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Abstract. Let d ≥ 2 be a squarefree integer, let ω ∈ {
√
d, 1+

√
d

2
} be such that Z[ω] is the ring of

algebraic integers of the real quadratic number field Q(
√
d), let ε > 1 be the fundamental unit of Z[ω]

and let x and y be the unique nonnegative integers with ε = x + yω. In this note, we extend and study

the list of known squarefree integers d ≥ 2, for which y is divisible by d (cf. OEIS A135735). As a
byproduct, we present a counterexample to a conjecture of L. J. Mordell.

1. Introduction, conjectures and terminology

Let P, N, N0, Z, Q denote the sets of prime numbers, positive integers, nonnegative integers, integers and
rational numbers, respectively. Let f ∈ N. We say that f is squarefree if p2 - f for each p ∈ P. Moreover,
f is called powerful (also called squareful ) if for each p ∈ P with p | f , we have that p2 | f . Observe that
f is powerful if and only if f = a2b3 for some a, b ∈ N.

Let d ∈ N≥2 be squarefree, let K = Q(
√
d) and let OK be the ring of algebraic integers of K. We set

ω =

{√
d if d ≡ 2, 3 mod 4,

1+
√
d

2 if d ≡ 1 mod 4,
and dK =

{
4d if d ≡ 2, 3 mod 4,

d if d ≡ 1 mod 4.

It is well known that OK = Z[ω] = Z ⊕ ωZ. Let ε ∈ OK be the (unique) fundamental unit with ε > 1
(i.e., {±εk | k ∈ Z} is the unit group of OK). Observe that there always exist unique x, y ∈ N0 such that
ε = x+ yω, and if d 6= 5, then x, y ∈ N.

So far, there are 17 known squarefree integers d ∈ N≥2 with d | y (see [18] or OEIS A135735). In this
note, we extend the list of known squarefree integers d ∈ N≥2 with d | y to 21 members in total and
one of the newly found numbers happens to be a counterexample to the Pellian equation conjecture of
Mordell. For the readers’ convenience, we include the complete list here.

46, 430, 1817, 58254, 209991, 1752299, 3124318, 4099215, 5374184665, 6459560882, 16466394154,

20565608894, 25666082990, 117477414815, 125854178626, 1004569189366, 1188580642033,

15826129757609, 18803675974841, 20256129307923, 39028039587479

For more details, we refer to the last part of this note (which contains several tables that summarize
the properties of these numbers). Next, we want to discuss the importance of the squarefree integers
d ∈ N≥2 for which d | y. Indeed, there are several conjectures and results that are tied to these numbers.
In what follows, we present these conjectures and results and restate them by using the aforementioned
terminology.
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The conjecture of Ankeny, Artin and Chowla (or (AAC)-conjecture for short):
This conjecture states that if d ∈ P and d ≡ 1 mod 4, then d - y. The (AAC)-conjecture was first
mentioned by N. C. Ankeny, E. Artin and S. Chowla in 1952 ([1, page 480]) and has subsequently
been studied by various authors. For instance, L. J. Mordell provided a characterization of the (AAC)-
conjecture (if d ≡ 5 mod 8) that involves Bernoulli numbers ([14, 15]). Also note that the (AAC)-
conjecture plays some role in the study of direct-sum cancellation for modules over orders in real quadratic
number fields ([10]). For more recent work involving the (AAC)-conjecture, we refer to [2, 19]. The
(AAC)-conjecture has been verified (for all primes d ≡ 1 mod 4) up to 2 · 1011 ([16, 17]).

The Pellian equation conjecture of Mordell:
The Pellian equation conjecture states that if d ∈ P and d ≡ 3 mod 4, then d - y. It was first formulated
by L. J. Mordell in 1961 ([15, page 283]) who also established a connection of this conjecture to Euler
numbers. The conjecture of Mordell has recently been studied in a series of papers ([2, 5, 19]) and has
been verified (for all primes d ≡ 3 mod 4) up to 1.6 · 109 ([2]). (Although, we want to mention that both
the (AAC)-conjecture and the Mordell conjecture (technically) have been verified up to 1.5 ·1012 in [18].)
Later we provide a counterexample to the Mordell conjecture (Example 2.6).

The conjecture of Erdös, Mollin and Walsh (or (EMW)-conjecture for short):
It states that for each a ∈ N, there is some b ∈ {a, a + 1, a + 2} such that b is not powerful (i.e., there
are no three consecutive powerful numbers). The (EMW)-conjecture was first mentioned in a paper of
P. Erdös ([6]) and has subsequently been rediscovered by R. A. Mollin and P. G. Walsh ([13]) who also
provided a characterization of the conjecture in terms of fundamental units ([11, 13]). This conjecture
has wide implications (if it is true), like the existence of infinitely many primes that are not Wieferich
primes ([8]).

Now we want to discuss various results that involve the squarefree integers d ∈ N≥2 with d | y. To
do so, we need some more terminology. For s, r, t ∈ N0, let [r, s] = {z ∈ N0 | r ≤ z ≤ s} and

N≥t = {z ∈ N0 | z ≥ t}. Let N : K → Q defined by N(a+ b
√
d) = a2 − db2 for each a, b ∈ Q be the norm

map on K. A subring O of K with quotient field K is called an order in K if it is a finitely generated
Z-module. For each f ∈ N, let Of = Z+ fOK and note that Of is the unique order in K with conductor
f (i.e., {z ∈ Of | xOK ⊆ Of} = fOK). Let Pic(O) be the Picard group of O for each order O in K. We

let h(d) = |Pic(OK)| denote the class number of K. For each a, b ∈ Z, let
(((
a
b

)))
∈ {−1, 0, 1} denote the

Kronecker symbol of a modulo b. If p ∈ P, then p is called inert, ramified, split (in OK) if
(((

dK
p

)))
= −1,(((

dK
p

)))
= 0,

(((
dK
p

)))
= 1, respectively. We will use well known properties of the Kronecker symbol (like the

quadratic reciprocity law) throughout this note without further mention.

Relationships between the (EMW)-conjecture and fundamental units:
We say that d induces a counterexample to the (EMW )-conjecture (or d satisfies (C ) for short) if d ≡ 7

mod 8 and there are some k, u, v ∈ N0 such that u is powerful, k and v are odd, εk = u+ v
√
d and d | v.

Furthermore, we say that d induces a strong counterexample to the (EMW )-conjecture (or d satisfies
(SC ) for short) if d ≡ 7 mod 8, x is powerful, y is odd and d | y. Clearly, if d satisfies (SC), then d
satisfies (C). It is shown in [13] that the (EMW)-conjecture holds if and only if there is no squarefree
d ∈ N≥2 that satisfies (C).

Connections to conductors of relative class number one:
The integer d is said to have no nontrivial conductors of relative class number one (or to satisfy (RC )
for short) if {f ∈ N | h(d) = |Pic(Of )|} = {1}. The first systematic study (of which we are aware) of this
condition was done in [7]. Following this, the problem of describing (RC) gained more traction ([12]) and
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was finally solved in [4]. We present the connection of (RC) to squarefree integers d ∈ N≥2 with d | y in
Proposition 2.2.

Unusual orders in real quadratic number fields and the condition d | y:
Let f ∈ N. We say that f is an unusual conductor of d if f is squarefree, f is divisible by a ramified
prime, f is not divisible by a split prime, h(d) = |Pic(Of )| = 2 and for each ramified p ∈ P with p | f
and all a, b ∈ Z, |pa2 − dK

p b
2| 6= 4. Let Dd be the set of unusual conductors of d. The definition of an

unusual conductor seems artificial, but becomes clear in view of the results of [3, 18] (since these results
provide a link to an important property in factorization theory). We discuss the relationships of unusual
orders to squarefree integers d ∈ N≥2 with d | y in Proposition 2.4 and Theorem 2.5 below.

Throughout this note, let d ∈ N≥2 be squarefree and let K, OK , ω, dK , ε and Of for each f ∈ N be
defined (as above) with respect to d. Furthermore, let x, y ∈ N0 be such that ε = x+ yω.

2. Results and examples

We start with a lemma that will be useful in the subsequent discussion of the conditions (C) and (SC)
(concerning the 21 members of the list).

Lemma 2.1. Let d satisfy (C ). Then y is odd.

Proof. There are k, u, v ∈ N0 such that k and v are odd and εk = u + v
√
d. Since d ≡ 7 mod 8, we

have that x2 − dy2 = N(ε) = 1, and hence xy is even. Therefore, v =
∑k
i=0,i≡1 mod 2

(
k
i

)
xk−iyid

i−1
2 ≡

ykd
k−1
2 ≡ y mod 2, and thus y is odd. �

Our next result is a variant of the main theorem of [4]. It establishes a connection between the condition
(RC) and the divisibility of y by d.

Proposition 2.2. d satisfies (RC) if and only if N(ε) = 1, d 6≡ 1 mod 8, y is even and d | y.

Proof. First we recall some definitions of [4]. Clearly, there exist unique α0, β0 ∈ Q such that ε =

α0 + β0
√
d. Note that 2α0, 2β0 ∈ N0. We set β̃0 =

{
β0 if ε ∈ Z[

√
d],

2β0 if ε 6∈ Z[
√
d].

Observe that β̃0 ∈ N0 and

y =

{
β̃0 if d 6≡ 1 mod 4 or ε 6∈ Z[

√
d],

2β̃0 if d ≡ 1 mod 4 and ε ∈ Z[
√
d].

In particular, β̃0 | y and if y 6= β̃0, then y = 2β̃0 and d is odd.

Now let d satisfy (RC). We infer by [4, Proposition 3.4] that N(ε) = 1. Moreover, it follows from [4,

Theorem 4.1] that d | β̃0, and hence d | y. If d is even, then clearly d 6≡ 1 mod 8 and y is even (since

d | y). Now let d be odd. Then [4, Theorem 4.1] implies that d 6≡ 1 mod 8 and β̃0 is even. Therefore, y
is even.

Conversely, let N(ε) = 1, let d 6≡ 1 mod 8, let y be even and let d | y. We obtain that d | β̃0. Next we

show that β̃0 is even. Without restriction, we can assume that d ≡ 1 mod 4 and ε ∈ Z[
√
d]. Note that

α0, β0 ∈ N0 and β0 = β̃0. Consequently, 1 = N(ε) = α2
0−dβ̃2

0 , and thus α2
0 ≡ 1 + β̃2

0 mod 4. If β̃0 is odd,

then α2
0 ≡ 2 mod 4, a contradiction. This implies that β̃0 is even. It is now an immediate consequence

of [4, Theorem 4.1] that d satisfies (RC). �

Lemma 2.3. Let p, q ∈ P be such that p ≡ 1 mod 4, q ≡ 3 mod 4 and d = pq. If y is even, there are
some a, b ∈ Z such that |pa2 − qb2| = 1. If y is odd, then there are some a, b ∈ Z such that |a2 − db2| = 2
or there are some a, b ∈ Z such that |pa2 − qb2| = 2.

Proof. This is well known and can be shown by investigating the norm of the fundamental unit. A
detailed proof can be found in case 3 of the proof of [18, Theorem 4.4]. �
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In [18, Theorem 5.4] it was shown that the set of real quadratic number fields that posses an order with an
unusual conductor can (naturally) be divided into 41 disjoint subsets. It was also proved in [18] that all
(but possibly one of) these subsets are nonempty. The squarefree integers that define the real quadratic
number fields in the aforementioned exceptional subset are called the squarefree integers of type 4/form
1. Note that the squarefree integers d that satisfy the conditions in Proposition 2.4 are precisely the
squarefree integers d of type 4/form 1. The hitherto open problem of their existence was the driving
factor for the search conducted in [18]. Recall that h(d) denotes the class number of K.

Proposition 2.4. Let p, q ∈ P be such that p ≡ 1 mod 4, q ≡ 3 mod 4, d = pq and h(d) = 2. The
following conditions are equivalent.

(1) Dd = {2}.
(2) p ≡ 5 mod 8, y is odd and d | y.

(3) p ≡ 5 mod 8,
(((
p
q

)))
= −1 and d | y.

Proof. First, we show that if p ≡ 5 mod 8, then y is odd if and only if
(((
p
q

)))
= −1. Let p ≡ 5 mod 8.

Let y be odd. If there are some a, b ∈ Z such that |a2 − db2| = 2, then
(((

2
p

)))
= 1, which contradicts the

fact that p ≡ 5 mod 8. We infer by Lemma 2.3 that there are some a, b ∈ Z such that |pa2 − qb2| = 2.

Consequently,
(((
p
q

)))
=
(((
q
p

)))
=
(((

2
p

)))
= −1.

Now let y be even. By Lemma 2.3, there are some a, b ∈ Z such that |pa2 − qb2| = 1. This implies that(((
p
q

)))
=
(((
q
p

)))
= 1.

(1)⇒ (2) Since 2 ∈ Dd, it follows from [18, Theorem 4.4] that h(d) = |Pic(O2)| and
(((

2
p

)))
= −1. Therefore,

p ≡ 5 mod 8 and y is odd by [9, Theorem 5.9.7.4]. Since
(((
p
q

)))
= −1, it follows that

(((
αd/p
p

)))
=
(((
−αq
p

)))
= −1

for each α ∈ {−1, 1}, and since p, q 6∈ Dd, we infer by [18, Theorem 4.4] that h(d) 6= |Pic(Or)| for each
r ∈ {p, q}. Therefore, r | y for each r ∈ {p, q} by [9, Theorem 5.9.7.4], and thus d | y.

(2) ⇒ (3) This is clear.

(3)⇒ (1) Since y is odd and d | y, we infer by [9, Theorem 5.9.7.4] that h(d) = |Pic(O2)| and |Pic(Op)| 6=
h(d) 6= |Pic(Oq)|. Since p ≡ 5 mod 8, it follows from [18, Theorem 4.4] that 2 ∈ Dd and p, q 6∈ Dd.
Therefore, Dd = {2} by [18, Theorem 5.4]. �

Finally, we present the main result of this note. It was the main motivation (besides Proposition 2.4) for
the computer search discussed below.

Theorem 2.5. Let h(d) = 2 and let one of the following conditions be satisfied.

(a) There are some distinct p, q ∈ P such that p ≡ q ≡ 1 mod 4, d = pq and N(ε) = −1.
(b) There are some p, q ∈ P such that p ≡ 1 mod 8, q ≡ 3 mod 4, d = pq and y is odd.
(c) There are some distinct p, q ∈ P such that p ≡ q ≡ 3 mod 8 and d = 2pq.

(d) There are some p, q ∈ P such that p ≡ 1 mod 8, q ≡ 3 mod 4,
(((
p
q

)))
= −1 and d = 2pq.

Then Dd = ∅ if and only if d | y.

Proof. It is a simple consequence of [9, Theorem 5.9.7.4] that for each ramified r ∈ P, h(d) 6= |Pic(Or)|
if and only if r | y. In what follows, we use this fact without further mention.

CASE 1: Condition (a) is satisfied. Obviously, {p, q} is the set of ramified primes. It follows immediately
from [18, Corollary 3.10(2)] that Dd = ∅ if and only if h(d) 6= |Pic(Or)| for each r ∈ {p, q} if and only if
r | y for each r ∈ {p, q} if and only if d | y.
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CASE 2: Condition (b) holds. Clearly, {2, p, q} is the set of ramified primes. Since p ≡ 1 mod 8, we

have that
(((

2
p

)))
= 1, and hence 2 6∈ Dd by [18, Theorem 4.4]. Moreover,

(((
p
q

)))
= −1 by [18, Lemma

4.3], and thus for each a, b ∈ Z, |pa2 − qb2| 6= 1. This implies that for each r ∈ {p, q} and all a, b ∈ Z,
|ra2− dK

r b
2| 6= 4. We infer by [18, Corollary 3.10(1)] that Dd = ∅ if and only if h(d) 6= |Pic(Or)| for each

r ∈ {p, q} if and only if r | y for each r ∈ {p, q} if and only if d | y.

CASE 3: Condition (c) is satisfied. Observe that {2, p, q} is the set of ramified primes and x2 − dy2 = 1.

Therefore, y is even, and hence 2 6∈ Dd by [18, Theorem 4.4]. Let α ∈ {−1, 1}. Then
(((
αd/p
p

)))
=(((

2α
p

)))(((
q
p

)))
= −α

(((
q
p

)))
6= −α

(((
p
q

)))
=
(((
−αp
q

)))
, and hence

(((
αd/p
p

)))
= −1 or

(((
−αp
q

)))
= −1. It follows by analogy

that
(((
αd/q
q

)))
= −1 or

(((
−αq
p

)))
= −1. We infer by [18, Theorem 4.4] that for each r ∈ {p, q}, r 6∈ Dd if and

only if r | y. Since y is even and 2 6∈ Dd, we obtain by [18, Theorem 2.6(3)] that Dd = ∅ if and only if
r 6∈ Dd, for each r ∈ {p, q} if and only if r | y for each r ∈ {p, q} if and only if d | y.

CASE 4: Condition (d) holds. Note that {2, p, q} is the set of ramified primes and x2 − dy2 = 1.
We infer that y is even, and thus 2 6∈ Dd by [18, Theorem 4.4]. Let α ∈ {−1, 1}. Observe that(((
αd/p
p

)))
=
(((

2q
p

)))
=
(((
p
q

)))
= −1 and

(((
−αq
p

)))
=
(((
q
p

)))
= −1. Then [18, Theorem 4.4] implies that for each

r ∈ {p, q}, r 6∈ Dd if and only if r | y. Since y is even and 2 6∈ Dd, it follows from [18, Theorem 2.6(3)]
that Dd = ∅ if and only if r 6∈ Dd, for each r ∈ {p, q} if and only if r | y for each r ∈ {p, q} if and only if
d | y. �

In what follows, let X,Y ∈ N0 be such that X + Y
√
d is the fundamental unit of Z[

√
d] (i.e., X + Y

√
d

is the unique unit η of Z[
√
d] such that η > 1 and {±ηk | k ∈ Z} is the unit group of Z[

√
d]). Observe

that X + Y
√
d ∈ {ε, ε3}. Let α ∈ {0, 1} be such that α ≡ y mod 2 and let β ∈ [0, 7] be such that β ≡ d

mod 8. Moreover, let s = |{p ∈ P | d ≡ 0 mod p}| (i.e., s is the number of distinct prime divisors of
d). It follows from Proposition 2.2 that d satisfies (RC) if and only if d | y, α 6= 1 6= β and N(ε) = 1.
Obviously, if d satisfies (C), then α = 1 (by Lemma 2.1).

Next we want to briefly discuss two algorithms to find squarefree d ∈ N≥2 with d | y. The first algorithm
is called the small step algorithm. We use it to determine whether a squarefree integer d ∈ N≥2 satisfies
d | y. The second algorithm is the large step algorithm. It is utilized to identify the squarefree integers
d ∈ N≥1000000 with d | Y . It is well known that if d | y, then d | Y . Moreover, if d | Y , then d | 3y. Also

note that if d | Y and d - y, then d ≡ 5 mod 8, 3 | d and ε 6∈ Z[
√
d]. It is mentioned in [18] (and can

also be derived from the tables below) that if d = 17451248829, then d is squarefree, d | Y and d - y.
The large step algorithm is mainly used for search purposes (due to its better time complexity), while
the small step algorithm is used for independent verification (and to handle the corner case with d | Y
and d - y that was mentioned before). For more details on the prior remarks and the used algorithms,
we refer to [20]. Since the interval [2, 1.5 · 1012] has already been searched ([18]), we now focus solely on
the squarefree integers d ≥ 1.5 · 1012.

The main purpose of the following part is to present the results of our recent computer search. For this
search, we used two implementations of the large step algorithm, a scalar implementation and a (partially)
vectorized implementation with AVX-512. The vectorized version (with AVX-512) provides about 40%
more throughput than the scalar version on Zen 4 based CPUs. The programs were written in C and
compiled with GCC-12.3.0 (with the compiler flag -O3). As a side note, we only used privately owned
hardware for this computer search. We used 162 CPU cores (with hyperthreading and a clock rate around
4.1 GHz on average). Among these CPU cores are 74 cores with AVX-512 support (while the remaining
88 cores support AVX2). We did an exhaustive search on the squarefree integers d ∈ [1.5 ·1012, 4.15 ·1013]
(to find those that satisfy d | Y ) and we spent approximately 2500 hours for this search in total.

Despite the fact, that we performed an exhaustive search, we do not claim that the newly found numbers
(four numbers in total) are all the squarefree integers d with d | Y in the search interval. The reason is
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twofold. On the one hand, we used an aggressive setting (-O3) to compile our programs. On the other
hand, we have currently not enough available computational resources for an independent double check
(of all squarefree integers in the search interval).

Nevertheless, we tested each of the squarefree integers (in the tables) below with our (old and new)
implementations of the small step algorithm and the large step algorithm. Furthermore, we used both
Mathematica 12.0.0 and Pari/GP 2.15.2 to compute α, β, s,N(ε) and h(d) in the tables below and to
provide independent checks of the squarefree integers involved. Also note that our verifications with
Mathematica and Pari/GP did not use the small step algorithm or the large step algorithm. These veri-

fications were done by computing the fundamental unit of OK (respectively Z[
√
d]) in full, by extracting

the component y (respectively Y ) and by using the “mod operation” to check whether d | y (respectively
d | Y ).

d 46 430 1817 58254 209991 1752299 3124318 4099215 5374184665 6459560882 16466394154
d | Y true true true true true true true true true true true
d | y true true true true true true true true true true true
(RC) true true false true true true true false false true true
α 0 0 0 0 0 0 0 1 0 0 0
β 6 6 1 6 7 3 6 7 1 2 2
s 2 3 2 5 2 3 2 3 2 4 4

N(ε) 1 1 1 1 1 1 1 1 −1 1 1
h(d) 1 2 1 8 2 4 1 4 2 4 32

d 17451248829 20565608894 25666082990 117477414815 125854178626 1004569189366
d | Y true true true true true true
d | y false true true true true true
(RC) false true true true true true
α 1 0 0 0 0 0
β 5 6 6 7 2 6
s 4 3 4 4 4 2

N(ε) 1 1 1 1 1 1
h(d) 4 2 8 8 8 1

d 1188580642033 15826129757609 18803675974841 20256129307923 39028039587479
d | Y true true true true true
d | y true true true true true
(RC) false false false false false
α 0 0 0 1 1
β 1 1 1 3 7
s 3 2 3 4 1

N(ε) 1 1 1 1 1
h(d) 2 1 2 16 1

It follows from Lemma 2.1 that if d is a squarefree integer of the tables above that satisfies (C), then
d ∈ {4099215, 39028039587479}. If d = 4099215, then d does not satisfy (SC), since 701 ∈ P, 701 | x
and 7012 - x. Moreover, if d = 39028039587479, then d does not satisfy (SC), since 5 ∈ P, 5 | x and
52 - x. In particular, none of the squarefree integers d in the tables above satisfies (SC). We do not
know if any d ∈ {4099215, 39028039587479} satisfies (C). Next we want to present the aforementioned
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counterexample (which can easily be derived from the tables above). We state it explicitly for the readers’
convenience.

Example 2.6. (The counterexample to Mordell’s Pellian equation conjecture)
Let d = 39028039587479. Then d ∈ P, d ≡ 3 mod 4 and d | y.

We do not know (with reasonable certainty) whether the example above is the smallest counterexample
to Mordell’s Pellian equation conjecture. Furthermore, we want to emphasize that (to the best of our
knowledge) the (AAC)-conjecture and the (EMW)-conjecture are still open. Besides that, it is also
unknown (now as before) whether squarefree integers of type 4/form 1 exist.

ACKNOWLEDGEMENTS. We would like to thank A. Geroldinger for helpful suggestions and re-
marks.
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