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Abstract. A commutative ring R is stable if every non-zero ideal I of R is projective over its ring of

endomorphisms. Motivated by a paper of Bass in the 1960s, stable rings have received wide attention
in the literature ever since then. Much is known on the algebraic structure of stable rings and on

the relationship of stability with other algebraic properties such as divisoriality and the 2-generator

property. In the present paper we study the arithmetic of stable integral domains, with a focus on
arithmetic properties of semigroups of ideals of stable orders in Dedekind domains.

1. Introduction

Motivated by a paper of Bass ([6]), Lipman, Sally and Vasconcelos ([37, 56]) introduced the concept
of stable ideals and stable rings, which has received wide attention in the literature ever since then. In
the present paper we restrict to integral domains. Let R be a commutative integral domain. A non-zero
ideal I ⊂ R is stable if it is projective over its ring of endomorphisms (equivalently, if it is invertible as
an ideal of the overring (I : I) of R). The domain R is called (finitely) stable if every non-zero (finitely
generated) ideal of R is stable. By definition, invertible ideals are stable and this implies that Dedekind
domains are stable and Prüfer domains are finitely stable. On the other hand, stable domains need
neither be noetherian, nor one-dimensional, nor integrally closed. For background on stable rings, their
applications, and for results till 2000 we refer to the survey [44] by Olberding. Since then stable rings and
domains were studied in a series of papers by Bazzoni, Gabelli, Olberding, Roitman, Salce, and others
(e.g., [13, 14, 15, 42, 45, 46, 47, 48]).

The goal of the present paper is to study the arithmetic of stable domains, by building on the existing
algebraic results. Mori domains and Mori monoids play a central role in factorization theory of integral
domains. Every Mori domain R is a BF-domain (this means that every non-zero non-unit element a ∈ R
has a factorization into irreducible elements and the set L(a) ⊂ N of all possible factorization lengths
is finite). For every Mori domain R, the monoid I∗v (R) of v-invertible v-ideals is a Mori monoid. Our
starting point is a recent result by Gabelli and Roitman ([14]) stating that a domain is stable and Mori if
and only if it is one-dimensional stable (Proposition 3.1). This implies that stable Mori domains with non-
zero conductor to their complete integral closure are stable orders in Dedekind domains (Theorem 3.7),
and these domains are in the center of our interest.

In Section 2 we put together some basics on monoids and domains. In Section 3 we first gather
structural results on stable domains (Propositions 3.1 to 3.5). Then we apply them to domains which
are of central interest in factorization theory, namely seminormal domains, weakly Krull domains, and
Mori domains. In Section 4, we study semigroups of r-ideals in the setting of ideal systems of cancellative
monoids. We derive structural algebraic results and use them to understand when such semigroups of r-
ideals are half-factorial. Section 5 contains our main arithmetical results. The main purpose of Section 5
is to highlight the arithmetical advantages of stability in the context of orders in Dedekind domains.
In particular, we show that a series of properties, valid in orders in quadratic number fields (which are
stable), also hold true for general stable orders in Dedekind domains. The main result of Section 5 is
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Theorem 5.10. Among others, it states that the monoid of non-zero ideals and the monoid of invertible
ideals of a stable order in a Dedekind domain are transfer Krull if and only if they are half-factorial (this
means that they are transfer Krull only in the trivial case). This is in contrast to a recent result on Bass
rings (which are stable). In [5, Theorem 1.1], Baeth and Smertnig show that the monoid of isomorphism
classes of finitely generated torsion-free modules over a Bass ring is always transfer Krull.

2. Background on monoids and domains

We denote by N the set of positive integers and by N0 we denote the set of non-negative integers. For
rational numbers a, b ∈ Q, [a, b] = {x ∈ Z | a ≤ x ≤ b} is the discrete interval between a and b. For
subsets A,B ⊂ Z, A + B = {a + b | a ∈ A, b ∈ B} denotes their sumset. The set of distances ∆(A)
is the set of all d ∈ N for which there is a ∈ A such that A ∩ [a, a + d] = {a, a + d}. If A ⊂ N, then
ρ(A) = sup(A)/min(A) ∈ Q≥1 ∪ {∞} is the elasticity of A, and we set ρ({0}) = 1.

Let H be a multiplicatively written commutative semigroup with identity element. We denote by
H× the group of invertible elements of H. We say that H is reduced if H× = {1} and we denote by
Hred = {aH× | a ∈ H} the associated reduced semigroup of H. An element u ∈ H is said to be cancellative
if au = bu implies a = b for all a, b ∈ H. The semigroup H is said to be

• cancellative if all elements of H are cancellative;
• unit-cancellative if a, u ∈ H and a = au implies that u ∈ H×.

Clearly, every cancellative monoid is unit-cancellative. We will study semigroups of ideals that are unit-
cancellative but not necessarily cancellative.

Throughout, a monoid means a
commutative unit-cancellative semigroup with identity element.

For a set P , we denote by F(P ) the free abelian monoid with basis P . Elements a ∈ F(P ) are written
in the form

a =
∏
p∈P

pvp(a) , where vp : F(P )→ N0

is the p-adic valuation. We denote by |a| =
∑
p∈P vp(a) ∈ N0 the length of a and by supp(a) = {p ∈ P |

vp(a) > 0} ⊂ P the support of a.
Let H be a monoid. A non-unit a ∈ H is said to be an atom (or irreducible) if a = bc with b, c ∈ H

implies that b ∈ H× or c ∈ H×. We denote by A(H) the set of atoms of H and we say that H is atomic
if every non-unit is a finite product of atoms. Two elements a, b ∈ H are called associated if a = bc for
some c ∈ H×. If a = u1 · . . . ·uk ∈ H, where k ∈ N and u1, . . . , uk ∈ A(H), then k is a factorization length
and the set L(a) ⊂ N of all factorization lengths of a is called the set of lengths of a. For convenience, we
set L(a) = {0} for a ∈ H×. Then L(H) = {L(a) | a ∈ H} is the system of sets of lengths of H,

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N is the set of distances of H, and

ρ(H) = sup{ρ(L) | L ∈ L(H)} ∈ R≥1 ∪ {∞} is the elasticity of H .

We say that the elasticity is accepted if ρ(H) = ρ(L) for some L ∈ L(H). The monoid H is

• half-factorial if it is atomic and |L| = 1 for all L ∈ L(H),
• an FF-monoid if it is atomic and each element of H is divisible by only finitely many non-associated

atoms, and
• a BF-monoid if it is atomic and all sets of lengths are finite.

By definition, an atomic monoid is half-factorial if and only if ∆(H) = ∅ if and only if ρ(H) = 1. FF-
monoids are BF-monoids, BF-monoids satisfy the ACCP (ascending chain condition on principal ideals),
and monoids satisfying the ACCP are atomic and archimedean (i.e.,

⋂
n≥1 a

nH = ∅ for all a ∈ H \H×).

If H is atomic but not half-factorial, then we have gcd ∆(H) = min ∆(H).
Suppose that H is cancellative, m = H \H×, and let q(H) be the quotient group of H. We denote by
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• H ′ = {x ∈ q(H) | there is some N ∈ N such that xn ∈ H for all n ≥ N} the seminormal closure
of H, and by

• Ĥ = {x ∈ q(H) | there is c ∈ H such that cxn ∈ H for all n ∈ N} the complete integral closure of
H.

Then H ⊂ H ′ ⊂ Ĥ ⊂ q(H), and we say that H is seminormal (resp. completely integrally closed) if

H = H ′ (resp. H = Ĥ). Let A,B ⊂ q(H) be subsets. We set (A : B) = {z ∈ q(H) | zB ⊂ A} and
A−1 = (H :A). If A ⊂ H, then A is a divisorial ideal (or a v-ideal) if A = Av := (A−1)−1, and A is an
s-ideal if A = AH. If p ( H is an s-ideal of H, then p is called a prime s-ideal of H if for all x, y ∈ H
with xy ∈ p, it follows that x ∈ p or y ∈ p. For an s-ideal I of H let

√
I = {x ∈ H | there is n ∈ N such

that xn ∈ I} denote the radical of I. The monoid H is said to be

• Mori if it satisfies the ascending chain condition on divisorial ideals,
• Krull if it is a completely integrally closed Mori monoid,
• a G-monoid if the intersection of all non-empty prime s-ideals is non-empty,
• primary if H 6= H× and for all a, b ∈ m there is n ∈ N such that bn ∈ aH,
• strongly primary if H 6= H× and for every a ∈ m there is n ∈ N such that mn ⊂ aH (we denote

by M(a) the smallest n ∈ N having this property), and
• finitely primary (of rank s and exponent α) if H is a submonoid of a factorial monoid F =
F× ×F({p1, . . . , ps}) such that m ⊂ p1 · . . . · psF and (p1 · . . . · ps)αF ⊂ H.

Finitely primary monoids and primary Mori monoids are strongly primary. (To see that the last statement

is valid let H be a primary Mori monoid, m = H \H× and a ∈ m. Then
√
aH = m = Ev for some finite

set E ⊂
√
aH. We infer that En ⊂ aH for some n ∈ N. Therefore, mn ⊂ (En)v ⊂ aH, and thus H is

strongly primary.) Mori monoids and strongly primary monoids are BF-monoids.
By a domain, we mean a commutative ring with non-zero identity element and without non-zero zero-

divisors. Let R be a domain. We denote by R• = R\{0} the multiplicative monoid of non-zero elements,

by R× the group of units, by R the integral closure of R, by R̂ the complete integral closure of R, by X(R)
the set of non-zero minimal prime ideals of R, and by q(R) the quotient field of R. An ideal I ⊂ R is called
2-generated if there are some a, b ∈ I such that I = aR+ bR. We say that R is atomic (a BF-domain, an
FF-domain, a Mori domain, a Krull domain, a G-domain, archimedean, (strongly) primary, seminormal,
completely integrally closed) if its monoid R• has the respective property. By [21, Proposition 2.10.7], R
is primary if and only if R is one-dimensional and local. The domain R

• has finite character if every non-zero element is contained in only finitely many maximal ideals.
• is divisorial if every non-zero ideal is divisorial.
• is h-local if R has finite character and every non-zero prime ideal of R is contained in a unique

maximal ideal of R.

One-dimensional Mori domains have finite character by [14, Lemma 3.11].
Let S be an integral domain such that R ⊂ S is a subring. Then R is an order in S if q(R) = q(S)

and S is a finitely generated R-module. Moreover, the following statements are equivalent if R is not a
field ([21, Theorem 2.10.6]) :

• R is an order in a Dedekind domain.
• R is one-dimensional noetherian and the integral closure R of R is a finitely generated R-module.

The extension R ⊂ S is quadratic if xy ∈ xR + yR + R for all x, y ∈ S; equivalently, every R-module
between R and S is a ring. If R ⊂ S is quadratic, then, for every x ∈ S, we have x2 ∈ xR + R; that
is, every x ∈ S is a root of a monic polynomial of degree at most 2 with coefficients in R. Thus every
quadratic extension is an integral extension.
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3. Stable domains

In this section we first gather main properties of stable domains (Propositions 3.1 to 3.5). Then we
analyze what consequences stability has on some key classes of domains studied in factorization theory,
including seminormal domains, weakly Krull domains, G-domains, and Mori domains (Theorems 3.6
and 3.7).

Let R be a domain. A non-zero ideal I ⊂ R is stable if it is invertible as an ideal of the overring (I :I)
of R. The domain is called (finitely) stable if every non-zero (finitely generated) ideal of R is stable.
Since invertible ideals are obviously stable, Dedekind domains are stable and Prüfer domains are finitely
stable. Conversely, if R is completely integrally closed and stable, then R = (I : I) for every non-zero
ideal I ⊂ R, whence every non-zero ideal is invertible in R and R is a Dedekind domain. Recall that R is
an almost Dedekind domain if Rm is a Dedekind domain for each m ∈ max(R). Every almost Dedekind
domain is a completely integrally closed Prüfer domain, and thus it is finitely stable. Nevertheless, R
is a Dedekind domain if and only if R is a stable almost Dedekind domain. In particular, every almost
Dedekind domain that is not a Dedekind domain is not stable. For an example of an almost Dedekind
domain that is not a Dedekind domain we refer to [38, Example 35, page 290]. We recall that stable
domains need neither be noetherian, nor integrally closed, nor one-dimensional ([44, Sections 3 and 4]),
and we use without further mention that overrings of stable domains are stable ([45, Theorem 5.1]).

Proposition 3.1. Let R be a domain that is not a field. Then the following statements are equivalent.

(a) R is a one-dimensional stable domain.
(b) R is a finitely stable Mori domain.
(c) R is a stable Mori domain.

Proof. This is due to Gabelli and Roitman. More precisely, the equivalence of (a) and (b) is proved in
[14, Theorem 4.8]. Clearly, (c) implies (b). If (a) and (b) hold, then (c) holds by [14, Proposition 4.4]. �

Examples given by Olberding in [42, 47] show that one-dimensional stable domains need not be noe-
therian. The ring Int(Z) of integer-valued polynomials is a two-dimensional completely integrally closed
Prüfer domain and a BF-domain. Int(Z) is finitely stable (as it is Prüfer) but not stable (as it is not
Dedekind). Thus in Statement (b), the property “Mori” cannot be replaced by “BF”. In Example 3.9.3
we show that “Mori” cannot be replaced by “BF” in Statement (c) even if R is a Prüfer domain. Next
we consider the local case.

Corollary 3.2. Let R be a local domain that is not a field.

1. The following statements are equivalent.
(a) R is a one-dimensional stable domain.
(b) R is a primary stable domain.
(c) R is a stable Mori domain.
(d) R is a strongly primary stable domain.

If these conditions hold and (R : R) = {0} (for examples, see [48, Theorem 2.13]), then R is a
discrete valuation domain.

2. If R is one-dimensional, then the following statements are equivalent.
(a) R is stable.
(b) R is finitely stable with stable maximal ideal.
(c) R is a quadratic extension of R and R is a Dedekind domain with at most two maximal ideals.

3. If R is finitely stable with stable maximal ideal m, then the following statements are equivalent.
(a)

⋂
n∈N mn = {0}.

(b) R is a BF-domain.
(c) R satisfies the ACCP.
(d) R is archimedean.
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Proof. 1. Since R is one-dimensional and local if and only if R• is primary, Conditions (a) and (b) are
equivalent. Conditions (a) and (c) are equivalent by Proposition 3.1. Obviously, Condition (d) implies
Condition (b). Since primary Mori monoids are strongly primary by [23, Lemma 3.1], Conditions (b)
and (c) imply Condition (d). If (a) - (d) hold and (R :R) = {0}, then R is a discrete valuation domain
by [45, Corollary 4.17].

2. See [48, Theorem 4.2].
3. (a) ⇒ (b) This is an immediate consequence of [21, Theorem 1.3.4].
(b) ⇒ (c) This follows from [21, Corollary 1.3.3].
(c) ⇒ (d) This is clear (e.g., see page 2 of [15]).
(d) ⇒ (a) This follows from [15, Proposition 2.12]. �

Let R be a domain. By Corollary 3.2.1, every strongly primary stable domain is Mori. This is not
true for general strongly primary domains ([26, Section 3]) and it is in strong contrast to other classes of
strongly primary monoids ([19, Theorem 3.3]). By [15, Example 5.17] there exists a stable two-dimensional
archimedean local integral domain. We infer by Corollary 3.2.3 that such a domain is a BF-domain. In
particular, a local stable BF-domain need not satisfy the equivalent conditions of Corollary 3.2.1.

Note that if R is a local domain whose ideals are 2-generated, then R is finitely stable with stable
maximal ideal (e.g. see Proposition 3.5.4) and the equivalent conditions in Corollary 3.2.3 are satisfied
(since R is noetherian). Nevertheless, such a domain is (in general) neither half-factorial nor an FF-
domain. In what follows, we present suitable counterexamples.

Let K be a quadratic number field with maximal order OK and p be a prime number such that p is
split (i.e., pOK is the product of two distinct prime ideals of OK). (For instance, let K = Q(

√
−7) and

p = 2.) Let O be the unique order in K with conductor pOK and let p be a maximal ideal of O that
contains the conductor. Set S = Op. Then S is a local domain whose ideals are 2-generated and there

are precisely two maximal ideals of S that are lying over the maximal ideal of S. It follows from [21,
Theorem 3.1.5.2] that S is not half-factorial. (Note that S• is a finitely primary monoid of rank two, and
thus it has infinite elasticity by [21, Theorem 3.1.5.2]. Therefore, it cannot be half-factorial.)

Let T = R + XC[[X]]. Then T is a local domain with maximal ideal XC[[X]] and every ideal of T
is 2-generated by Corollary 3.2.2 and Proposition 3.5.4. Observe that T is not an FF-domain, since
aX, a−1X ∈ A(T ) and X2 = (aX)(a−1X) for each a ∈ C \ {0}.

We do not know whether a local atomic finitely stable domain with stable maximal ideal satisfies the
equivalent conditions in Corollary 3.2.3.

Proposition 3.3. Let R be a domain.

1. R is finitely stable if and only if R ⊂ R is a quadratic extension, R is Prüfer, and there are at
most two maximal ideals of R lying over every maximal ideal of R.

2. A semilocal Prüfer domain is stable if and only if it is strongly discrete.
3. R is an integrally closed stable domain if and only of R is a strongly discrete Prüfer domain with

finite character if and only if R is a generalized Dedekind domain with finite character.
4. An integrally closed one-dimensional domain is stable if and only if it is Dedekind.

Proof. Recall that a Prüfer domain R is strongly discrete provided that no non-zero prime ideal P of R
satisfies P = P 2.

1. [46, Corollary 5.11].
2. See [2, Proposition 2.10] and [13, Proposition 2.5].
3. It is an immediate consequence of [41, Theorem 4.6] that R is an integrally closed stable domain

if and only if R is a strongly discrete Prüfer domain with finite character. Moreover, it follows from [13,
Corollary 2.13] that R is integrally closed and stable if and only if R is a generalized Dedekind domain
with finite character.
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4. Since a domain is Dedekind if and only if it is generalized Dedekind of dimension one ([12, Propo-
sition 2.1], this follows from 3. �

Proposition 3.3.4 characterizes integrally closed stable domains, that are one-dimensional. However,
there are, for every n ∈ N, n-dimensional local stable valuation domains ([15, Example 5.11], and recall
that valuation domains are integrally closed).

Lemma 3.4. Let R be a local domain with maximal ideal m such that R is not a field.

1. If R is noetherian, then R is divisorial if and only if R is one-dimensional and m−1/R is a simple
R-module.

2. If R is seminormal and one-dimensional, then (R :R̂) ⊃ m.

Proof. 1. This follows from [7, Theorem A].
2. This is an immediate consequence of [24, Lemma 3.3]. �

Proposition 3.5. Let R be a domain.

1. R is divisorial if and only if R is h-local and Rm is divisorial for every m ∈ max(R).
2. R is stable if and only if R is of finite character and Rm is stable for every m ∈ max(R).
3. R is a divisorial Mori domain if and only if R is of finite character and Rm is a divisorial Mori

domain for every m ∈ max(R).
4. Every ideal of R is 2-generated if and only if R is a divisorial stable Mori domain. If R is a stable

Mori domain with (R :R) 6= {0}, then R is divisorial and every ideal of R is 2-generated.
5. Every ideal of R is 2-generated if and only if R is of finite character and for all m ∈ max(R),

every ideal of Rm is 2-generated.

Proof. 1. This follows from [8, Proposition 5.4].
2. This follows from [45, Theorem 3.3].
3. Without restriction assume that R is not a field. First let R be a divisorial Mori domain. It follows

by 1. that R is of finite character and Rm is divisorial for all m ∈ max(R). Clearly, Rm is a Mori domain
for every m ∈ max(R).

Now let R be of finite character and let Rm be a divisorial Mori domain for every m ∈ max(R). We
infer by [55, Théorème 1] that R is a Mori domain. If m ∈ max(R), then Rm is clearly noetherian, and
hence Rm is one-dimensional by Lemma 3.4.1. Therefore, R is one-dimensional, and thus R is h-local.
Therefore, R is divisorial by 1.

4. We infer by [43, Theorems 3.1 and 3.12] that every ideal of R is 2-generated if and only if R is a
noetherian stable divisorial domain. Clearly, R is noetherian and divisorial if and only if R is a divisorial
Mori domain, and hence the first statement follows. If R is a stable Mori domain with (R :R) 6= {0},
then R is at most one-dimensional by Proposition 3.1, and thus every ideal of R is 2-generated by [42,
Proposition 4.5].

5. This is an immediate consequence of 2., 3. and 4. �

By Proposition 3.5.4, orders in quadratic number fields are stable because every ideal is 2-generated
(for background on orders in quadratic number fields we refer to [33]). Much research was done to
characterize domains, for which all ideals are 2-generated ([8, Theorem 7.3], [29, Theorem 17], [40]). We
continue with a characterization within the class of seminormal domains.

Theorem 3.6. Let R be a seminormal domain. Then the following statements are equivalent.

(a) Every ideal of R is 2-generated.
(b) R is a divisorial Mori domain.
(c) R is a finitely stable Mori domain.

Proof. Without restriction assume that R is not a field. Note that if R is of finite character, then R is a
Mori domain if and only if Rm is a Mori domain for every m ∈ max(R) ([55, Théorème 1]). We obtain
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by Proposition 3.5.3 that R is a divisorial Mori domain if and only if R is of finite character and Rm is a
divisorial Mori domain for every m ∈ max(R). Besides that we infer by Propositions 3.1 and 3.5.2 that
R is a finitely stable Mori domain if and only if R is of finite character and Rm is a finitely stable Mori
domain for every m ∈ max(R). By using Proposition 3.5.5 and the fact that Rm is seminormal for every
m ∈ max(R), it suffices to prove the equivalence in the local case. Let R be local with maximal ideal m.

(a) ⇒ (b) This follows from Proposition 3.5.4.
(b)⇒ (c) Observe that R is noetherian, and thus R is one-dimensional by Lemma 3.4.1. We infer that

R is a semilocal principal ideal domain, and thus R is a finitely stable Mori domain. In particular, we
can assume without restriction that R is not integrally closed. Since R ( R, it follows that (R :R) = (R :

R̂) = m by Lemma 3.4.2. Since R is not integrally closed, we have that m is not invertible. Therefore,
mm−1 ⊂ m. Moreover, Rm = R(R :R) ⊂ R, and hence R ⊂ m−1. We infer that m−1 ⊂ (m :m) ⊂ R ⊂
m−1, and thus R = m−1.

Consequently, R/R is a simple R-module by Lemma 3.4.1. In particular, R ⊂ R is a quadratic
extension. Observe that lR(R/m) = lR(R/R) + lR(R/m) = 2. Set k = |{q ∈ max(R) | q ∩ R = m}|.
Then k = |max(R)|. Assume that k ≥ 3. There are some distinct q1, q2, q3 ∈ max(R). Note that
m ⊂ q1 ∩ q2 ∩ q3 ( q1 ∩ q2 ( q1 ( R, and thus lR(R/m) ≥ 3, a contradiction. We infer that k ≤ 2. It
follows from Corollary 3.2.2 that R is finitely stable.

(c) ⇒ (a) Note that R is a one-dimensional stable domain by Proposition 3.1. It follows from

Lemma 3.4.2 that {0} 6= m ⊂ (R : R̂) ⊂ (R : R), and thus every ideal of R is 2-generated by Propo-
sition 3.5.4. �

A domain R is said to be weakly Krull if

R =
⋂

p∈X(R)

Rp and the intersection is of finite character,

which means that {p ∈ X(R) | x 6∈ R×p } is finite for all x ∈ R•. Weakly Krull domains were introduced
by Anderson, Anderson, Mott, and Zafrullah ([1, 3]), and their multiplicative character was pointed out
by Halter-Koch ([31, Chapter 22]).

Theorem 3.7. Let R be a domain with (R : R̂) 6= {0}, and suppose that R is either weakly Krull or
Mori. Then R is stable if and only if every ideal of R is 2-generated. If this holds, then R is an order in
a Dedekind domain.

Proof. If every ideal of R is 2-generated, then R is stable by Proposition 3.5.4. Conversely, let R be
stable.

Let us first suppose that R is weakly Krull. Then, for every p ∈ X(R), Rp is one-dimensional and
stable, whence Mori by Proposition 3.1. Since R is weakly Krull, this implies that R is Mori by [24,
Lemma 5.1].

Thus R is Mori in both cases. Using Proposition 3.1 again we infer that R is one-dimensional. There-
fore, R is one-dimensional integrally closed and stable, whence R is a Dedekind domain by Proposi-
tion 3.3.4. Since (R :R) 6= {0}, Proposition 3.5.4 implies that every ideal of R is 2-generated. �

Corollary 3.8. Let R be a seminormal G-domain and suppose that R is either Mori or one-dimensional.
Then R is stable if and only if every ideal of R is 2-generated. If this holds, then R is an order in a
Dedekind domain.

Proof. Since R is a seminormal G-domain, (R :R̂) 6= {0} by [22, Proposition 4.8]. Thus the claim follows
from Theorem 3.7. �
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Example 3.9.
1. There exist integrally closed one-dimensional local Mori domains which are neither valuation do-

mains nor finitely stable. Let K be a field, Y an indeterminate over K, and X an indeterminate over
K(Y ). Then R = K + XK(Y ) [[X]] is an integrally closed one-dimensional local Mori domain which is
not completely integrally closed. Thus, R is not a valuation domain. By Proposition 3.3.4, it is not stable
because it is not a Dedekind domain, and hence it is not finitely stable by Proposition 3.1.

2. There exists a seminormal two-dimensional local stable domain. Let p ∈ Z be a prime and
R = Z(p) + XR [[X]]. Since R [[X]] is a discrete valuation domain with maximal ideal m = XR [[X]] and
also Z(p) is a discrete valuation domain with maximal ideal pZ(p); R is a local two-dimensional domain
with maximal ideal n = pR (and {0} ⊂ m ⊂ n). Now R is stable as well by [42, Theorem 2.6]. Thus R is
not Mori by Proposition 3.1.

Moreover, R is seminormal. Indeed, we know Z(p) is integrally closed in Q and R ⊂ D = Q+XR [[X]] ⊂
R [[X]]. Let t ∈ q(R) = R((X)) with t2, t3 ∈ R. Then t2, t3 ∈ R [[X]], and hence t ∈ R [[X]] (since R [[X]]
is completely integrally closed). We infer that t0 ∈ R and t20, t

3
0 ∈ Q. If t0 = 0, then t ∈ D. If t0 6= 0,

then t0 = t30t
−2
0 ∈ Q, that is t ∈ D. In any case D is seminormal. Now clearly R is seminormal in D.

Therefore, R is seminormal.
3. There exists a two-dimensional stable Prüfer domain R which is a BF-domain, whence R is a finitely

stable BF-domain that is not Mori (cf. Proposition 3.1). To see this we analyze an example given by
Gabelli and Roitman. Let K be a field and let X and Y be independent indeterminates over K. Set

S = K[Y ] \ Y K[Y ] and let R = S−1(K[{X(1−X)n

Y n , Y n+1

(1−X)n | n ∈ N0}]). Set T = 1−X
Y . It is shown

in [15, Example 5.13] that R is a two-dimensional stable Prüfer domain which satisfies the ACCP. In
particular, R is archimedean. Moreover, it is shown in [15, Example 5.13] that Y and T are algebraically
independent over K and R = S−1(K[{(1− Y T )Tn, YTn | n ∈ N0}]).

Next we prove that S−1(K[Y, T, T−1]) ⊂ R̂. Observe that T = Y T
Y , and hence T and T−1 are elements

of the quotient field of R. Since (1 − Y T )Tn ∈ R and Y (T−1)n ∈ R for every n ∈ N0, we infer that

{T, T−1} ⊂ R̂. Clearly, K[Y ] ⊂ R ⊂ R̂, and thus K[Y, T, T−1] ⊂ R̂. Since S−1 = {s−1 | s ∈ S} ⊂ R ⊂ R̂,

this implies that S−1(K[Y, T, T−1]) ⊂ R̂.
Since Y and T are algebraically independent over K, it follows that K[Y, T ] is factorial. Note

that K[Y, T, T−1] is a quotient overring of K[Y, T ], and hence K[Y, T, T−1] is factorial. We infer that
S−1(K[Y, T, T−1]) is factorial. Moreover, since R ⊂ S−1(K[Y, T, T−1]) and S−1(K[Y, T, T−1]) is com-

pletely integrally closed, we have that R̂ ⊂ S−1(K[Y, T, T−1]). This implies that R̂ = S−1(K[Y, T, T−1])

is factorial, and thus R̂ is a BF-domain. Since R is archimedean, it follows that R̂×∩R = R×, and hence
R is a BF-domain by [21, Corollary 1.3.3].

4. Monoids of ideals and half-factoriality

In this section we study, for a finitary ideal system r of a cancellative monoid H, algebraic and
arithmetic properties of the semigroup Ir(H) of r-ideals and of the semigroup I∗r (R) of r-invertible r-
ideals. A focus is on the question when these monoids of r-ideals are half-factorial (other arithmetical
properties of I∗r (H), such as radical factoriality, were recently studied in [49]). In Section 5, we apply
these results to monoids of divisorial ideals and to monoids of usual ring ideals of Mori domains.

Let H be a cancellative monoid and K a quotient group of H. An ideal system on H is a map
r : P(H)→ P(H) such that the following conditions are satisfied for all subsets X,Y ⊂ H and all c ∈ H.

• X ⊂ Xr.
• X ⊂ Yr implies Xr ⊂ Yr.
• cH ⊂ {c}r.
• cXr = (cX)r.

We refer to [31, 32] for background on ideal systems. Let r be an ideal system on H. A subset I ⊂ H is
called an r-ideal if Ir = I. Furthermore, a subset J ⊆ K is called a fractional r-ideal of H if there is some
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c ∈ H such that cJ is an r-ideal of H. We denote by Ir(H) the set of all non-empty r-ideals, and we define
r-multiplication by setting I ·r J = (IJ)r for all I, J ∈ Ir(H). Then Ir(H) together with r-multiplication
is a reduced semigroup with identity element H. Let Fr(H) denote the semigroup of non-empty fractional
r-ideals, Fr(H)× the group of r-invertible fractional r-ideals, and I∗r (H) = F×r (H)∩Ir(H) the cancellative
monoid of r-invertible r-ideals of H with r-multiplication. We denote by X(H) the set of all non-empty
minimal prime s-ideals of H, by r-spec(H) the set of all prime r-ideals of H, and by r-max(H) the set of
all maximal r-ideals of H. We say that r is finitary if Xr = ∪Er, where the union is taken over all finite
subsets E ⊂ X. For a subset X ⊂ q(H), we set

Xs = XH, Xv = (X−1)−1 and Xt =
⋃

E⊂X,|E|<∞

Ev .

We will use the s-system, the v-system, and the t-system. For every ideal system r, we have Xr ⊂ Xv,
and if r is finitary, then Xr ⊂ Xt for all X ⊂ H. We say that H has finite r-character if each x ∈ H is
contained in only finitely many maximal r-ideals of H.

Let R be a domain with quotient field K and r an ideal system on R (clearly, R• is a monoid and r
restricts to an ideal system r′ on R• whence for every subset I ⊂ R we have Ir = (I•)r′ ∪{0}). We denote
by Ir(R) the semigroup of non-zero r-ideals of R and I∗r (R) ⊂ Ir(R) is the subsemigroup of r-invertible
r-ideals of R. The usual ring ideals form an ideal system, called the d-system, and for these ideals we
omit all suffices (i.e., I(R) = Id(R) and I∗(R) = I∗d (R)). For the following equivalent statements let r be
an ideal system on R such that every r-ideal of R is an ideal of R. We say that R is a Cohen-Kaplansky
domain if one of the following equivalent statements hold ([4, Theorem 4.3] and [25, Proposition 4.5]).

(a) R is atomic and has only finitely many atoms up to associates.
(b) Ir(R) is a finitely generated semigroup for some ideal system r on R.
(c) I∗r (R) is a finitely generated semigroup for some ideal system r on R.
(d) R is a semilocal principal ideal domain, R/(R :R) is finite, and |max(R)| = |max(R)|.

Thus Corollary 3.2.2 and Property (d) imply that a Cohen-Kaplansky domain R is stable if and only
R ⊂ R is a quadratic extension and R has at most two maximal ideals.

Lemma 4.1. Let H be a cancellative monoid and let r be a finitary ideal system on H such that⋂
n∈N0

(mn)r = ∅ for every m ∈ r-max(H). Then Ir(H) is unit-cancellative and if H is of finite r-

character, then Ir(H) is a BF-monoid.

Proof. Let I, J ∈ Ir(H) be such that (IJ)r = I. Assume that J is proper. Then J ⊂ m for some
m ∈ r-max(H). It follows by induction that (IJn)r = I for all n ∈ N0, and hence I ⊂

⋂
n∈N0

(Jn)r ⊂⋂
n∈N0

(mn)r. Therefore, I = ∅, a contradiction. Consequently, Ir(H) is unit-cancellative.

Now let H be of finite r-character. We have to show that Ir(H) is a BF-monoid.
First we show that Ir(H) is atomic. Since Ir(H) is unit-cancellative it remains to show by [11, Lemma

3.1(1)] that Ir(H) satisfies the ACCP. Assume that Ir(H) does not satisfy the ACCP. Then there is a
sequence (Ii)

∞
i=0 of elements of Ir(H) such that IiIr(H) ( Ii+1Ir(H) for all i ∈ N0. Consequently,

there is some sequence (Ji)
∞
i=0 of proper elements of Ir(H) such that Ii = (Ii+1Ji)r for all i ∈ N0. Note

that I0 ⊂ Ji for all i ∈ N0. Since {m ∈ r-max(H) | I0 ⊂ m} is finite, there is some m ∈ r-max(H)
such that {i ∈ N0 | Ji ⊂ m} is infinite. By restricting to a suitable subsequence of (Ii)i∈N0

, we can

therefore assume that Ji ⊂ m for all i ∈ N0. Note that I0 = (In
∏n−1
i=0 Ji)r for every n ∈ N0, and thus

I0 ⊂ (
∏n−1
i=0 Ji)r ⊂ (mn)r for every n ∈ N0. This implies that I0 ⊂

⋂
n∈N0

(mn)r, and thus I0 = ∅, a
contradiction.

Finally, we prove that L(N) is finite for each N ∈ Ir(H). Let N ∈ Ir(H) and set M = {m ∈ r-
max(H) | N ⊂ m}. Observe that M is finite. For each m ∈ M set gm = max{` ∈ N | N ⊂ (m`)r}. It
is sufficient to show that n ≤

∑
m∈M gm for each n ∈ L(N). Let n ∈ L(N). Clearly, there is a finite

sequence (Ai)
n
i=1 of atoms of Ir(H) such that N = (

∏n
i=1Ai)r. Since [1, n] =

⋃
m∈M{i ∈ [1, n] | Ai ⊂ m},

we infer that n ≤
∑

m∈M |{i ∈ [1, n] | Ai ⊂ m}| ≤
∑

m∈M gm. �
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Let H be a cancellative monoid and r a finitary ideal system on H. Observe that if H is strictly
r-noetherian (for the definition of strictly r-noetherian monoids we refer to [31, 8.4 Definition, page 87]),
then it follows from [31, 9.1 Theorem, page 94] that

⋂
n∈N0

(mn)r = ∅ for every m ∈ r-max(H). Also

note that if H is a Mori monoid and r-max(H) = X(H), then H is of finite r-character (this is an easy
consequence of [21, Theorem 2.2.5.1]).

Proposition 4.2. Let H be a finitely primary monoid of rank one, m = H \H×, q = Ĥ \ Ĥ×, and let r
be a finitary ideal system on H.

1. The following statements are equivalent.
(a) H is half-factorial.

(b) uĤ = vĤ for all u, v ∈ A(H).

(c) uĤ = q for all u ∈ A(H).
2. The following statements are equivalent.

(a) Ir(H) is half-factorial.

(b) AĤ = BĤ for all A,B ∈ A(Ir(H)).

(c) AĤ = q for all A ∈ A(Ir(H)).

(d) If k ∈ N and Ai ∈ A(Ir(H)) for every i ∈ [1, k], then
∏k
i=1Ai 6⊂ (mk+1)r.

(e) H is half-factorial and for every nonprincipal A ∈ A(Ir(H)) it follows that A 6⊂ (m2)r.

Proof. Since H is finitely primary of rank one, there is some q ∈ q such that q = qĤ.

1.(a) ⇒ 1.(b) Let u, v ∈ A(H). There are some k, ` ∈ N such that uĤ = qkĤ and vĤ = q`Ĥ. It

follows that u`Ĥ = vkĤ, and hence u` = vkε for some ε ∈ Ĥ×. Moreover, there is some a ∈ (H : Ĥ).
Since LH(aεn) ⊂ [0, vq(a)] for every n ∈ N0, there are some n1, n2 ∈ N0 such that n1 < n2 and
LH(aεn1) = LH(aεn2). Set b = aεn1 and set n = n2 − n1. Then n ∈ N, b, bεn ∈ H and LH(b) = LH(bεn).
There is some h ∈ N0 such that LH(b) = {h}. Note that un`b = vnkbεn, and hence {n`+h} = LH(un`b) =

LH(vnkbεn) = {nk + h}. We infer that ` = k, and hence uĤ = qkĤ = q`Ĥ = vĤ.

1.(b) ⇒ 1.(c) Since (H : Ĥ) 6= ∅, there is some m ∈ N such that qm, qm+1 ∈ H. There is some ` ∈ N
such that uĤ = q`Ĥ for all u ∈ A(H). There are some a, b ∈ N such that qm is a product of a atoms of

H and qm+1 is a product of b atoms of H. We infer that qmĤ = qa`Ĥ and qm+1Ĥ = qb`Ĥ. This implies

that b` = m+ 1 = a`+ 1, and hence ` = 1 and uĤ = q.

1.(c) ⇒ 1.(a) Let k, ` ∈ N0, let ui ∈ A(H) for every i ∈ [1, k] and let vj ∈ A(H) for every j ∈ [1, `] be

such that
∏k
i=1 ui =

∏`
j=1 vj . Then qk =

∏k
i=1 uiĤ =

∏`
j=1 vjĤ = q`. Consequently, k = `.

2. Note that H is strongly primary and r-max(H) = {m}. Therefore,
⋂
n∈N0

(mn)r = ∅. We infer by

Lemma 4.1 that Ir(H) is a unit-cancellative atomic monoid. Since H is r-local, we have that A(I∗r (H)) =
{uH | u ∈ A(H)}. Moreover, I∗r (H) is a divisor-closed submonoid of Ir(H). Therefore, {uH | u ∈
A(H)} ⊂ A(Ir(H)). Note that if I is a non-empty s-ideal of H, then IĤ = IrĤ (since IĤ = qmĤ for

some m ∈ N0, it follows that qmĤ = IĤ ⊂ IrĤ ⊂ ItĤ ⊂ (IĤ)t = (qmĤ)t = qm(Ĥ)t = qmĤ).

2.(a) ⇒ 2.(b) Let A,B ∈ A(Ir(H)). There are some k, ` ∈ N such that AĤ = qk and BĤ = q`.

This implies that A`Ĥ = BkĤ, and hence (A`(H : Ĥ))r = (Bk(H : Ĥ))r. Since (H : Ĥ) is a non-empty

r-ideal of H, there is some m ∈ N0 such that L((H :Ĥ)) = {m}. Therefore, {`+m} = L((A`(H :Ĥ))r) =

L((Bk(H :Ĥ))r) = {k +m}, and thus ` = k. We infer that AĤ = qk = q` = BĤ.

2.(b) ⇒ 2.(c) Since (H : Ĥ) 6= ∅, there is some m ∈ N such that qm, qm+1 ∈ H. There is some ` ∈ N
such that AĤ = q`Ĥ for all A ∈ A(Ir(H)). Since Ir(H) is atomic, there are some a, b ∈ N such that
qmH is an r-product of a atoms of Ir(H) and qm+1H is an r-product of b atoms of Ir(H). This implies

that qmĤ = qa`Ĥ and qm+1Ĥ = qb`Ĥ. Therefore, b` = m+ 1 = a`+ 1, and hence ` = 1 and AĤ = q.
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2.(c) ⇒ 2.(a) Let k, ` ∈ N0, let Ai ∈ A(Ir(H)) for every i ∈ [1, k] and let Bj ∈ A(Ir(H)) for

every j ∈ [1, `] be such that (
∏k
i=1Ai)r = (

∏`
j=1Bj)r. Then qk = (

∏k
i=1Ai)rĤ = (

∏`
j=1Bj)rĤ = q`.

Therefore, k = `.

2.(c) ⇒ 2.(d) Let k ∈ N and let Ai ∈ A(Ir(H)) for every i ∈ [1, k]. Assume that
∏k
i=1Ai ⊂ (mk+1)r.

Note that m ∈ A(Ir(H)) (since Ir(H) is unit-cancellative). Therefore, AiĤ = mĤ = q for all i ∈ [1, k],

and thus qk = (
∏k
i=1Ai)rĤ ⊂ (mk+1)rĤ = qk+1, a contradiction.

2.(d)⇒ 2.(e) It remains to show that H is half-factorial. Let k, ` ∈ N, let ui ∈ A(H) for every i ∈ [1, k]

and let vj ∈ A(H) for every j ∈ [1, `] be such that
∏k
i=1 ui =

∏`
j=1 vj . Observe that uiH, vjH ∈ A(Ir(H))

for all i ∈ [1, k] and j ∈ [1, `]. We infer that
∏k
i=1 ui 6∈ (m`+1)r and

∏`
j=1 vj 6∈ (mk+1)r. Therefore,

k < `+ 1 and ` < k + 1, and hence k = `.

2.(e) ⇒ 2.(c) Let A ∈ A(Ir(H)).

Case 1. A is principal. Then A = uH for some u ∈ A(H). By 1. we have that AĤ = uĤ = q.

Case 2. A is not principal. Then A 6⊂ (m2)r, and hence there is some v ∈ A \ (m2)r. Observe that

v ∈ A(H). It follows from 1. that q = vĤ ⊂ AĤ ⊂ q, and thus AĤ = q. �

Observe that some of the semigroups (e.g. Ir(H)) in the following result may not always be unit-
cancellative. In that case, we apply the original definitions for being an atom or being half-factorial to
commutative semigroups with identity (which are not necessarily unit-cancellative).

Proposition 4.3. Let H be a cancellative monoid and r be a finitary ideal system on H such that H is
of finite r-character and r-max(H) = X(H).

1. Ir(H) ∼=
∐

m∈X(H) Irm(Hm) and I∗r (H) ∼=
∐

m∈X(H) I∗rm(Hm).

2. Ir(H) is half-factorial if and only if Irm(Hm) is half-factorial for every m ∈ X(H) and I∗r (H) is
half-factorial if and only if Hm is half-factorial for every m ∈ X(H).

3. If A ∈ A(Ir(H)), then
√
A ∈ X(H).

4. For every m ∈ X(H) we have that A(Irm(Hm)) = {Am | A ∈ A(Ir(H)), A ⊂ m}.

Proof. Claim: For every I ∈ Ir(H) it follows that I = (
∏

q∈X(H)(Iq ∩H))r.

Proof of the claim: Let I ∈ Ir(H). Since H is of finite r-character, it follows that Iq ∩H = H for all
but finitely many q ∈ X(H). Note that if q ∈ X(H) and I ⊂ q, then Iq ∩H is a q-primary r-ideal of H,
and (Iq ∩H)q = Iq. Therefore, ((

∏
q∈X(H)(Iq ∩H))r)m = (

∏
q∈X(H)(Iq ∩H)m)rm = Im. Consequently,

I = (
∏

q∈X(H)(Iq ∩H))r.

1. Let f : Ir(H)→
∐

m∈X(H) Irm(Hm) be defined by f(I) = (Im)m∈X(H) for every I ∈ Ir(H). Since H

is of finite r-character it is clear that f is well-defined. It is straightforward to show that f is a monoid
homomorphism. If I, J ∈ Ir(H) are such that Im = Jm for all m ∈ X(H), then I =

⋂
m∈r-max(H) Im =⋂

m∈r-max(H) Jm = J . Therefore, f is injective. It remains to show that f is surjective. Let (Im)m∈X(H) ∈∐
m∈X(H) I∗rm(Hm). Set I = (

∏
m∈X(H)(Im ∩ H))r. Then I ∈ Ir(H) and (Iq ∩ H)q = Iq for every

q ∈ X(H). Therefore, f is surjective. If I ∈ I∗r (H), then Im ∈ I∗rm(Hm) for every m ∈ X(H), and thus
f |I∗r (H) : I∗r (H)→

∐
m∈X(H) I∗rm(Hm) is a monoid isomorphism.

2. It is an immediate consequence of 1. that Ir(H) is half-factorial if and only if Irm(Hm) is half-
factorial for every m ∈ X(H) and I∗r (H) is half-factorial if and only if I∗rm(Hm) is half-factorial for every
m ∈ X(H). Note that if m ∈ X(H), then Hm is rm-local, and hence I∗rm(Hm) = {xHm | x ∈ H•m}. Clearly,
{xHm | x ∈ H•m} ∼= (H•m)red is half-factorial if and only if Hm is half-factorial.

3. Let A ∈ A(Ir(H)). Then A ⊂ m for some m ∈ X(H). Set J = (
∏

q∈X(H)\{m}(Aq ∩H))r. We infer

by the claim that A = (J(Am∩H))r. Since Am∩H is a proper r-ideal of H this implies that A = Am∩H.

Since Am is mm-primary, we have that Am ∩H is m-primary, and thus
√
A = m.
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4. Let m ∈ X(H). First let B ∈ A(Irm(Hm)). Set A = B ∩ H. Then A is a proper r-ideal of H
and B = Am. It remains to show that A ∈ Ir(H). Let I, J ∈ Ir(H) be such that A = (IJ)r. Then
B = (ImJm)rm , and hence Im = Hm or Jm = Hm. Without restriction let Im = Hm. Then I 6⊂ m. Since
A is m-primary and A ⊂ I, this implies that I = H.

Now let B ∈ A(Ir(H)) be such that B ⊂ m. Let I, J ∈ Irm(Hm) be such that Bm = (IJ)rm . It is
straightforward to check r-locally that B = ((I ∩ H)(J ∩ H))r. Note that I ∩ H,J ∩ H ∈ Ir(H), and
hence I ∩H = H or J ∩H = H. Without restriction let I ∩H = H. Consequently, I = Hm. �

Theorem 4.4. Let H be a cancellative monoid and let r be a finitary ideal system on H such that H is
of finite r-character and Hm is finitely primary for every m ∈ r-max(H). Then Ir(H) is half-factorial if

and only if I∗r (H) is half-factorial and for every A ∈ A(Ir(H)) \ I∗r (H) we have that A 6⊂ ((
√
A)2)r.

Proof. First let Ir(H) be half-factorial. Since I∗r (H) is a divisor-closed submonoid of Ir(H) we have
that I∗r (H) is half-factorial. Let m ∈ r-max(H). It follows by Proposition 4.3.2 that Irm(Hm) and Hm

are half-factorial. Therefore, Hm is finitely primary of rank one by [21, Theorem 3.1.5]. We infer by
Proposition 4.2.2 that for every nonprincipal B ∈ A(Irm(Hm)) we have that B 6⊂ (m2

m)rm . We infer by

Proposition 4.3.2 that I∗r (H) is half-factorial. Let A ∈ A(Ir(H)) \ I∗r (H). Then
√
A ∈ r-max(H) by

Proposition 4.3.3. Without restriction let
√
A = m. It follows by Proposition 4.3 that Am ∈ A(Irm(Hm)).

If Am is a principal ideal of Hm, then A is r-locally principal, and since H is of finite r-character, A is
r-invertible, a contradiction. Therefore, Am is not a principal ideal of Hm and Am 6⊂ (m2

m)rm . Since A
and (m2)r are m-primary this implies that A 6⊂ (m2)r.

Now let I∗r (H) be half-factorial and let for every A ∈ A(Ir(H)) \ I∗r (H), A 6⊂ ((
√
A)2)r. Let m ∈ r-

max(H). It follows from Proposition 4.3.2 that Hm is half-factorial. Consequently, Hm is finitely primary
of rank one. Let B ∈ A(Irm(Hm)) be not principal. Then B = Am for some A ∈ A(Ir(H)) with A ⊂ m

by Proposition 4.3.4. It follows from Proposition 4.3.3 that
√
A = m. Obviously, A is not r-invertible.

Therefore, A 6⊂ (m2)r. Since A and (m2)r are m-primary we have that B 6⊂ (m2
m)rm . We infer by

Proposition 4.2.2 that Irm(Hm) is half-factorial. �

Corollary 4.5. Let H be a cancellative monoid and let r be a finitary ideal system on H such that H is
of finite r-character and Hm is finitely primary and m2 is contained in some proper r-invertible r-ideal
of H for every m ∈ r-max(H). Then Ir(H) is half-factorial if and only if I∗r (H) is half-factorial.

Proof. By Theorem 4.4 it is sufficient to show that for every A ∈ A(Ir(H)) \ I∗r (H), we have that

A 6⊂ ((
√
A)2)r. Let A ∈ A(Ir(H)) \ I∗r (H). Assume that A ⊂ ((

√
A)2)r. There is some m ∈ r-max(H)

such that A ⊂ m. We infer that m2 ⊂ I for some proper I ∈ I∗r (H). Since
√
A ⊂ m, it follows that

A ⊂ ((
√
A)2)r ⊂ (m2)r ⊂ I, and thus A = I ∈ I∗r (H), a contradiction. �

Lemma 4.6. Let L be a finite field, let K ⊂ L be a subfield, let X be an indeterminate over L and let
R = K + XL [[X]]. Then R is a local Cohen-Kaplansky domain with maximal ideal XL [[X]] and R is
divisorial if and only if [L :K] ≤ 2.

Proof. It is an immediate consequence of [4, Corollary 7.2] that R is a local Cohen-Kaplansky domain with
maximal ideal XL [[X]]. Set m = XL [[X]]. Without restriction let K 6= L. Then m−1 = (m :m) = L [[X]].
Since R is a local one-dimensional noetherian domain we have by [39, Theorem 3.8] that R is divisorial
if and only if L [[X]] is a 2-generated R-module. For h ∈ L [[X]] let h0 denote the constant term of h.

If L [[X]] is a 2-generated R-module, then L [[X]] = 〈f, g〉R, whence L = 〈f0, g0〉K , and so [L :K] = 2.
Conversely, let [L :K] = 2. Then L = 〈1, a〉K for some a ∈ L. Observe that L [[X]] = 〈1, a〉R. �

Example 4.7. Let L be a finite field, let K ⊂ L be a subfield, let n ∈ N≥2 and let R = K +XnL [[X]].
Then R is a local Cohen-Kaplansky domain with maximal ideal XnL [[X]], R is not half-factorial and the
square of the maximal ideal of R is contained in a proper principal ideal of R.
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Proof. By [4, Corollary 7.2] we have that R is a local Cohen-Kaplansky domain with maximal ideal
XnL [[X]] such that R is not half-factorial. Set m = XnL [[X]]. Then m2 = X2nL [[X]] ⊂ XnR and XnR
is a proper principal ideal of R. �

5. Arithmetic of stable orders in Dedekind domains

In this section we derive the main arithmetical results of the paper. For monoids of ideals of stable Mori
domains, we study the catenary degree, the monotone catenary degree and we establish characterizations
when these monoids are half-factorial and when they are transfer Krull. We demonstrate in remarks and
examples that none of the main statements in Theorems 5.9 and 5.10 hold true without the stability
assumption.

We need the concepts of catenary degrees, transfer homomorphisms, and transfer Krull monoids. Let
H be an atomic monoid. The free abelian monoid Z(H) = F(A(Hred)) denotes the factorization monoid
of H and π : Z(H) → Hred the canonical epimorphism. For every element a ∈ H, Z(a) = π−1(aH×) is
the set of factorizations of a. Note that L(a) = {|z| | z ∈ Z(a)} ⊂ N0 is the set of lengths of a. Suppose
that H is atomic. If z, z′ ∈ Z(H) are two factorizations, say

z = u1 · . . . · u`v1 · . . . · vm and z′ = u1 · . . . · u`w1 · . . . · wn ,
where `,m, n ∈ N0 and all ui, vj , wk ∈ A(Hred) such that vj 6= wk for all j ∈ [1,m] and all k ∈ [1, n], then
d(z, z′) = max{m,n} is the distance between z and z′.

Let a ∈ H and N ∈ N0 ∪ {∞}. A finite sequence z0, . . . , zk ∈ Z(a) is called a (monotone) N -chain of
factorizations of a if d(zi−1, zi) ≤ N for all i ∈ [1, k] (and |z0| ≤ . . . ≤ |zk| or |z0| ≥ . . . ≥ |zk|). We denote
by c(a) (or by cmon(a) resp.) the smallest N ∈ N0 ∪ {∞} such that any two factorizations z, z′ ∈ Z(a)
can be concatenated by an N -chain (or by a monotone N -chain resp.). Then

c(H) = sup{c(b) | b ∈ H} ∈ N0 ∪ {∞} and cmon(H) = sup{cmon(b) | b ∈ H} ∈ N0 ∪ {∞}
denote the catenary degree and the monotone catenary degree of H. By definition, we have c(H) ≤
cmon(H), and H is factorial if and only if c(H) = 0. If H is cancellative but not factorial, then, by [21,
Theorem 1.6.3],

(5.1) 2 + sup ∆(H) ≤ c(H) ≤ cmon(H) ,

whence c(H) ≤ 2 implies that H is half-factorial and that 2 = c(H) = cmon(H). Let

(5.2) H ⊂ F = F××F({p1, . . . , ps})
be a finitely primary monoid of rank s ∈ N and exponent α ∈ N. Then, by [21, Theorem 3.1.5], we have

(5.3) If s = 1, then ρ(H) ≤ 2α− 1 and c(H) ≤ 3α− 1.

(5.4) If s ≥ 2, then ρ(H) =∞ and c(H) ≤ 2α+ 1.

A monoid homomorphism θ : H → B between monoids is said to be a transfer homomorphism if the
following two properties are satisfied.

(T 1) B = θ(H)B× and θ−1(B×) = H×.
(T 2) If u ∈ H, b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H such that u = vw, θ(v) ∈ bB× and

θ(w) ∈ cB×.

A monoid H is said to be a transfer Krull monoid if it allows a transfer homomorphism θ to a Krull monoid
B. Since the identity map is a transfer homomorphism, Krull monoids are transfer Krull, but transfer
Krull monoids need neither be commutative (though here we restrict to the commutative setting), nor
Mori, nor completely integrally closed. The arithmetic of Krull monoids is best understood (compared
with various other classes of monoids and domains), and a transfer homomorphism allows to pull back
arithmetical properties of the Krull monoid B to the original monoid H. We refer to the surveys [18, 28]
for examples and basic properties of transfer Krull monoids.
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All Dedekind domains are transfer Krull and stable. However, there are orders in Dedekind domains
that are transfer Krull but not stable (Remark 5.15) and there are orders that are stable but not transfer
Krull (all orders in quadratic number fields are stable but not all of them are transfer Krull). Half-factorial
monoids are trivial examples of transfer Krull monoids (if H is half-factorial, then θ : H → (N0,+), defined
by θ(u) = 1 for all u ∈ A(H) and θ(ε) = 0 for all ε ∈ H×, is a transfer homomorphism). Thus a result
(as given in Theorems 5.1 and 5.9), stating that monoids of a given type are transfer Krull if and only if
they are half-factorial, means that their arithmetic is different from the arithmetic of Krull monoids and
equal only in the trivial case. For recent work on the half-factoriality of transfer Krull monoids we refer
to [16].

We start with a result on the finiteness of the catenary degree of weakly Krull Mori domains.

Theorem 5.1. Let R be a weakly Krull Mori domain.

1. For every p ∈ X(R), c(Rp) <∞, and ρ(Rp) <∞ if and only if (Rp :R̂p) 6= {0} and R̂p is local.
2. c(Iv(R)) = sup{c(Ivp(Rp)) | p ∈ X(R)} and c(I∗v (R)) = sup{c(I∗vp(Rp)) | p ∈ X(R)}.
3. If (R :R̂) 6= {0}, then c(I∗v (R)) ≤ c(Iv(R)) <∞.
4. I∗v (R) is a Mori monoid and it is half-factorial if and only if it is transfer Krull.

Proof. Since R is a weakly Krull Mori domain, we have t-spec(R) = X(R) by [31, Theorem 24.5]. Thus
all assumptions of Proposition 4.3 are satisfied.

1. Let p ∈ X(R). Since Rp is a one-dimensional local Mori domain, it is strongly primary and
hence locally tame by [26, Theorem 3.9]. Thus its catenary degree is finite by [19, Theorem 4.1]. If

(Rp :R̂p) = {0}, then ρ(Rp) =∞ by [26, Theorem 3.7]. Suppose that (Rp :R̂p) 6= {0}. Then R• is finitely
primary by [21, Proposition 2.10.7], whence the claim on the elasticity follows from (5.3) and (5.4).

2. Since the catenary degree of a coproduct equals the supremum of the individual catenary degrees
([21, Proposition 1.6.8]), the assertion follows from Proposition 4.3.1.

3. Since I∗v (R) is a divisor-closed submonoid of Iv(R), the inequality between their catenary degrees

holds. If (R : R̂) 6= {0}, then almost all Rp are discrete valuation domains whence their catenary degree
is finite. Thus the claim follows from 2. and from Proposition 4.3.1.

4. See [28, Proposition 7.3]. �

There are primary Mori monoids H with c(H) =∞ ([23, Proposition 3.7]), in contrast to the domain
case as given in Theorem 5.1.1.

Let H be a finitely primary monoid of rank s ∈ N such that there exist some exponent α ∈ N of H and

some system {pi | i ∈ [1, s]} of representatives of the prime elements of Ĥ with the following property:

for all i ∈ [1, s] and for all a ∈ Ĥ with vpi(a) ≥ α we have pia ∈ H if and only if a ∈ H. Then H is said
to be

• strongly ring-like if Ĥ×/H× is finite and {(vpi(a))si=1 | a ∈ H \H×} ⊂ Ns has a smallest element
with respect to the partial order.

The concept of strongly ring-like monoids was introduced by Hassler ([35]), and the question which
one-dimensional local domains are strongly ring-like was studied in [25, Section 5].

A numerical monoid is a submonoid of (N0,+) with finite complement, whence numerical monoids are
finitely primary of rank one. Conversely, if H ⊂ F = F× × F({p}) is finitely primary of rank one, then
its value monoid vp(H) = {vp(a) | a ∈ H} ⊂ N0 is a numerical monoid.

Proposition 5.2. Let R be a local stable Mori domain with (R : R̂) 6= {0}. Then R• is finitely primary

of rank s ≤ 2 and it is strongly ring-like. If s = 2, then ρ(R•) = ∞ and if s = 1 and X(R̂) = {p}, then
the elasticity ρ(R•) is accepted with ρ(R•) = max vp(R•)/min vp(R•).

Proof. By Corollary 3.2.1, R is one-dimensional. By [21, Proposition 2.10.7], one-dimensional local Mori

domains with non-zero conductor are finitely primary of rank |X(R̂)|. By Corollary 3.2.2, R is a Dedekind
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domain with at most two maximal ideals, whence s = |X(R̂)| ≤ 2. Since (R :R) 6= {0}, every ideal of
R is 2-generated by Proposition 3.5.4, whence R is noetherian. If m is the maximal ideal of R, then

R̂ = R and |max(R)| ≤ 2 ≤ |R/m|, whence R• is strongly ring-like by [25, Corollary 5.7]. If s = 2, then

ρ(R•) = ∞ by (5.4). Suppose that s = 1. Since R• is strongly ring-like, R̂×/R× is finite and thus the
elasticity is accepted and has the asserted value by [27, Lemma 4.1]. �

Let R be a one-dimensional local Mori domain with (R : R̂) 6= {0}. If R is stable, then, by Proposi-

tion 5.2, we have |X(R̂)| ≤ 2. Example 5.5 shows that the converse does not hold in general. Example 5.4
and Proposition 5.7.1 show that also for stable domains the exponent of R• can be arbitrarily large. We
start with a lemma.

Lemma 5.3. Let R be a Mori domain and a G-domain and let I be a divisorial stable ideal of R. Then
I2 = xI for some x ∈ I.

Proof. Since every overring of a G-domain is a G-domain, (I :I) is a G-domain. Since I is divisorial and R
is a Mori domain, we have that (I :I) is a Mori domain. Therefore, spec((I :I)) is finite by [21, Theorem
2.7.9], and hence (I :I) is semilocal. Consequently, I = x(I :I) for some x ∈ I, and thus I2 = xI. �

Example 5.4 (Stable orders in number fields). 1. Let K = Q(
√
d) be a quadratic number field,

where d ∈ Z \ {0, 1} is squarefree, and let

ω =

{√
d, if d ≡ 2, 3 mod 4

1+
√
d

2 , if d ≡ 1 mod 4
.

Let R = Z + pnωZ, where p ∈ N is a prime number and n ∈ N. Since every ideal of R is 2-generated,
R is a stable order in the Dedekind domain R = Z + ωZ. Then m = pZ + pnωZ ∈ X(R) and Rm is
a one-dimensional local stable domain with non-zero conductor. By Corollary 3.2, R•m is Mori, whence
it is finitely primary of rank s = |{q ∈ X(R) | q ∩ R = m}| ≤ 2. Moreover, if α ∈ N is the exponent
of R•m, then α ≥ max{vq((R : R)) | q ∈ X(R), q ∩ R = m} and since (R : R) = pnR, we obtain that

α ≥ nmax{vq(pR) | q ∈ X(R), q ∩R = m} ≥ n.

2. Let K be an algebraic number field, OK its ring of integers, and R ⊂ OK an order. If the
discriminant ∆(R) ∈ Z is not divisible by the fourth power of a prime, then R is stable by a result of
Greither ([30, Theorem 3.6]). In particular, if a ∈ N is squarefree with 3 - a and R = Z[ 3

√
a] ⊂ Q( 3

√
a),

then ∆(R) = 27a2 is not divisible by a fourth power of a prime (for more on R and OK in the case of
pure cubic fields we refer to [34, Theorem 3.1.9]).

Next we discuss the catenary degree of finitely primary monoids, which has received a lot of attention
in the literature. Let H ⊂ F be a finitely primary monoid of rank s and exponent α, with all notation
as in (5.2). Then the catenary degree is bounded above by 3α− 1 in case s = 1 and by 2α+ 1 otherwise.
These bounds can be attained, but the catenary degree can also be much smaller. Indeed, as shown
in Example 5.4.2, for every n ∈ N there is an order R in a quadratic number field whose localization
Rp at a maximal ideal p is finitely primary of exponent greater than or equal to the given n but the
catenary degree c(Rp) is bounded by 5 ([9, Theorem 1.1]). Let H ⊂ F = F× × F({p}) be finitely
primary of rank one, suppose that its value monoid vp(H) = {vp(a) | a ∈ H} = 〈d1, . . . , ds〉, with s ∈ N,
1 < d1 < . . . < ds, and gcd(d1, . . . , ds) = 1. The catenary degree of numerical monoids has been studied
a lot in recent literature (see [17, 50, 51, 52, 54], for a sample). By (5.1), we have 2 + max ∆(H) ≤ c(H).
There are also results for min ∆(H). Indeed, by [27, Lemma 4.1], we have

gcd(di−di−1 | i ∈ [2, s]) | min ∆(H) and if |F×/H×| = 1, then gcd(di−di−1 | i ∈ [2, s]) = min ∆(H) .

We continue with examples of numerical semigroup rings and numerical power series rings. Let K be
a field and H ⊂ N0 be a numerical monoid. Then

K[H] = K[Xh | h ∈ H] ⊂ K[X] and K [[H]] = K [[Xh | h ∈ H]] ⊂ K [[X]]
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denote the numerical semigroup ring and the numerical power series ring. Since H is finitely generated,
K[H] is a one-dimensional noetherian domain with integral closure K[X]. The power series ring K [[H]] is
a one-dimensional local noetherian domain with integral closure K [[X]], and its value monoid vX(K [[H]]•)
is equal to H.

Example 5.5. Let K be a field and H ⊂ N0 be a numerical monoid distinct from N0. Then H is not
half-factorial, whence (5.1) implies that c(H) ≥ 3. If min(H \ {0}) ≥ 3, then X2 /∈ XK [[H]] + K [[H]],
whence R ⊂ R is not a quadratic extension and K [[H]] is not stable by Corollary 3.2.2.

1. Let H = 〈e, e+ 1, . . . , 2e− 1〉 = N≥e ∪ {0} with e ∈ N≥2 and R = K [[H]]. By [21, Special case 3.1,
page 216], we have c(H) = c(R) = 3. Indeed, by [54, Theorem 5.6], there is a transfer homomorphism
θ : R• → H.

2. Let K be finite, H = 〈e, e + 1, . . . , 2e − 1〉 = N≥e ∪ {0} with e ∈ N≥2, and R = K[H]. We set

ρ = X + XeR̂ ∈ R̂/XeR̂ and G = K[ρ]×/K×. Then, by [21, Special Case 3.2, page 216], we have
|G| = |K|e−1 and c(R) ≥ c(B(G)), where B(G) is the monoid of zero-sum sequences over G. Since
c(B(G)) ≥ max{exp(G), 1 + r(G)} by [21, Theorem 6.4.2], the catenary degree of R grows with |G|.

Lemma 5.6. Let R be an order in a Dedekind domain such that R is a maximal proper subring of R.
Then we have

1. Every maximal ideal of R is stable.
2. R is stable if and only if R/R is a simple R-module.

Proof. 1. Let m ∈ X(R). Then (m :m) is an intermediate ring of R and R, and hence (m :m) ∈ {R,R}.
If (m :m) = R, then m is clearly an invertible ideal of (m :m), since R is a Dedekind domain. Now let
(m :m) = R. Since m is divisorial, we have that R = (m :m) = ((R :m−1) :m) = (R :mm−1) = (mm−1)−1,
and thus m is v-invertible. Consequently, m is invertible.

2. First let R be stable. Then R ⊂ R is a quadratic extension by Proposition 3.3.1. Let N be an
R-submodule of R with R ⊂ N . Then N is an intermediate ring of R and R. Consequently, N ∈ {R,R},
and hence R/R is a simple R-module.

Conversely, let R/R be a simple R-module. Obviously, R ⊂ R is a quadratic extension. Since R/R and
R/(R :R) are isomorphic as R-modules, we have that (R :R) ∈ X(R). Let m ∈ X(R). If m 6= (R :R), then
Rm is a discrete valuation domain, and hence there is precisely one maximal ideal of R lying over m. Now
let m = (R :R) and set k = |{q ∈ X(R) | q ∩R = m}|. Assume that k ≥ 3. Then there are some distinct
q1, q2, q3 ∈ X(R) such that q1 ∩ R = q2 ∩ R = q3 ∩ R. Therefore, m ⊂ q1 ∩ q2 ∩ q3 ( q1 ∩ q2 ( q1 ( R,
and thus lR(R/m) ≥ 3. On the other hand lR(R/m) = lR(R/R) + lR(R/m) = 2, a contradiction.
Consequently, k ≤ 2 and thus R is finitely stable by Proposition 3.3.1. Since R is noetherian, we have
that R is stable. �

In the next proposition we study the catenary degree of finitely primary monoids stemming from one-
dimensional local stable domains. We establish an upper bound for their catenary degree in case when
R ⊂ R is a maximal proper subring.

(i) Let H be a finitely primary monoid of rank one. In general, the map θ : H → vp(H), a 7→ vp(a),
need not be a transfer homomorphism. (Example: If H = [ε1p, ε2p, p

2] ⊂ F× ×F({p}) with εiεj 6= 1 for
all i, j ∈ [1, 2]).

(ii) Let us consider the following example: let H be a reduced finitely primary monoid of rank one,
say

H ⊂ F× ×F({p}) .
Suppose that H is generated by the following k + 1 elements, where k is even:

ε1p, . . . , εkp, p
2 ,

where ε1 · . . . · εk is a minimal product-one sequence in the group F×.
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Then
(ε1p) · . . . · (εkp) = p2 · . . . · p2 (k/2 times)

is a minimal relation of atoms of H, whence c(H) ≥ k.

Proposition 5.7. Let R be a local stable order in a Dedekind domain. Define R0 = R.

1. Suppose that R0 ( R1 ( · · · ( Rn = R where Ri = (mi−1 :mi−1) and Ri−1 is local with maximal
ideal mi−1 for all i ∈ [1, n], and X(Rn) = {P1,P2}. Write m0 = R1m0 for some m0 ∈ m0 \ {0}.
Then (R : R) = mn

0R = Pn
1P

n
2 , and R• is a finitely primary monoid of rank at most two and

exponent n.
2. If R ⊂ R is a maximal proper subring, then c(R) ≤ 5.

Proof. 1. All domains R0, . . . , Rn−1 are local with maximal ideals mi such that mi = m0Ri+1 = m0Ri+1

by [45, Proposition 4.2] and also the Jacobson radical of Rn, Jn = P1 ∩ P2 = P1P2 = mn−1 and for
some k > 0, Jkn = (P1P2)k = mkn−1 ⊂ m0 by [45, Corollary 4.4]. Therefore, mkn−1Rn ⊂ m0 ⊂ R, i.e.,

(R : Rn) = mkn−1 = Pk
1P

k
2 and since mn−1 = m0Rn, (R : Rn) = mk

0Rn. Also mn
0Rn = mn−1

0 m0Rn =

mn−1
0 mn−1 ⊂ mn−1

0 Rn−1 ⊂ · · · ⊂ m0R1 = m ⊂ R and (R :Rn) = mn
0Rn. Therefore, (R :R) = mn

0R =
Pn

1P
n
2 and R• is a finitely primary monoid of rank two and exponent n.

2. Let m denote the maximal ideal of R. Since |max(R)| ≤ 2 by Proposition 3.3.1, we distinguish two
cases.

First, suppose that R is local with maximal ideal P. Then by [45, Proposition 4.2 (i)], P2 ⊂ m, which
implies that P2R ⊂ m ⊂ R and hence (R :R) = Pk with k ∈ {1, 2}. Thus R• is finitely primary of rank
one and exponent two, whence c(R) ≤ 5 by (5.3).

Second, suppose that max(R) = {P1,P2}. Then 1. shows that (R :R) = P1P2. Thus R• is finitely
primary of rank two and exponent one, whence c(R) ≤ 3 by (5.4). �

For an atomic monoid H, we set

k(H) = sup{min(L \ {2}) | 2 ∈ L ∈ L(H), |L| > 1} .
Then k(H) = 0 if and only if L(uv) = {2} for all u, v ∈ A(H), and k(H) ≥ 3 otherwise. If H is not
half-factorial, then

(5.5) k(H) ≤ 2 + sup ∆(H) .

The question of whether equality holds was studied a lot. Among others, equality holds for large classes
of Krull domains ([20, Corollary 4.5]), for numerical monoids H with |A(H)| = 2, but not for all finitely
primary monoids.

Proposition 5.8. Let R be a local domain with maximal ideal m such that R is not a field and
⋂
n∈N0

mn =

{0}, let x ∈ m be such that m2 = xm and let U = xR.

1. I(R) is a reduced atomic monoid, U is a cancellative atom of I(R) and for every I ∈ I(R) \ {R}
there are n ∈ N0 and J ∈ A(I(R)) such that I = UnJ .

2. k(I(R)) = 2 + sup ∆(I(R)) and k(I∗(R)) = 2 + sup ∆(I∗(R)).

Proof. 1. It follows from Lemma 4.1 that I(R) is an atomic monoid. Since R is not a field, we have
that U is a non-zero proper ideal of R. If I and J are non-zero ideals of R such that UI = UJ , then
xI = xJ , and hence I = J . Therefore, U is cancellative. Assume that U is not an atom of I(R). Then
there are some proper A,B ∈ I(R) such that U = AB. We infer that xR ⊂ m2 = xm. Consequently,
x = xu for some u ∈ m, and thus 1 = u ∈ m, a contradiction. This implies that U is an atom of I(R).
Now let I be a non-zero proper ideal of R. Then I ⊂ m, and since

⋂
n∈N0

mn = {0}, there is some m ∈ N
such that I ⊂ mm and I 6⊂ mm+1. We infer that I ⊂ xm−1m. Set n = m − 1. Then n ∈ N0 and there
is some proper J ∈ I(R) such that I = xnJ = UnJ . Assume that J is not an atom of I(R). Then
there are some non-zero proper ideals A and B of R with J = AB, and thus J ⊂ m2 = xm. Therefore,
I = xnJ ⊂ xmm = mm+1, a contradiction. It follows that J ∈ A(I(R)).
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2. This follows from 1. and from [9, Proposition 4.1]. �

Theorem 5.9. Let R be a one-dimensional Mori domain such that for every m ∈ X(R), m is stable and

(Rm :R̂m) 6= {0}.
1. The following statements are equivalent.

(a) I(R) is transfer Krull.
(b) I∗(R) is transfer Krull.
(c) I∗(R) is half-factorial.
(d) I(R) is half-factorial.
(e) c(I(R)) ≤ 2.
(f) c(I∗(R)) ≤ 2.

If these conditions hold, then the map π : X(R̂)→ X(R), defined by P 7→ P ∩R, is bijective.

2. k(I(R)) = 2 + sup ∆(I(R)) and k(I∗(R)) = 2 + sup ∆(I∗(R)).

Proof. 1. Suppose that Condition (c) holds. By Proposition 4.3.2, I∗(R) is half-factorial if and only if
Rp is half-factorial for every p ∈ X(R). Thus the map π is bijective by Theorem 5.1.1.

(a)⇒ (b) I∗(R) ⊂ I(R) is a divisor-closed submonoid, and divisor-closed submonoids of transfer Krull
monoids are transfer Krull.

(b) ⇒ (c) Since R is a one-dimensional Mori domain, we have that I∗v (R) = I∗(R), and thus the
assertion follows from Theorem 5.1.4.

(c)⇒ (d) Since R is a one-dimensional Mori domain, we have that R is of finite character. Furthermore,
if m ∈ X(R), then Rm is a one-dimensional local Mori domain with non-zero conductor, and hence Rm

is finitely primary. By Corollary 4.5 it remains to show that for every m ∈ X(R), m2 is contained in a
proper invertible ideal of R. Let m ∈ X(R). Since R is a Mori domain and m(m :m2) = (m :m), we infer
that mm(mm :m2

m) = (mm :mm), i.e., mm is a stable ideal of Rm. Clearly, mm is a divisorial ideal of Rm.
It follows from Lemma 5.3 that m2

m = xmm for some x ∈ mm. Observe that m2 = m2
m ∩ R ⊂ xRm ∩ R.

Moreover, xRm ∩R is t-finitely generated and locally principal and xRm ∩R ⊂ m, and thus xRm ∩R is
a proper invertible ideal of R.

(d) ⇒ (a) All half-factorial monoids are transfer Krull.
(d) ⇒ (e) Let m ∈ X(R). By Proposition 4.3.2 we have that I(Rm) is half-factorial. Note that Rm

is a Mori domain and a G-domain. Since m is stable and R is a Mori domain, we have that mm is a
stable ideal of Rm. Clearly, mm is a divisorial ideal of Rm. Therefore, m2

m = xmm for some x ∈ mm by
Lemma 5.3. Since Rm is a one-dimensional local Mori domain, it follows that

⋂
n∈N0

mnm = {0}. We infer
by Proposition 5.8 and [9, Proposition 4.1.4] that c(I(Rm)) ≤ 2. Therefore, c(I(R)) ≤ 2 by Theorem 5.1.

(e) ⇒ (f) This is obvious, since I∗(R) is a divisor-closed submonoid of I(R).
(f) ⇒ (c) Since I∗(R) is cancellative, this follows from (5.1).
2. If (Hi)i∈I is a family of atomic monoids, then

sup ∆
(∐
i∈I

Hi

)
= sup{sup ∆(Hi) | i ∈ I} and k

(∐
i∈I

Hi

)
= sup{k(Hi) | i ∈ I} .

Thus the claim follows from Propositions 4.3 and 5.8.2. �

Let R be as in Theorem 5.9. Clearly, we have k(I∗(R)) ≤ k(I(R)), but in general we do not have
equality.

By Theorem 3.7, stable domains with non-zero conductor, that are Mori or weakly Krull, are already
orders in Dedekind domains. Thus our next result is formulated for stable orders in Dedekind domains.
Its first part generalizes a result valid for orders in quadratic number fields ([9, Theorem 1.1]). Note, if
R is a semilocal domain, then Pic(R) = 0. This means that every invertible ideal is principal, whence
I∗(R) = {aR | a ∈ R•} ∼= (R•)red. If R is not semilocal, then the statements for I∗(R) need not hold for
R. If R is any order in an algebraic number field, then c(R) ≥ c

(
B(Pic(R))

)
([21, Sections 3.4 and 3.7]).

Moreover, R can be transfer Krull without being half-factorial ([24, Theorems 5.8 and 6.2]).
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Theorem 5.10. Let R be a stable order in a Dedekind domain.

1. The following statements are equivalent.
(a) I(R) is transfer Krull.
(b) I∗(R) is transfer Krull.
(c) I∗(R) is half-factorial.
(d) I(R) is half-factorial.
(e) c(I(R)) ≤ 2.
(f) c(I∗(R)) ≤ 2.

2. cmon

(
I∗(R)

)
<∞.

3. I∗(R) has finite elasticity if and only if π : X(R) → X(R) is bijective. If this holds, then the
elasticity is accepted.

Proof. 1. This is an immediate consequence of Theorem 5.9.
2. Since R is an order in a Dedekind domain, R is a weakly Krull Mori domain with non-zero conductor.

By Proposition 5.2, the localizations Rp are strongly ring-like of rank at most two. Thus I∗(R) has finite
monotone catenary degree by [25, Theorem 5.13].

3. By [21, Proposition 1.4.5] and by Proposition 4.3, we have

ρ
(
I∗(R)

)
= sup{ρ(Rp) | p ∈ X(R)} .

Thus the assertion follows from Proposition 5.2. �

In Remark 5.11 we briefly discuss further arithmetical properties, which follow from the ones given in
Theorem 5.10. Then we work out, in a series of remarks, that none of the statements in Theorem 5.10
holds true in general without the stability assumption.

Remark 5.11 (Structure of sets of lengths and of their unions). 1. (Structure of sets of lengths)
If R is an order in a Dedekind domain, then sets of lengths of I∗(R) are well-structured. They are
almost arithmetical multiprogressions with global bounds for all parameters ([21, Section 4.7]). This
holds without the stability assumption.

2. (Structure of unions of sets of lengths) Let H be an atomic monoid. For every k ∈ N,

Uk(H) =
⋃

k∈L∈L(H)

L ⊂ N

is the union of sets of lengths containing k. The structure theorem for unions of sets of lengths states that
there is a bound M such that almost all sets Uk(H)∩ [minUk(H) +M,maxUk(H)−M ] are arithmetical
progressions with difference min ∆(H). Now every atomic monoid with accepted elasticity satisfies this
structure theorem for unions of sets of lengths, and the initial parts Uk(H)∩ [minUk(H),minUk(H)+M ]
and the end parts [maxUk(H)−M,maxUk(H)] fulfill a periodicity property (we refer to recent work of
Tringali ([57, Theorem 1.2]).

Remark 5.12 (On catenary degrees). Example 5.5.2 offers examples of non-stable orders in Dedekind
domains whose catenary degree is arbitrarily large. Furthermore, there are finitely primary monoids with
arbitrarily large catenary degree (see the discussion after Lemma 5.6). Non-stable local orders in Dedekind
domains may have infinite monotone catenary degree ([35, Examples 6.3 and 6.5]).

Remark 5.13 (Seminormal orders). We compare the arithmetic of stable orders with the arithmetic
of seminormal orders in Dedekind domains. Note that stable orders need not be seminormal (all orders
in quadratic number fields are stable but not all are seminormal [10]) and seminormal orders need not
be stable (see the example given in Remark 5.15).

Let R be a seminormal order in a Dedekind domain and let π : X(R) → X(R) be defined by π(P) =
P ∩ R for all P ∈ X(R). If π is bijective, then c

(
I∗(R)

)
= 2. If π is not bijective, then c

(
I∗(R)

)
= 3

and cmon

(
I∗(R)

)
∈ {3, 5} ([24, Theorem 5.8]). Furthermore, I∗(R) is half-factorial if and only if π is

bijective. For stable orders, only one implication is true (see Theorem 5.9).
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Remark 5.14 (Half-factoriality of I∗(R) does not imply half-factoriality of I(R)).
The Statements 1.(c) and 1.(d) of Theorem 5.10 need not be equivalent for divisorial orders in Dedekind

domains. We construct a local divisorial order R in a Dedekind domain such that I∗(R) is half-factorial,
and yet I(R) is not half-factorial.

Let L be the field with 16 elements, let K ⊂ L be the field with 2 elements, let y ∈ L be such that
y4 = 1 + y and let V = (1, y, y2)K . Let X be an indeterminate over L and let R = K + V X +X2L [[X]].
We assert that R is a local divisorial half-factorial Cohen-Kaplansky domain such that I(R) is not
half-factorial.

Proof. By [4, Example 6.7] we have that R is a half-factorial local Cohen-Kaplansky domain, (1, y, y2, y3)
is a K-basis of L and L = {ab | a, b ∈ V }. Let m = V X+X2L [[X]] and let I = 〈yX2, (1+y3)X2〉R. Then
m is the maximal ideal of R. Note that m−1 = (m :m) = {f ∈ L [[X]] | f(V +XL [[X]]) ⊂ V +XL [[X]]} =
{f ∈ L [[X]] | f0V ⊂ V } = K +XL [[X]] = 〈1, y3X〉R, and hence R is divisorial by [39, Theorem 3.8]. By
Proposition 4.2.2 it is sufficient to show that I ∈ A(I(R)) and I ⊂ m2. Observe that m2 = X2L [[X]],
m3 = X3L [[X]] and I = {0, y, 1 + y3, 1 + y+ y3}X2 +X3L [[X]]. Therefore, m3 ⊂ I ⊂ m2. For every ideal
E of R let S(E) = {a ∈ V | aX + z ∈ E for some z ∈ m2} and T (E) = {a ∈ L | aX2 + z ∈ E for some
z ∈ m3}. Note that S(E) is a K-subspace of V and T (E) is a K-subspace of L.

Claim: If A and B are proper ideals of R, then T (AB) = (S(A)S(B))K .
Let A and B be proper ideals of R. First let a ∈ T (AB). Then aX2 + z ∈ AB for some z ∈ m3.

Therefore, aX2 + z =
∑n
i=1 figi for some n ∈ N, fi ∈ A and gi ∈ B for every i ∈ [1, n]. Since

A,B ⊂ m, there are some ai, bi ∈ V and zi, vi ∈ m2 for every i ∈ [1, n] such that fi = aiX + zi and
gi = biX + vi for every i ∈ [1, n]. Consequently, ai ∈ S(A) and bi ∈ S(B) for all i ∈ [1, n]. Moreover,
aX2 + z = (

∑n
i=1 aibi)X

2 +
∑n
i=1(aiviX + biziX + zivi). Since

∑n
i=1(aiviX + biziX + zivi) ∈ m3 this

implies that a =
∑n
i=1 aibi ∈ (S(A)S(B))K .

Now let a ∈ (S(A)S(B))K . Then a =
∑n
i=1 aibi with n ∈ N and ai ∈ S(A) and bi ∈ S(B) for every

i ∈ [1, n]. There are some zi, vi ∈ m2 for every i ∈ [1, n] such that aiX + zi ∈ A and biX + vi ∈ B for
every i ∈ [1, n]. Therefore, aX2 +

∑n
i=1(aiviX + biziX + zivi) =

∑n
i=1(aiX + zi)(biX + vi) ∈ AB. Since∑n

i=1(aiviX + biziX + zivi) ∈ m3, we have that a ∈ T (AB). This proves the claim.
Assume that I 6∈ A(I(R)). Then there are proper ideals A and B of R such that I = AB. It follows by

the claim that {0, y, 1+y3, 1+y+y3} = T (I) = (S(A)S(B))K . Clearly, dimK(S(A)),dimK(S(B)) > 0. If
dimK(S(A)) = dimK(S(B)) = 1, then |(S(A)S(B))K | = 2, a contradiction. Therefore, dimK(S(A)) ≥ 2
or dimK(S(B)) ≥ 2. Without restriction let dimK(S(A)) ≥ 2. There are some non-zero a ∈ S(B)
and some two-dimensional K-subspace W of S(A). We infer that (S(A)S(B))K ⊃ aW and 4 =
|(S(A)S(B))K | ≥ |aW | = |W | = 4, and thus {0, y, 1 + y3, 1 + y + y3} = aW . Clearly, a ∈ {1, y, 1 +
y, y2, 1 + y2, y + y2, 1 + y + y2}. To obtain a contradiction it is sufficient to show that W 6⊂ V .

Case 1: a = 1. Then W = {0, y, 1 + y3, 1 + y + y3} 6⊂ V .

Case 2: a = y. Then W = (1 + y3){0, y, 1 + y3, 1 + y + y3} = {0, 1, 1 + y2 + y3, y2 + y3} 6⊂ V .

Case 3: a = 1+y. Then W = (y+y2+y3){0, y, 1+y3, 1+y+y3} = {0, 1+y+y2+y3, 1+y+y2, y3} 6⊂ V .

Case 4: a = y2. Then W = (1+y2+y3){0, y, 1+y3, 1+y+y3} = {0, 1+y3, 1+y+y2+y3, y+y2} 6⊂ V .

Case 5: a = 1 + y2. Then W = (1 + y + y3){0, y, 1 + y3, 1 + y + y3} = {0, 1 + y2, y2 + y3, 1 + y3} 6⊂ V .

Case 6: a = y+ y2. Then W = (1 + y+ y2){0, y, 1 + y3, 1 + y+ y3} = {0, y+ y2 + y3, y+ y3, y2} 6⊂ V .

Case 7: a = 1+y+y2. Then W = (y+y2){0, y, 1+y3, 1+y+y3} = {0, y2 +y3, 1+y, 1+y+y2 +y3} 6⊂
V . �

Remark 5.15 (Transfer Krull does not imply stability). If R is an order in a Dedekind domain

with (R :R) ∈ max(R) and R = RR
×

, then R• is transfer Krull by [21, Proposition 3.7.5]. We provide
an example showing that such an order need not be stable.



ON THE ARITHMETIC OF STABLE DOMAINS 21

We construct a seminormal one-dimensional local noetherian domain R such that R = RR
×

, (R :R) ∈
max(R), R is local, and R has ideals which are not 2-generated. Thus Corollary 3.8 implies that R is not
stable.

Let K ⊂ L be a field extension with 3 ≤ [L : K] < ∞, X be an indeterminate over L, and R =

K + XL [[X]]. Observe that R̂ = L [[X]] is a completely integrally closed one-dimensional noetherian

domain. Let B ⊂ L be a K-basis of L. Then R̂ = 〈B〉R, and hence R̂ is a finitely generated R-module.

Since R̂ is noetherian, it follows from the Theorem of Eakin-Nagata that R is noetherian, and hence

R = R̂.
Since R is one-dimensional local and R ⊂ R is an integral extension, we have that R itself is local and

one-dimensional. Moreover, spec(R) = {{0}, XL [[X]]} and R is transfer Krull by [24, Theorem 5.8].

Now if x ∈ q(R) with x2, x3 ∈ R, then x2, x3 ∈ R̂, and hence x ∈ R̂ (since R̂ is completely integrally
closed), so x0 ∈ L and x20, x

3
0 ∈ K (whence x0 is the constant term of x), and thus if x0 = 0, then x ∈ R

and if x0 6= 0, then x0 = x30x
−2
0 ∈ K, hence x ∈ R. Therefore, R is seminormal.

Note that (R :R) = (R : R̂) = XL [[X]] 6= {0} and (R :R) ∈ max(R). It is clear that RR
× ⊂ R. Let

y ∈ R = L [[X]]. We have that y − y0 ∈ XL [[X]] (where y0 is the constant term of y). If y ∈ R, then

clearly y ∈ RR×. Now let y 6∈ R. Then y0 6∈ K, and hence y0 6= 0. Observe that (y − y0)y−10 ∈ XL [[X]]

and y0 ∈ L× ⊂ R
×

. Therefore, y = (1 + (y − y0)y−10 )y0 ∈ RR
×

.
Assume to the contrary, that XL [[X]] is 2-generated. Therefore, there exist x, y ∈ R with XL [[X]] =

〈x, y〉R. Let x1, y1 be the linear coefficients of x respectively y. Then L = 〈x1, y1〉K and hence [L :K] ≤ 2,
a contradiction.
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