer-Schülting domains obtained as intersections of formally-real valuation domains.
- Identify relations between elements of R preserved under idempotent factorizations.

Essential bibliography

P.M. COHN,

On the structure of the GL_2 of a ring,

Inst. Hautes Études Sci. Publ. Math., 30: 5–53, 1966.

J.A. ERDOS,

On products of idempotent matrices,

Glasgow Math. J., 8: 118–122, 1967.

T.J. LAFFEY,

Products of idempotent matrices, Linear and Multilinear Algebra, 14 (4): 309–314, 1983.

J. FOUNTAIN,

Products of idempotent integer matrices,

Math. Proc. Cambridge Philos. Soc., 110: 431–441, 1991.

W. Ruitenburg,

Products of idempotent matrices over Hermite domains, Semigroup Forum, 46(3): 371–378, 1993.

K.P.S. BHASKARA RAO,

Products of idempotent matrices over integral domains, Linear Algebra Appl., 430(10): 2690–2695, 2009.

L. SALCE, P. ZANARDO,

Products of elementary and idempotent matrices over integral domains,

Linear Algebra Appl., 452:130–152, 2014.

L. Cossu, P. Zanardo, U. Zannier,

Products of elementary matrices and non-Euclidean principal ideal domains,

Journal of Algebra,501: 182 - 205, 2018.

THANK YOU