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Abstract. Let H be a cancellative commutative monoid, let A(H) be the set of atoms of H and let

H̃ be the root closure of H. Then H is called transfer Krull if there exists a transfer homomorphism
from H into a Krull monoid. It is well known that both half-factorial monoids and Krull monoids are

transfer Krull monoids. In spite of many examples and counterexamples of transfer Krull monoids (that

are neither Krull nor half-factorial), transfer Krull monoids have not been studied systematically (so
far) as objects on their own. The main goal of the present paper is to attempt the first in-depth study

of transfer Krull monoids. We investigate how the root closure of a monoid can affect the transfer Krull
property and under what circumstances transfer Krull monoids have to be half-factorial or Krull. In

particular, we show that if H̃ is a DVM, then H is transfer Krull if and only if H ⊆ H̃ is inert. Moreover,

we prove that if H̃ is factorial, then H is transfer Krull if and only if A(H̃) = {uε | u ∈ A(H), ε ∈ H̃×}.
We also show that if H̃ is half-factorial, then H is transfer Krull if and only if A(H) ⊆ A(H̃). Finally,
we point out that characterizing the transfer Krull property is more intricate for monoids whose root

closure is Krull. This is done by providing a series of counterexamples involving reduced affine monoids.

1. Introduction

Factorization theory studies the arithmetic structure of monoids and domains that are not factorial. A
monoid is called a Krull monoid if it is a completely integrally closed Mori monoid. Moreover, a monoid
is factorial if and only if it is a Krull monoid with trivial t-class group. Krull monoids are also a natural
generalization of Dedekind domains, they are among the best understood objects in Factorization Theory
and they possess several remarkable properties. For instance, it is possible to describe the arithmetic of
Krull monoids purely in terms of their t-class group. More precisely, they allow a transfer homomorphism
to a monoid of zero-sum sequences over their t-class group. Transfer homomorphisms allow to pull
back the arithmetic properties from the target object to the source object. Thus, main parts of the
arithmetic of Krull monoids can be studied in monoids of zero-sum sequences, where methods from
Additive Combinatorics are available. It has since been asked whether there exist other types of monoids
for which large parts of their arithmetic can be described by monoids of zero-sum sequences. In [18]
the concept of transfer Krull monoid was formally introduced and it provides a natural generalization of
Krull monoids. It is well known that half-factorial monoids are another important class of transfer Krull
monoids. But in general, transfer Krull monoids are neither Krull monoids nor half-factorial monoids.

The transfer Krull property has been studied in a variety of contexts. It was, for instance, investigated
in the case of commutative unit-cancellative semigroups with identity, but also for noncommutative
semigroups [5, 7, 8, 9, 31, 32]. To mention one of the most striking results, let R be a bounded hereditary
noetherian prime ring. If every stably free right ideal is free, then there is a transfer homomorphism from
the monoid of regular elements of R to a Krull monoid. An overview on monoids (and domains) that
allow resp. do not allow transfer homomorphisms to a Krull monoid can be found in [23]. We continue
with a few more highlights to indicate the importance of transfer Krull monoids. In [21] it is proved that
a strongly primary monoid is transfer Krull if and only if it is half-factorial. Moreover, a length-factorial
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monoid is transfer Krull if and only if it is Krull ([24]). In [11] it is shown that the monoid of invertible
ideals of a stable order in a Dedekind domain is transfer Krull if and only if it is half-factorial.

It is proved in [23] that a monoid is transfer Krull if and only if there is a Krull overmonoid for which
the inclusion map (from the monoid into the Krull overmonoid) is a transfer homomorphism. Obviously,
every Krull overmonoid of a monoid H contains the root closure of H. The root closure is, therefore,
the smallest possible candidate for a Krull overmonoid. The main purpose of this paper is to explore
the impact of the root closure on the transfer Krull property. We complement the known literature with
several new conditions that force a transfer Krull monoid to be Krull or half-factorial.

This paper consists of six sections including the introduction. In the next section, we introduce the
most important notions and terminology and provide a series of elementary results involving transfer
homomorphisms and transfer Krull monoids. Furthermore, we present more practicable (and simple)
characterizations of the transfer Krull property for arbitrary monoids and s-noetherian monoids. The
third section is devoted to the study of transfer Krull monoids whose root closure satisfies what we call

property (U). It turns out, in particular, that a monoid H whose root closure H̃ satisfies property (U)

is transfer Krull if and only if H̃ is Krull and the inclusion map H ↪→ H̃ is a transfer homomorphism.
Furthermore, we show that the valuation monoids are precisely the GCD-monoids which satisfy property
(U). In Section 4 we discuss the effects of (half-)factoriality of the root closure, and show that a monoid
whose root closure is half-factorial is transfer Krull if and only if it is half-factorial. Section 5 is devoted
to the study of Cohen-Kaplansky domains and their generalizations. In particular, we rediscover and
strengthen a result of [6] which states that a seminormal Cohen-Kaplansky domain is half-factorial and
characterize the transfer Krull property for generalized Cohen-Kaplansky domains. In the last section
we touch on the problem of what transfer Krull monoids whose root closure is Krull can look like. We
show that none of the aforementioned characterizations in this paper can be applied to monoids whose
root closure is Krull. More precisely, we show that such simple descriptions cannot even be gathered for
affine monoids (i.e., finitely generated monoids that are isomorphic to an additive submonoid of Zn for
some positive integer n).

2. Notation and preliminaries

Let H be a commutative semigroup with identity. We say that H is cancellative if for all a, b, c ∈ H
with ac = bc, it follows that a = b.

Throughout this paper, a monoid is always a commutative cancellative semigroup with identity.

We denote by Z the set of integers, by N the set of positive integers and by N0 = N ∪ {0} the set of
non-negative integers. For r, s ∈ Z let [r, s] = {x ∈ Z | r ≤ x ≤ s}. Let H be a (multiplicatively written)
monoid and K a quotient group of H. We let H× denote the group of units of H and we call H reduced
if H× = {1}. We denote by Hred = {aH× | a ∈ H} the associated reduced monoid of H. For a, b ∈ H we
set a |H b if b = ac for some c ∈ H and we set a 'H b if a |H b and b |H a (equivalently, a = bε for some
ε ∈ H×). A subset T of H is called a submonoid of H if 1 ∈ T and ab ∈ T for all a, b ∈ T . For a subset
S ⊆ H, we let [S] denote the smallest submonoid of H containing S. If S ⊆ K, then let 〈S〉 denote the
smallest subgroup of K containing S. A submonoid of K that contains H is called an overmonoid of H.
A subset a ⊆ H is said to be an s-ideal of H if aH = a. Let p be an s-ideal of H. Then p is said to
be prime if H \ p is a submonoid of H and we denote by s-spec(H) the set of all prime s-ideals of H.
Moreover, an s-ideal a of H is called s-finitely generated if a = EH for some finite subset E ⊆ a. By
X(H) we denote the set of minimal non-empty prime s-ideals of H. For a ∈ H let aH = {ab | b ∈ H} be
the principal ideal generated by a. Clearly, every principal ideal is an s-ideal. We let H(H) denote the
set of principal ideals of H.
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The monoid H is said to be finitely generated if there exists a finite subset E ⊆ H such that H = [E].
We say that H is s-noetherian if H satisfies the ascending chain condition on s-ideals. Note that H is
s-noetherian if and only if every s-ideal of H is s-finitely generated if and only if H = [E ∪H×] for some
finite subset E ⊆ H if and only if Hred is finitely generated (see [19, Proposition 2.7.4]). Moreover, H
is finitely generated if and only if H is s-noetherian and H× is finitely generated. In particular, finitely
generated monoids are s-noetherian and the converse holds for reduced monoids.

Let u be a non-unit of H. Then u is called an atom of H if u is not the product of two non-units of
H. Moreover, u is said to be a prime element of H if uH is a prime s-ideal of H. We denote by A(H)
the set of atoms of H and say that H is atomic if every non-unit can be written as a finite product of
atoms. For each non-unit a ∈ H, we let LH(a) = L(a) = {k ∈ N | a is a product of k atoms of H} ⊆ N
be the set of lengths of a. Furthermore, we set LH(a) = L(a) = {0} for each a ∈ H×. An atomic monoid
H is said to be factorial if every atom of H is a prime element and it is called half-factorial if |L(a)| = 1
for all a ∈ H. Observe that every factorial monoid is half-factorial.

We denote by

• H ′ = {x ∈ K | there exists some N ∈ N such that xn ∈ H for all n ≥ N} the seminormal closure
of H (also called the seminormalization of H), by

• H̃ = {x ∈ K | xN ∈ H for some N ∈ N} the root closure of H, and by

• Ĥ = {x ∈ K | there exists some c ∈ H, such that cxn ∈ H for all n ∈ N} the complete integral
closure of H.

We have H ⊆ H ′ ⊆ H̃ ⊆ Ĥ ⊆ K. Furthermore, H is said to be seminormal (resp., root closed, resp.,

completely integrally closed) if H = H ′ (resp., H = H̃, resp., H = Ĥ). Let A,B ⊆ K be subsets. We
set AB = {ab | a ∈ A, b ∈ B}, (A : B) = {z ∈ K | zB ⊆ A}, A−1 = (H : A), Av = (A−1)−1 and
At =

⋃
E⊆A,|E|<∞Ev. If A ⊆ H, then A is called a t-ideal (resp., v-ideal) of H if At = A (resp., Av = A).

A t-ideal C of H is said to be t-invertible if (CC−1)t = H and C is called t-finitely generated if C = Et for
some finite subset E ⊆ C. Note that every t-ideal is an s-ideal and every principal ideal is a t-invertible
t-ideal. Let Ct(H) denote the t-class group of H. It measures how far t-invertible t-ideals are from being
principal and it is trivial if and only if every t-invertible t-ideal is principal. For the precise definition of
the t-class group we refer to [26]. The monoid H is said to be

• Mori if it satisfies the ascending chain condition on t-ideals,
• Krull if it is a completely integrally closed Mori monoid,
• primary if H 6= H× and for all a, b ∈ H \H× there is n ∈ N such that bn ∈ aH,
• a DVM if H is a primary monoid for which H \H× is a principal ideal of H, and

• finitely primary if H is a primary monoid, (H : Ĥ) 6= ∅ and Ĥ is factorial. If H is finitely primary,

then |X(Ĥ)| is called the rank of H and each α ∈ N for which (
∏

p∈X(Ĥ) p)α ⊆ (H : Ĥ), is called

an exponent of H.

Note that H is a Mori monoid if and only if H satisfies the ascending chain condition on v-ideals. Also
observe that the t-closure (and the v-closure) induce ideal systems in the sense of [26]. All concepts in-
volving t-ideals above (like t-invertibility and t-class group) can also be introduced in analogy for v-ideals.
For our purposes the notion of t-ideals is the more useful notion. (This is the case, for instance, since the
t-system is a finitary ideal system.) For more information on t-ideals, v-ideals and their relationships we
refer to [19, 26].

It is well known that a monoid is a DVM if and only if it is a primary Krull monoid if and only if it
is a primary factorial monoid (cf. [19, Theorem 2.3.8]). Besides that, every DVM is a finitely primary
monoid of rank one and exponent one. A monoid is factorial if and only if it is a Krull monoid with
trivial t-class group and it is Krull if and only if every non-empty t-ideal is t-invertible. Furthermore, the
root closure of an s-noetherian monoid is a Krull monoid.
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Let H and B be monoids. A monoid homomorphism θ : H → B is said to be a transfer homomorphism
if the following two properties are satisfied.

(T1) B = θ(H)B× and θ−1(B×) = H×.
(T2) If u ∈ H, b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H and ε, η ∈ B× such that u = vw,

θ(v) = bε and θ(w) = cη.

The monoid H is said to be a transfer Krull monoid if there exists a Krull monoid B and a transfer
homomorphism θ : H → B. Since the identity homomorphism is trivially a transfer homomorphism, Krull
monoids are transfer Krull, but transfer Krull monoids need be neither Mori nor completely integrally
closed. So far, the arithmetic of Krull monoids is very well understood and via transfer homomorphisms,
the arithmetical properties of a Krull monoid B are pulled back to the monoid H. For instance, transfer
homomorphisms preserve the system of sets of lengths, whence all the invariants describing the structure
of sets of lengths coincide. We refer the reader to the surveys [18, 23] for further details.

Proposition 2.1. Let H be a monoid with quotient group K. Then H is a transfer Krull monoid if
and only if there is a Krull monoid T with H ⊆ T ⊆ K such that the inclusion H ↪→ T is a transfer
homomorphism. If this holds, then K is the quotient group of T , T = HT× and T× ∩H = H×.

Proof. See [23, Proposition 5.3]. �

In the following remark we collect several useful facts and provide a variety of situations in which a
transfer Krull monoid is forced to be a Krull monoid or a half-factorial monoid.

Remark 2.2. (1) Every half-factorial monoid is transfer Krull. Indeed, if H is half-factorial, then
θ : H → (N0,+), a 7→ max L(a), is a transfer homomorphism.

(2) Strongly primary monoids (i.e., primary monoids H such that for each x ∈ H, there is an n ∈ N
for which (H \H×)n ⊆ xH) are transfer Krull if and only if they are half-factorial by [22, Theorem
5.5].

(3) Length-factorial monoids (i.e., atomic monoids H such that for all a ∈ H and k ∈ L(a), there is
exactly one way (up to order and associates) to write a as a product of k atoms) are transfer Krull
if and only if they are Krull by [24, Corollary 1.5].

(4) If G is a finite group, then B(G) (i.e., the monoid of product-one sequences, cf. [28, Definition
3.1]) is a reduced finitely generated monoid. Furthermore, B(G) is transfer Krull if and only if
B(G) is Krull if and only if G is abelian by [28, Proposition 3.4]. For further recent results on the
transfer Krull property for monoids of product-one sequences, we refer to [15, 17].

(5) If R is a stable order in a Dedekind domain, then it follows from [11, Theorem 5.10] that the
monoid of invertible ideals of R (resp., the semigroup of nonzero ideals of R) is transfer Krull if
and only if it is half-factorial.

Let T be a monoid and let H be a submonoid of T . We say that H ⊆ T is inert if for all x, y ∈ T with
xy ∈ H, there is some ε ∈ T× such that xε, yε−1 ∈ H. The concept of an inert extension was introduced
in [14] for ring extensions and studied in [27]. We adapt it for monoid extensions accordingly. Following
the terminology of [19], H ⊆ T is called divisor-closed if for all x, y ∈ T with xy ∈ H, it follows that
x, y ∈ H. Observe that H ⊆ T is divisor-closed if and only if H ⊆ T is inert and T× = H×.

Lemma 2.3. Let T be a monoid and let H be a submonoid of T .

(1) H ↪→ T is a transfer homomorphism if and only if T× ∩H = H×, T = HT× and H ⊆ T is inert.
(2) If T is an overmonoid of H, then H ↪→ T is a transfer homomorphism if and only if T×∩H = H×

and H ⊆ T is inert.
(3) H ↪→ H̃ is a transfer homomorphism if and only if H ⊆ H̃ is inert.

(4) H ′ ↪→ H̃ is a transfer homomorphism if and only if H ′ ⊆ H̃ is inert.

Proof. (1) By definition, H ↪→ T is a transfer homomorphism if and only if (a) T× ∩ H = H×, (b)
T = HT× and (c) for all a ∈ H and x, y ∈ T such that a = xy, there are some x′, y′ ∈ H and ε, η ∈ T×
such that a = x′y′, x = x′η and y = y′ε.
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(⇒) Let H ↪→ T be a transfer homomorphism. It remains to show that H ⊆ T is inert. Let x, y ∈ T
be such that xy ∈ H. Set a = xy. Then there are some x′, y′ ∈ H and ε, η ∈ T× such that a = x′y′,
x = x′η and y = y′ε. It follows that x′y′ = a = xy = x′ηy′ε, and thus εη = 1. Consequently, η = ε−1,
and hence xε = x′ ∈ H and yε−1 = y′ ∈ H.

(⇐) Let T× ∩H = H×, let T = HT× and let H ⊆ T be inert. It remains to show that for all a ∈ H
and x, y ∈ T such that a = xy, there are some x′, y′ ∈ H and ε, η ∈ T× such that a = x′y′, x = x′η and
y = y′ε.

Let a ∈ H and x, y ∈ T be such that a = xy. Then xy ∈ H, and hence xε, yε−1 ∈ H for some ε ∈ T×.
Set η = ε−1, x′ = xε and y′ = yε−1. Then x′, y′ ∈ H, ε, η ∈ T×, a = x′y′, x = x′η and y = y′ε.

(2) Let T be an overmonoid of H. By (1) it suffices to show that if H ⊆ T is inert, then T ⊆ HT×.
Let H ⊆ T be inert and let y ∈ T . Since T is an overmonoid of H, there is some x ∈ H such that xy ∈ H.
Therefore, there is some ε ∈ T× such that xε, yε−1 ∈ H. We infer that y = yε−1ε ∈ HT×.

(3) This is an immediate consequence of (2) and the fact that H̃ is an overmonoid of H and H̃×∩H =
H×.

(4) Observe that H̃ ′ = H̃, and hence H̃× ∩H ′ = H ′
×

. Now this is an easy consequence of (2). �

Proposition 2.4. Let H be an s-noetherian monoid. The following statements are equivalent.

(1) H is transfer Krull.
(2) There is a root closed overmonoid T of H such that H ↪→ T is a transfer homomorphism.

(3) There is an overmonoid T of H such that T ⊆ T̃ is inert and H ↪→ T is a transfer homomorphism.

Proof. (1)⇒ (2): Let H be transfer Krull. It follows from Proposition 2.1 that there is an overmonoid T
of H such that T is Krull monoid and H ↪→ T is a transfer homomorphism. Since T is a Krull monoid,
we have that T is root closed.

(2) ⇒ (1): Let T be a root closed overmonoid of H such that H ↪→ T is a transfer homomorphism.
We infer by Lemma 2.3(2) that H ↪→ T is a transfer homomorphism, and thus T = HT×. There is some
finite subset E ⊆ H such that H = [E ∪H×]. Since T = HT×, it follows that T = [E ∪ T×]. Therefore,
T is a root closed s-noetherian monoid, and thus T is a Krull monoid by [19, Theorem 2.7.14]. Since
H ↪→ T is a transfer homomorphism, we have that H is transfer Krull.

(2) ⇒ (3): This is obvious.

(3) ⇒ (2): Let T be an overmonoid of H such that T ⊆ T̃ is inert and H ↪→ T is a transfer

homomorphism. Then T ↪→ T̃ is a transfer homomorphism by Lemma 2.3(3), and hence H ↪→ T̃ is a

transfer homomorphism. Now the statement follows, since T̃ is a root closed overmonoid of H. �

Proposition 2.5. Let H be a monoid with quotient group K.

(1) If H ⊆ H̃ is inert and H̃ = {x ∈ K | xk ∈ H} for some k ∈ N, then H ′ ⊆ H̃ is inert.
(2) If H is s-noetherian, then H ′ is s-noetherian.

(3) If H is s-noetherian and H ⊆ H̃ is inert, then H ′ is s-noetherian and H ′ ⊆ H̃ is inert.

Proof. (1) Let H ⊆ H̃ be inert and let k ∈ N be such that H̃ = {x ∈ K | xk ∈ H}. It remains to

show that for all x, y ∈ H̃ with xy ∈ H ′, there is some ε ∈ H̃× such that xε, yε−1 ∈ H ′. Let x, y ∈ H̃
be such that xy ∈ H ′. Then there is some N ∈ N such that (xy)n ∈ H for each n ∈ N≥N , and hence

(xy)kN+1 ∈ H. Observe that there is some ε ∈ H̃× such that xkN+1ε, ykN+1ε−1 ∈ H. We have that
(xε)kN+1 = xkN+1ε(εN )k ∈ H, (xε)2kN+1 = xkN+1ε(xNε2N )k ∈ H, (yε−1)kN+1 = ykN+1ε−1(ε−N )k ∈
H and (yε−1)2kN+1 = ykN+1ε−1(yNε−2N )k ∈ H. Since kN + 1 and 2kN + 1 are relatively prime, we
infer that xε, yε−1 ∈ H ′.

(2) Let H be s-noetherian. Then (H : H̃) 6= ∅ by [19, Propositions 2.7.4 and 2.7.11 and Theorem
2.7.13]. Therefore, (H : H ′) 6= ∅. Let (ai)i∈N be an ascending chain of s-ideals of H ′. If x ∈ (H : H ′),
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then (xai)i∈N is an ascending chain of s-ideals of H, and hence there is some N ∈ N such that xai = xaN
for each integer i ≥ N . Consequently, ai = aN for each integer i ≥ N .

(3) Let H be s-noetherian and let H ⊆ H̃ be inert. It is an immediate consequence of [19, Propositions

2.7.4 and 2.7.11 and Theorem 2.7.13] that there is a finite subset E ⊆ H̃ such that H̃ = [E ∪H×] (note

that H̃/H× is finitely generated). Since E is finite, there is clearly some k ∈ N such that ek ∈ H for each

e ∈ E. It is straightforward to show that H̃ = {x ∈ K | xk ∈ H}. Now the statement follows from (1)
and (2). �

Next we provide a generalization of [19, Proposition 3.7.5.1]. For the definition of ideal systems, we
refer to [26]. For a monoid H and an ideal system r on H let r-max(H) denote the set of r-maximal
r-ideals of H. Note that the s-system, the t-system and the v-system (they are induced by the s-ideals,
t-ideals and v-ideals, respectively) are important examples of ideal systems on monoids.

Proposition 2.6. Let H be a monoid, let r be an ideal system on H and let T be an overmonoid of
H such that T× ∩ H = H× and T = HT×. If (H : T ) ∈ r-max(H), then H ↪→ T is a transfer
homomorphism.

Proof. Let (H : T ) ∈ r-max(H). By Lemma 2.3(2), it suffices to show that for all x, y ∈ T with xy ∈ H
there is some ε ∈ T× such that xε, yε−1 ∈ H. Let x, y ∈ T be such that xy ∈ H. There are some
α, β ∈ T× and u, v ∈ H such that x = uα and y = vβ.

Case 1: u ∈ (H : T ). Then xβ = uαβ ∈ H and yβ−1 = v ∈ H.
Case 2: u 6∈ (H : T ). Then (uH ∪ (H : T ))r = H. There is some t ∈ H such that tyα ∈ H. It

follows that tyα ∈ tyαH = tyα(uH ∪ (H : T ))r = (tyαuH ∪ tyα(H : T ))r = (txyH ∪ tyα(H : T ))r ⊆
(txyH ∪ tH)r = tH, and hence yα ∈ H. Finally, observe that xα−1 = u ∈ H. �

Proposition 2.7. Let T be a monoid and let H ⊆ T be a submonoid.

(1) If T× ∩H = H× and T = HT×, then A(T ) ⊆ {uε | u ∈ A(H), ε ∈ T×}.
(2) If H ↪→ T is a transfer homomorphism, then A(T ) = {uε | u ∈ A(H), ε ∈ T×}.
(3) If T is atomic and A(T ) ⊆ {uε | u ∈ A(H), ε ∈ T×}, then T = HT×.
(4) If H is atomic and A(H) ⊆ A(T ), then T× ∩H = H×.

Proof. (1) Let T× ∩H = H× and T = HT×. Let v ∈ A(T ). There are some u ∈ H and ε ∈ T× such
that v = uε. It remains to show that u ∈ A(H). Clearly, u 6∈ H× (for if u ∈ H×, then v ∈ T×). Now let
a, b ∈ H be such that u = ab. Then v = aεb, and hence aε ∈ T× or b ∈ T×, so a ∈ T× ∩ H = H× or
b ∈ T× ∩H = H×.

(2) Let H ↪→ T be a transfer homomorphism. It is well known that A(H) ⊆ A(T ) (e.g. see [19,
Proposition 3.2.3.2]). Now the statement follows from (1).

(3) Let T be atomic and let A(T ) ⊆ {uε | u ∈ A(H), ε ∈ T×}. Let x ∈ T . Without restriction let
x 6∈ T×. Then x =

∏n
i=1 ui for some n ∈ N and atoms ui of T . For each i ∈ [1, n] there are some

vi ∈ A(H) and εi ∈ T× such that ui = viεi. We infer that x = (
∏n
i=1 vi)(

∏n
i=1 εi) ∈ HT×.

(4) Let H be atomic and let A(H) ⊆ A(T ). Let x ∈ T× ∩ H. Assume that x 6∈ H×. Then x = ua
for some u ∈ A(H) and a ∈ H. Since x ∈ T×, we infer that u ∈ T×, which contradicts the fact that
u ∈ A(T ). �

Remark 2.8. Let H ⊆ L ⊆ T be monoids such that H ↪→ T is a transfer homomorphism.

(1) If T× ∩ L = L× and L = HL×, then L ↪→ T is a transfer homomorphism.

(2) If H̃ ⊆ T and H̃ = HH̃×, then H̃ ↪→ T is a transfer homomorphism.

Proof. (1) Let T× ∩L = L× and L = HL×. Since T = HT×, we infer that T = LT×. By Lemma 2.3(1),
it remains to show that L ⊆ T is inert. Let x, y ∈ T be such that xy ∈ L. There are some z ∈ H and
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η ∈ L× such that xy = zη. We have that xη−1y = z ∈ H and xη−1, y ∈ T . Therefore, xη−1ε, yε−1 ∈ H
for some ε ∈ T×. It follows that xε, yε−1 ∈ L.

(2) This is an easy consequence of (1) and the fact that T×∩ H̃ = H̃×. (For more details see the proof
of Theorem 3.1 below.) �

3. Transfer Krull monoids and property (U)

Let H be a monoid with quotient group K. Then H is called a valuation monoid if for each x ∈ K
we have that x ∈ H or x−1 ∈ H. Observe that H is a DVM if and only if H is an atomic valuation
monoid and H 6= H×. For a submonoid S of H let S−1H = {s−1x | s ∈ S, x ∈ H} which is clearly an
overmonoid of H. Note that if S ⊆ H is a submonoid and T = S−1H, then T = HT×. For each prime
s-ideal p of H and each overmonoid T of H we set Hp = (H \ p)−1H and Tp = (H \ p)−1T .

Next we introduce an “ad-hoc” property which is motivated by the concept of QR-domains (i.e.,
domains for which every overring is a quotient overring). (QR-domains will be discussed in Section 5.)
We say that H satisfies property (U) if for each overmonoid T of H with T = HT×, there is some
submonoid S ⊆ H such that T = S−1H. Note that if H is a valuation monoid, then for each overmonoid
T of H, there is some submonoid S ⊆ H such that T = S−1H. In particular, every valuation monoid
satisfies property (U).

(We show that each overmonoid of a valuation monoid H is of the form S−1H for some submonoid S
of H. Let H be a valuation monoid, let T be an overmonoid of H and set S = {x ∈ H | x−1 ∈ T}. Then
S ⊆ H is a submonoid and S−1H ⊆ T . It suffices to show that T ⊆ S−1H. Let z ∈ T . Then z ∈ H or
z−1 ∈ H. If z ∈ H, then z ∈ S−1H. If z−1 ∈ H, then z−1 ∈ S, and hence z = (z−1)−1 ∈ S−1 ⊆ S−1H.)

Theorem 3.1. Let H be a monoid such that H̃ satisfies property (U).

(1) H is transfer Krull if and only if H̃ is a Krull monoid and H ⊆ H̃ is inert.
(2) The following statements are equivalent.

(a) H is half-factorial.

(b) H̃ is half-factorial and H is transfer Krull.

(c) H̃ is half-factorial and H ⊆ H̃ is inert.

Proof. (1) Clearly, if H̃ is a Krull monoid and H ⊆ H̃ is inert, then H is transfer Krull by Lemma 2.3(3).
Now let H be transfer Krull. By Proposition 2.1 there is an overmonoid T of H which is a Krull monoid
such that H ↪→ T is a transfer homomorphism. Note that T× ∩H = H× and T = HT×. Since H ⊆ T

and T is Krull, we have that H̃ ⊆ T̃ = T , and thus T = HT× ⊆ H̃T× ⊆ T . Therefore, T = H̃T×, and

hence T = S−1H̃ for some submonoid S ⊆ H̃.
Next we show that T× ∩ H̃ = H̃×. (⊆) Let x ∈ T× ∩ H̃. There is some k ∈ N such that xk ∈ H. We

infer that xk ∈ T× ∩H = H× ⊆ H̃×. Since x ∈ H̃, it follows that x ∈ H̃×. (⊇) This is clearly satisfied.

Observe that S ⊆ T×. Consequently, S ⊆ T× ∩ H̃ = H̃×, and thus T = S−1H̃ = H̃. Therefore, H̃ is

a Krull monoid and H ⊆ H̃ is inert by Lemma 2.3(3).

(2) (a) ⇒ (b): It is well known that H is transfer Krull. By (1) and Lemma 2.3(2) we have that

H ↪→ H̃ is a transfer homomorphism, and thus H̃ is half-factorial by [19, Proposition 3.2.3].
(b) ⇒ (c): This follows from (1).

(c) ⇒ (a): Note that H ↪→ H̃ is a transfer homomorphism by Lemma 2.3(3). Now the statement
follows from [19, Proposition 3.2.3]. �

Corollary 3.2. Let H be a monoid such that H̃ is half-factorial and satisfies property (U). The following
statements are equivalent.

(1) H is transfer Krull.
(2) H is half-factorial.

(3) H ⊆ H̃ is inert.
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If these equivalent conditions are satisfied, then H̃ is a Krull monoid.

Proof. This is an immediate consequence of Theorem 3.1. �

Corollary 3.3. Let H be a monoid such that H̃ is a DVM (e.g. H is an s-noetherian finitely primary
monoid of rank one). The following statements are equivalent.

(1) H is transfer Krull.
(2) H is half-factorial.

(3) H ⊆ H̃ is inert.

Proof. This is an immediate consequence of Corollary 3.2, since DVMs are half-factorial and valuation
monoids satisfy property (U). �

Corollary 3.4. Let H be a monoid such that H̃ is half-factorial and satisfies property (U). Then H is
a Krull monoid if and only if H is root closed.

Proof. Clearly, if H is a Krull monoid, then H is root closed. Now let H be root closed. Then H = H̃ is

half-factorial. Therefore, H = H̃ is a Krull monoid by Corollary 3.2. �

Let H be a monoid. Then H is called a GCD-monoid if each two elements a, b ∈ H have a greatest
common divisor (i.e., there is some t ∈ H such that t |H a and t |H b and for all s ∈ H with s |H a and
s |H b, it follows that s |H t). Note that H is a GCD-monoid if and only if every t-finitely generated
t-ideal of H is principal by [26, Theorem 11.5(iii)] (since the v-finitely generated v-ideals are precisely
the t-finitely generated t-ideals). It is well known that factorial monoids and valuation monoids are
GCD-monoids. For a thorough introduction to GCD-monoids, we refer to [26].

Proposition 3.5. Let H be a monoid. Then H is a valuation monoid if and only if H is a GCD-monoid
which satisfies property (U).

Proof. Clearly, every valuation monoid is a GCD-monoid which satisfies property (U). Now let H be
a GCD-monoid which satisfies property (U). Since H is a GCD-monoid, it suffices to show that for all
relatively prime x, y ∈ H, it follows that x ∈ H× or y ∈ H×. Let x, y ∈ H be relatively prime (i.e., for
each t ∈ H with t |H x and t |H y, we have that t ∈ H×). Set T = {a(xy )k | a ∈ H, k ∈ Z}. Observe that

T is an overmonoid of H such that T = HT×. Consequently, there is some submonoid S ⊆ H such that
T = S−1H. Since x

y ∈ T , there are some u ∈ H and s ∈ S such that x
y = u

s . We infer that xs = yu.

Since H is a GCD-monoid and x and y are relatively prime, there is some w ∈ H such that s = yw by
[26, Proposition 10.2(ii)]. Therefore, y−1 = w

s ∈ S
−1H = T . It follows that y−1 = a(xy )k for some a ∈ H

and k ∈ Z. If k ≥ 1, then yk−1 = axk, and hence x ∈ H× (since x |H yk−1, H is a GCD-monoid and x
and y are relatively prime). Now let k ≤ 0 and set n = −k. Note that n ∈ N0 and xn = ayn+1. It follows
that y ∈ H× (since y |H xn, H is a GCD-monoid and x and y are relatively prime). �

4. Transfer Krull monoids with (half-)factorial root closure

In this section we investigate when a monoid whose root closure is (half-)factorial is a transfer Krull
monoid. As a consequence we characterize when a weakly factorial monoid whose root closure is Krull is
transfer Krull.

Lemma 4.1. Let H be a monoid.

(1) A(H) ⊆ A(H̃) if and only if there is an overmonoid T of H̃ such that A(H) ⊆ A(T ) and T×∩H =
H×.

(2) If H is atomic, then A(H) ⊆ A(H̃) if and only if there is an overmonoid T of H̃ such that
A(H) ⊆ A(T ).

(3) If H is transfer Krull, then A(H) ⊆ A(H̃).



ON TRANSFER KRULL MONOIDS 9

Proof. (1) First let A(H) ⊆ A(H̃). Set T = H̃. It is obvious that T× ∩H = H×.

Now let T be an overmonoid of H̃ such that A(H) ⊆ A(T ) and T× ∩ H = H×. Observe that

T× ∩ H̃ = H̃×. (If x ∈ T× ∩ H̃, then xk ∈ H for some k ∈ N, and hence xk ∈ T× ∩H = H× ⊆ H̃×, so

x ∈ H̃×.)

Let u ∈ A(H). Since u 6∈ H× (and H̃× ∩H = H×), we have that u 6∈ H̃×. Now let a, b ∈ H̃ be such

that u = ab. Then a, b ∈ T . Since u ∈ A(T ), we infer that a ∈ T× ∩ H̃ = H̃× or b ∈ T× ∩ H̃ = H̃×.

(2) This is an immediate consequence of (1) and Proposition 2.7(4).

(3) This follows from (1) and Propositions 2.1 and 2.7. �

The problem whether an atom of a half-factorial domain is again an atom of certain overrings has
already been studied (e.g. see [30, Proposition 2.2]). Observe that Lemma 4.1(3) is a result of similar
type for monoids. Next we present the first main result of this section. In Section 6 we provide examples
of half-factorial monoids whose root closure is also half-factorial.

Theorem 4.2. Let H be a monoid.

(1) If H̃ is half-factorial, then the following statements are equivalent.
(a) H is transfer Krull.
(b) There is an overmonoid T of H such that T is Krull and A(T ) = {uε | u ∈ A(H), ε ∈ T×}.
(c) There is an overmonoid T of H̃ such that A(H) ⊆ A(T ).

(d) A(H) ⊆ A(H̃).
(e) H is half-factorial.

(2) If H̃ is factorial, then H is transfer Krull if and only if A(H̃) = {uε | u ∈ A(H), ε ∈ H̃×}.

Proof. (1) Let H̃ be half-factorial. Since H̃× ∩ H = H×, we have by [19, Corollary 1.3.3] that H is
atomic.

(a) ⇒ (b): This follows from Propositions 2.1 and 2.7(2).

(b) ⇒ (c): Since T is root closed, we have that H̃ ⊆ T̃ = T , and hence T is an overmonoid of H̃.
(c) ⇒ (d): This is an immediate consequence of Lemma 4.1(2).
(d) ⇒ (e): Let a ∈ H and let k, ` ∈ L(a). Then a is the product of k atoms of H and a is the product

of ` atoms of H. Consequently, a is the product of k atoms of H̃ and a is the product of ` atoms of H̃.

Since H̃ is half-factorial, we have that k = `.
(e) ⇒ (a): This is clear.

(2) Let H̃ be factorial. By (1) it remains to show that if H is transfer Krull, then A(H̃) ⊆ {uε |
u ∈ A(H), ε ∈ H̃×}. Let H be transfer Krull and let v ∈ A(H̃). Set Q = vH̃ and P = Q ∩ H. Then

Q ∈ X(H̃) (since H̃ is factorial) and P ∈ X(H) by [13, Proposition 5(b)]. Since H is atomic, there is

some u ∈ A(H)∩P . We infer that u ∈ A(H̃)∩Q. This implies that uH̃ = Q = vH̃, and thus v = uε for

some ε ∈ H̃×. �

Let H be a monoid. A non-unit a of H is called primary if for all b, c ∈ H with a |H bc and a -H b,
there is some n ∈ N such that a |H cn. Moreover, H is said to be weakly factorial if every non-unit of
H is a finite product of primary elements of H. In what follows, we freely use coproducts. Their precise
definition can be found in [19].

Remark 4.3. Let H be a weakly factorial monoid. Then H is half-factorial if and only if HP is half-
factorial for each P ∈ X(H).

Proof. By [26, Theorem 22.5(ii)], we have that the t-dimension of H is at most one (i.e., t-max(H) ⊆
X(H)). It is easy to see that

⋂
P∈X(H) xHP = xH for each x ∈ H (cf. [26, Theorem 7.4]). Also note that

xHP ∩H is a principal ideal of H by [26, Exercise 5(i), page 258] for all x ∈ H and P ∈ X(H). It is now
straightforward to show that ϕ : H(H) →

∐
P∈X(H)H(HP ) defined by ϕ(xH) = (xHP )P∈X(H) for each
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x ∈ H is a monoid isomorphism. It follows from [19, Proposition 1.2.11.2] that H is half-factorial if and
only if Hred

∼= H(H) is half-factorial if and only if
∐
P∈X(H)(HP )red ∼=

∐
P∈X(H)H(HP ) is half-factorial

if and only if (HP )red is half-factorial for each P ∈ X(H) if and only if HP is half-factorial for each
P ∈ X(H). �

Now we provide the second main theorem of this section. In Section 5 we introduce and discuss the
concept of generalized Cohen-Kaplansky domain. The monoids of nonzero elements of these domains are
among the most important examples of weakly factorial monoids whose root closure is a Krull monoid.
In Section 6 it will become clear that even if one modestly weakens the weakly factorial property in the
next result then the provided conditions no longer characterize the transfer Krull property.

Theorem 4.4. Let H be a weakly factorial monoid such that H̃ is a Krull monoid. The following
statements are equivalent.

(1) H is transfer Krull.
(2) For each P ∈ X(H), HP is transfer Krull.
(3) For each P ∈ X(H), HP is half-factorial.
(4) H is half-factorial.

(5) A(H̃) = {uε | u ∈ A(H), ε ∈ H̃×}.
(6) A(H) ⊆ A(H̃).

In addition, if H is seminormal, then these equivalent conditions are satisfied.

Proof. It follows from [26, Exercise 5, page 258] that the t-class group of H is trivial, and hence the

t-class group of H̃ is trivial by [13, Proposition 8]. Therefore, H̃ is factorial by [19, Corollary 2.3.13].

Next we show that H̃P is a DVM for each P ∈ X(H). Let P ∈ X(H). There is some Q ∈ X(H̃) such

that Q∩H = P by [13, Proposition 5(b)]. Clearly, H̃Q is a DVM by [19, Theorem 2.3.11]. We show that

H̃P = H̃Q. Since Q∩H = P , we have that H̃P = (H \P )−1H̃ ⊆ (H̃ \Q)−1H̃ = H̃Q. It remains to show

that (H̃ \Q)−1 ⊆ H̃P . Let x ∈ H̃ \Q. There is some k ∈ N such that xk ∈ H. Observe that xk 6∈ P . (If

xk ∈ P , then xk ∈ Q, and thus x ∈ Q.) Therefore, x−k ∈ (H \ P )−1 ⊆ HP , and hence x−1 ∈ H̃P .

(1) ⇔ (4) ⇔ (5) ⇔ (6): This is an immediate consequence of Theorem 4.2.

(2) ⇔ (3): Let P ∈ X(H). Since H̃P is a DVM, we infer by Corollary 3.3 (or by Theorem 4.2(1)) that
HP is transfer Krull if and only if HP is half-factorial.

(3) ⇔ (4): This follows from Remark 4.3.

Now let H be seminormal and let P ∈ X(H). Then HP is seminormal and H̃P is a DVM. By

Theorem 4.2(1), it suffices to show that A(HP ) ⊆ A(H̃P ). Since HP is primary and seminormal and

H̃P is a DVM, it follows from [20, Lemma 3.3] that HP \ H×P = H̃P \ H̃P

×
. Let u ∈ A(HP ). Clearly,

u 6∈ H̃P

×
. Let x, y ∈ H̃P be such that u = xy. If x, y 6∈ H̃P

×
, then x, y ∈ HP \ H×P , a contradiction.

Consequently, x ∈ H̃P

×
or y ∈ H̃P

×
. �

Corollary 4.5. Let H be a transfer Krull monoid such that H̃ is Krull. If H is weakly factorial or

H ⊆ H̃ is inert, then HP is transfer Krull for each P ∈ X(H).

Proof. Let P ∈ X(H). If H is weakly factorial, then it follows from Theorem 4.4 that HP is transfer

Krull. Now let H ⊆ H̃ be inert. It is straightforward to show that HP ⊆ H̃P = H̃P is inert. Since

H̃ is Krull, it follows that H̃P is a DVM. (This can be proved along the same lines as in the proof of
Theorem 4.4.) We infer by Corollary 3.3 that HP is transfer Krull. �
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5. (Generalized) Cohen-Kaplansky domains

In this section we first gather some main properties of (generalized) Cohen-Kaplansky domains. By a
domain, we mean a commutative integral domain with identity element. Let R be a domain with quotient
field K. We denote by R• = R \ {0} the multiplicative monoid of nonzero elements, by R× the group
of units of R and by R the integral closure of R. If A is a monoid theoretic property (e.g. factorial,
half-factorial), then we say that R satisfies A if R• satisfies A. We say that R is a Cohen-Kaplansky
domain if one of the following equivalent statements holds ([3, Theorem 4.3]).

(a) R is atomic and has only finitely many atoms up to associates.
(b) R is a semilocal principal ideal domain, R/(R : R) is finite, and |max(R)| = |max(R)|.
(c) R is an at most one-dimensional semilocal noetherian domain withR/M finite for each nonprincipal

maximal ideal M of R, R is a finitely generated R-module (equivalently (R : R) 6= {0}) and
|max(R)| = |max(R)|.

(d) R is noetherian, K×/R× (the group of divisibility) is finitely generated and for each x ∈ R, there
exists an n ∈ N such that xn ∈ R (that is R ⊆ R is a root extension).

For a local Cohen-Kaplansky domain R, the multiplicative monoid R• is a finitely primary monoid
of rank one. Another interesting fact is that if a domain R is a Cohen-Kaplansky domain, then so are
all the localizations and conversely if a domain R is semilocal such that it is locally a Cohen-Kaplansky
domain, then R is also a Cohen-Kaplansky domain. Thus the study of Cohen-Kaplansky domains may
be reduced to the local case for various purposes. Also note that R is a Cohen-Kaplansky domain if and
only if R• is s-noetherian (see [19, Page 137]). We refer the reader to [2, 3] for further details about
Cohen-Kaplansky domains.

Furthermore, we say that R is a generalized Cohen-Kaplansky domain if one of the following equivalent
statements holds ([1, Corollary 5 and Theorem 6]).

(a) R is atomic and has only finitely many atoms (up to associates) that are not prime elements.
(b) R is factorial, R ⊆ R is a root extension, (R : R) is a principal ideal of R and R/(R : R) is finite.

If these equivalent conditions are satisfied, then R is weakly factorial. In particular, if R is a generalized

Cohen-Kaplansky domain, then R• is weakly factorial and R̃• is factorial. For non-trivial examples of
generalized Cohen-Kaplansky domains we refer to [19, Page 137].

Proposition 5.1. Let R be local Cohen-Kaplansky domain with maximal ideal M . Then the following
conditions are equivalent.

1. R is half-factorial.
2. R is transfer Krull.

3. R• ↪→ R
•

is a transfer homomorphism.

If these equivalent conditions hold, then MR = R \R×.

Proof. The equivalence is an immediate consequence of Corollary 3.3.

Now assume that the equivalent conditions hold. Then clearly, R = RR
×

. Let t ∈ R \ R×. Since

R = RR
×

, there are m ∈ R \R× = M and u ∈ R× such that t = mu ∈MR. Therefore, R \R× ⊆MR,

and hence MR = R \R×. �

Observe that the condition MR = R \R× is not sufficient for R to be half-factorial ([3, Example 6.5]).

Also note that the domain R in [3, Example 6.5] satisfies the property R = RR
×

as well.
Now our aim is to provide a more general version of the above characterization. But for this we first

recall that an integral domain R is said to be a QR-domain if every overring of R is a quotient overring
(i.e., for each overring T of R there is some submonoid S ⊆ R• such that T = S−1R). Note that R is a
QR-domain if and only if R is a Prüfer domain for which the radical of every finitely generated ideal is
the radical of a principal ideal [29, Theorem 5]. In particular, every Dedekind domain with torsion class
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group is a QR-domain. Also, every Bézout domain (i.e., a domain in which every finitely generated ideal
is principal) is a QR-domain.

Proposition 5.2. Let R be a Cohen-Kaplansky domain. The following statements are equivalent.

1. There is an overring T of R such that T is a Krull domain and R• ↪→ T • is a transfer homomor-
phism.

2. R• ↪→ R
•

is a transfer homomorphism.

Proof. (1) ⇒ (2): Let T be an overring of R which is a Krull domain such that R• ↪→ T • is a transfer
homomorphism. Note that T× ∩ R = R× and T = RT×. Since R ⊆ T and T is Krull, we have that
R ⊆ T = T . Since R is a principal ideal domain, R is a QR-domain, and hence T = S−1R for some

submonoid S ⊆ R•.
Next we show that T× ∩R = R

×
. (⊆): Let x ∈ T× ∩R. There is some k ∈ N such that xk ∈ R. We

infer that xk ∈ T× ∩R = R× ⊆ R×. Since x ∈ R, it follows that x ∈ R×. (⊇): This is obvious.

Observe that S ⊆ T×. Consequently, S ⊆ T× ∩ R = R
×

, and thus T = S−1R = R. Therefore,

R• ↪→ R
•

is a transfer homomorphism.
(2) ⇒ (1): This is clear, since R is both an overring of R and a principal ideal domain, and hence R

is a Krull domain. �

Theorem 5.3. Let R be a generalized Cohen-Kaplansky domain. The following statements are equivalent.

(1) R is transfer Krull.
(2) RM is transfer Krull for each M ∈ max(R).
(3) RM is half-factorial for each M ∈ max(R).
(4) R is half-factorial.

(5) A(R) = {uε | u ∈ A(R), ε ∈ R×}.
(6) A(R) ⊆ A(R).

In addition, if R is seminormal, then these equivalent conditions are satisfied.

Proof. This follows from Theorem 4.4, since R is weakly factorial, R ⊆ R is a root extension and R is
factorial. �

6. Transfer Krull monoids and finitely generated monoids

Let H be a monoid. Then H is called affine if H is finitely generated and the quotient group of H
is torsion-free (equivalently, H is isomorphic to a finitely generated additive submonoid of Zd for some
d ∈ N). Also note that H is reduced and affine if and only if H is isomorphic to a finitely generated
additive submonoid of Nd0 for some d ∈ N. For a profound introduction to affine monoids we refer to [12].
Clearly, affine monoids are finitely generated, and hence the root closure of an affine monoid is a Krull
monoid by [19, Propositions 2.7.4.2 and 2.7.11 and Theorems 2.6.5.1 and 2.7.13]. First we want to point
out that even finitely generated finitely primary monoids of rank one and exponent larger than one need
not be transfer Krull.

Example 6.1. Let F be a DVM for which F× is finite and cyclic and let p ∈ F and α ∈ F× be such
that F \ F× = pF and F× = 〈{α}〉. Set n = |F×| and H = [{p} ∪ {αkpn | k ∈ [1, n− 1]}]. Then H is a

reduced finitely generated finitely primary monoid of rank one and exponent n and H̃ = F . Furthermore,
if n ≥ 2, then H is not transfer Krull.

Proof. Let K be the quotient group of F . It is obvious that K is the quotient group of H, H 6= K and

H is finitely generated. Clearly, H ⊆ F = [{p, α}], and hence H̃ ⊆ Ĥ ⊆ F̂ = F . Since xn ∈ H for each

x ∈ F , we infer that H̃ = Ĥ = F . Observe that H× = H̃× ∩H = F× ∩H = {1}, and thus H is reduced.
Let a, b ∈ H \H×. Then a, b ∈ F \ F×, and since F is primary, there are some k ∈ N and some c ∈ F
such that bk = ca. We infer that bkn = cnan, and since cn ∈ H, it follows that a |H bkn. Therefore, H is
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primary. Note that X(Ĥ) = {pĤ} and pnĤ ⊆ (H : Ĥ). Together with the fact that Ĥ is a DVM, this
implies that H is a finitely primary monoid of rank one and exponent n. Now let n ≥ 2 and assume that

H is transfer Krull. It follows from Corollary 3.3 that H ⊆ H̃ is inert. Since pαpn−1 ∈ H, there is some
k ∈ [0, n− 1] such that αkp, α1−kpn−1 ∈ H. Since αkp ∈ H, we have that k = 0, and hence αpn−1 ∈ H,
a contradiction. �

Next we show that even if H is a factorial monoid with finitely many prime elements, then H need
not satisfy property (U).

Example 6.2. Let H = N2
0 and T = {(x, y) ∈ Z2 | x + y ≥ 0}. Then H is factorial with precisely two

prime elements, T is a DVM and an overmonoid of H, H ↪→ T is a transfer homomorphism and H does
not satisfy property (U).

Proof. Obviously, H is a factorial monoid and {(0, 1), (1, 0)} is the set of prime elements of H. It is
also easy to see that T is an overmonoid of H. Since H is not a valuation monoid, it follows from
Proposition 3.5 that H does not satisfy property (U). Note that T× = {(k,−k) | k ∈ Z} and T =
{(n, 0) + (k,−k) | n ∈ N0, k ∈ Z}. This implies that T is a DVM (since T is atomic and has precisely one
atom up to associates) and T× ∩H = H×. By Lemma 2.3(2), it remains to show that H ⊆ T is inert.
Let a, b ∈ T be such that a + b ∈ H. There are some x, y, z, w ∈ Z such that a = (x, y), b = (z, w) and
x + y, z + w ≥ 0. Since a + b ∈ H, it follows that x + z, y + w ≥ 0. Set k = min{y, z} and ε = (k,−k).
Then ε ∈ T× and a+ ε, b− ε ∈ H. �

Let H be a monoid. Then H is called weakly Krull if H =
⋂

p∈X(H)Hp and {p ∈ X(H) | a ∈ p} is finite

for each a in H. Note that H is a Krull monoid if and only if it is weakly Krull and Hp is a DVM for
each p ∈ X(H). A Mori monoid H which is not a group is weakly Krull if and only if t-max(H) = X(H)
by [26, Theorem 24.5]. Moreover, H is weakly factorial if and only if H is weakly Krull and every t-
invertible t-ideal of H is principal. Weakly Krull monoids were studied by Halter-Koch ([26, Chapter
22 and Chapter 24.5]). Clearly, every primary monoid is a weakly Krull monoid. Observe that even a
finitely generated monoid whose root closure is factorial need not be weakly Krull ([13, Example 2]). For
more information on weakly Krull monoids (and weakly Krull domains) we refer to [4, 25, 26].

Proposition 6.3. Let F be the free abelian monoid with basis {a, b} and quotient group K and let H be
the submonoid of F generated by {a, ab, a2b5}.

(1) H is a reduced affine monoid with quotient group K = {arbs | r, s ∈ Z}, H̃ ⊆ F and A(H) =
{a, ab, a2b5}.

(2) H̃ = {arbs | r, s ∈ N0, 5r ≥ 2s} = [{a, ab, ab2, a2b5}] and A(H) ⊆ A(H̃).
(3) X(H) = {aH ∪ abH, abH ∪ a2b5H} and H is weakly Krull.
(4) There is an overmonoid B of H such that B is Krull, B× ∩H = H× and B = HB×.

(5) There is no overmonoid T of H̃ such that A(H) ⊆ A(T ) and T = HT×. In particular, H is not
transfer Krull.

Proof. (1) This is clear.

(2) First let x ∈ H̃. Then x = arbs for some r, s ∈ N0 and xk ∈ N for some k ∈ N. There are some
α, β, γ ∈ N0 such that kr = α + β + 2γ and ks = β + 5γ. Then (5r − 2s)k = 5α + 3β ≥ 0, and hence
5r ≥ 2s.

Let r, s ∈ N0 be such that 5r ≥ 2s. Then s = 5q + m for some q ∈ N0 and m ∈ [0, 4]. Moreover,
there are some p ∈ [0, 2] and n ∈ {0, 1} with m = 2p + n. We obtain that r ≥ 2q + p + n and
arbs = ar−2q−p−n(ab)n(ab2)p(a2b5)q ∈ [{a, ab, ab2, a2b5}].

Finally, we have that (ab2)3 = ab(a2b5) ∈ H, and thus [{a, ab, ab2, a2b5}] ⊆ H̃. It is now straightfor-

ward to show that A(H) ⊆ {a, ab, ab2, a2b5} = A(H̃).
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(3) Set P = aH ∪ abH and Q = abH ∪ a2b5H. Note that if N is a prime s-ideal of H, then
N =

⋃
u∈A(H)∩N uH. Since (ab)5 = (a2b5)a3, we obtain that aH, abH, a2b5H and aH ∪ a2b5H are not

prime s-ideals of H. Next we show that P and Q are prime. (Then we conclude by the aforementioned
facts that X(H) = {P,Q}.)

Let x, y ∈ H \P . Then xy = (a2b5)k for some k ∈ N0. Let r, s, t ∈ N0 be such that xy = ar(ab)s(a2b5)t.
Consequently, 2k = r + s+ 2t and 5k = s+ 5t, and thus 5r + 5s+ 10t = 10k = 2s+ 10t. We infer that
5r + 3s = 0 and r = s = 0. Therefore, xy ∈ H \ P .

Let x, y ∈ H \ Q. Then xy = ak for some k ∈ N0. Let r, s, t ∈ N0 be such that xy = ar(ab)s(a2b5)t.
Then k = r + s+ 2t and 0 = s+ 5t. This implies that s = t = 0. Consequently, xy ∈ H \Q.

Finally, we show that H is weakly Krull. Since H has finitely many prime s-ideals, it remains to show
that

⋂
N∈X(H)HN = H. Note that HP = {ar(ab)s(a2b5)t | r, s ∈ N0, t ∈ Z} and HQ = {ar(ab)s(a2b5)t |

r ∈ Z, s, t ∈ N0}. Let x ∈ HP ∩HQ. Then x = ar(ab)s(a2b5)t = ar
′
(ab)s

′
(a2b5)t

′
for some r, s, s′, t′ ∈ N0

and r′, t ∈ Z. It follows that r+ s+ 2t = r′+ s′+ 2t′ and s+ 5t = s′+ 5t′, and hence r′+ 3t = r+ 3t′ ≥ 0.
Consequently, r′ ≥ 0 or t ≥ 0, and thus x ∈ H.

(4) Set B = {arbs | r ∈ N0, s ∈ Z}. Clearly, B is an overmonoid of H, B is a DVM and B× = {bs |
s ∈ Z}. Therefore, B× ∩H = H× and B = HB×.

(5) Assume that there is an overmonoid T of H̃ such that A(H) ⊆ A(T ) and T = HT×. We infer by

Proposition 2.7 that T× ∩H = H×. Note that ab2 ∈ T \ T× (since T× ∩ H̃ = {1}) and b 6∈ T× (for if
b ∈ T×, then a2 'T a2b5 ∈ A(T ), a contradiction). Since ab2 ∈ HT×, there are some r, s, t ∈ N0 such
that a1−rb2(ab)−s(a2b5)−t ∈ T×.

First we assume that r > 0. Then b2 ∈ T , and hence a2b5 = a(ab)(b2)2 6∈ A(T ), a contradiction.
Therefore, r = 0.

Next we assume that t > 0. Then a−1b−3(ab)−s(a2b5)1−t ∈ T×, and thus a−1b−3 ∈ T . This implies
that b−1 = ab2a−1b−3 ∈ T . Since ab2b−1 = ab ∈ A(T ), we have that b−1 ∈ T×, and hence b ∈ T×, a
contradiction. We infer that t = 0.

Since b, ab2 6∈ T×, it follows that s > 1. Consequently, (ab)s(ab2)−1 ∈ T× ∩ H = {1}, and thus
ab2 ∈ H, a contradiction. �

Note that by Proposition 6.3, we have that conditions b and c in Theorem 4.2 are no longer equivalent
if H is a reduced affine weakly Krull monoid.

Proposition 6.4. Let F be the free abelian monoid with basis {a, b} and quotient group K and let H be
the submonoid of F generated by {a, ab3, ab5}.

(1) H is a reduced affine monoid with quotient group K = {arbs | r, s ∈ Z}, H̃ ⊆ F and A(H) =
{a, ab3, ab5}.

(2) H̃ = {arbs | r, s ∈ N0, 5r ≥ s} = [{a, ab, ab2, ab3, ab4, ab5}] and A(H) ⊆ A(H̃).

(3) X(H) = {aH ∪ ab3H, ab3H ∪ ab5H}, H is half-factorial and weakly Krull and H̃ is half-factorial.

(4) A(H̃) 6= {uε | u ∈ A(H), ε ∈ H̃×}.
(5) There is some P ∈ X(H) such that HP is not transfer Krull.

Proof. (1) This is straightforward to prove.

(2) Let x ∈ H̃. There are some r, s ∈ N0 and some k ∈ N such that x = arbs and xk ∈ H.
Consequently, there are some α, β, γ ∈ N0 such that kr = α + β + γ and ks = 3β + 5γ. We infer that
(5r − s)k = 5α+ 2β ≥ 0. This implies that 5r ≥ s.

Now let r, s ∈ N0 be such that 5r ≥ s. There are some q ∈ N0 and m ∈ [0, 4] such that s = 5q + m.
Set n = dm5 e. It follows that r ≥ q + n and arbs = ar−q−n(abm)n(ab5)q ∈ [{a, ab, ab2, ab3, ab4, ab5}]. If

g ∈ [0, 5], then (abg)5 ∈ H and thus [{a, ab, ab2, ab3, ab4, ab5}] ⊆ H̃.

It is now easy to see that A(H) ⊆ {a, ab, ab2, ab3, ab4, ab5} = A(H̃).
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(3) It is obvious that H and H̃ are half-factorial (e.g. see [16, Lemma 2]). Set P = aH ∪ ab3H and
Q = ab3H∪ab5H. Since a2(ab5)3 = (ab3)5, we have that aH, abH, ab5H and aH∪ab5H are not prime s-
ideals of H. Moreover, it is easy to show that P and Q are prime s-ideals of H. Therefore, X(H) = {P,Q}.
Observe that HP = {ar(ab3)s(ab5)t | r, s ∈ N0, t ∈ Z} and HQ = {ar(ab3)s(ab5)t | r ∈ Z, s, t ∈ N0}. It

remains to show that
⋂
N∈X(H)HN = H. Let x ∈ HP ∩HQ. Then x = ar(ab3)s(ab5)t = ar

′
(ab3)s

′
(ab5)t

′

for some r, s, s′, t′ ∈ N and r′, t ∈ Z. This implies that r + s + t = r′ + s′ + t′ and 3s + 5t = 3s′ + 5t′.
Therefore, 3r − 2t = 3r′ − 2t′, and hence 3r′ + 2t = 3r + 2t′ ≥ 0. We infer that r′ ≥ 0 or t ≥ 0, and thus
x ∈ H.

(4) This is clear, since H̃× = {1} and ab ∈ A(H̃) \ A(H).

(5) Set P = aH ∪ab3H. Then P ∈ X(H) by (3) and HP = {ar(ab3)s(ab5)t | r, s ∈ N0, t ∈ Z}. Observe
that H×P = {(ab5)k | k ∈ Z} and A(HP ) = {a(ab5)k, ab3(ab5)k | k ∈ Z}. Since a2(ab5)3 = (ab3)5, we
have that 2, 5 ∈ LHP

(a5b15), and hence HP is not half-factorial. Therefore, HP is not transfer Krull by

Corollary 3.3 (since H̃P is a DVM, see the proof of Theorem 4.4). �

We obtain by Proposition 6.4 that a half-factorial monoid whose root closure is half-factorial and Krull
need not satisfy the equivalent conditions in Theorem 4.2(2). It is also pointed out by this result that if
H is a half-factorial weakly Krull monoid whose root closure is Krull, then the localization HP (where
P ∈ X(H)) need not be transfer Krull (in contrast to Corollary 4.5).

Proposition 6.5. Let F be the free abelian monoid with basis {a, b, c, d} and quotient group K and let
H be the submonoid of F generated by {ab, ac, ad, abc, bcd}.

(1) H is a reduced affine monoid with quotient group K = {arbsctdu | r, s, t, u ∈ Z}, H̃ ⊆ F and
A(H) = {ab, ac, ad, abc, bcd}.

(2) H̃ = {arbsctdu | r, s, t, u ∈ N0, r ≤ s + t + u, s ≤ r + min{t, u}, t ≤ r + min{s, u}, u ≤ r +
min{s, t}, s+ u ≤ r + 2t, t+ u ≤ r + 2s} = [{ab, ac, ad, abc, bcd, abcd}].

(3) X(H) = {abH ∪ adH, acH ∪ adH, adH ∪ bcdH, abH ∪ abcH, acH ∪ abcH, abcH ∪ bcdH} and H is
weakly Krull.

(4) There is an overmonoid T of H such that T is Krull and A(T ) = {uε | u ∈ A(H), ε ∈ T×}.
(5) H is not transfer Krull.

Proof. Claim: If (ab)α(ac)β(ad)γ(abc)δ(bcd)ε = (ab)α
′
(ac)β

′
(ad)γ

′
(abc)δ

′
(bcd)ε

′
for α, β, γ, δ, ε ∈ Z and

α′, β′, γ′, δ′, ε′ ∈ Z, then there is some k ∈ Z such that (α, β, γ, δ, ε) = (α′, β′, γ′, δ′, ε′)+k(−2,−2, 1, 3,−1).

(1) and the claim are straightforward to prove.

(2) Set A = {arbsctdu | r, s, t, u ∈ N0, r ≤ s + t + u, s ≤ r + min{t, u}, t ≤ r + min{s, u}, u ≤
r + min{s, t}, s+ u ≤ r + 2t, t+ u ≤ r + 2s} and set B = [{ab, ac, ad, abc, bcd, abcd}].

First we prove that H̃ ⊆ A. Let x ∈ H̃. Clearly, there are some r, s, t, u ∈ N0 and k ∈ N such that
x = arbsctdu and xk ∈ H. Consequently, there are some α, β, γ, δ, ε ∈ N0 such that kr = α + β + γ + δ,
ks = α+ δ + ε, kt = β + δ + ε and ku = γ + ε. Note that (s+ t+ u− r)k = δ + 3ε ≥ 0, (r + u− s)k =
β + 2γ ≥ 0, (r + t − s)k = 2β + γ + δ ≥ 0, (r + s − t)k = 2α + γ + δ ≥ 0, (r + u − t)k = α + 2γ ≥ 0,
(r + s − u)k = 2α + β + 2δ ≥ 0, (r + t − u)k = α + 2β + 2δ ≥ 0, (r + 2t − s − u)k = 3β + 2δ ≥ 0 and
(r + 2s− t− u)k = 3α+ 2δ ≥ 0. This implies that x ∈ A.

Next we prove that A ⊆ B. It suffices to show by induction that for all r, s, t, u ∈ N0 with arbsctdu ∈ A,
it follows that arbsctdu ∈ B. Let r, s, t, u ∈ N0 be such that arbsctdu ∈ A.

Case 1: r = 0. Observe that s = t = u, and hence arbsctdu = (bcd)s ∈ B.
Case 2: s = 0. We have that r = t+ u, and thus arbsctdu = (ac)t(ad)u ∈ B.
Case 3: t = 0. It follows that r = s+ u. Consequently, arbsctdu = (ab)s(ad)u ∈ B.
Case 4: u = 0. Note that s, t ≤ r and r ≤ s+t. We infer that arbsctdu = (ab)r−t(ac)r−s(abc)s+t−r ∈ B.
Case 5: r = s+ t+ u. Then arbsctdu = (ab)s(ac)t(ad)u ∈ B.
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Case 6: r+1 = s+t+u. It follows that s, t > 0. Consequently, arbsctdu = (ab)s−1(ac)t−1(ad)uabc ∈ B.
Case 7: s = r + t. Clearly, t = u. Therefore, arbsctdu = (ab)r(bcd)t ∈ B.
Case 8: s = r + u. Observe that u ≤ s ≤ t. This implies that arbsctdu = (ab)s−t(abc)t−u(bcd)u ∈ B.
Case 9: t = r + s. Obviously, s = u, and hence arbsctdu = (ac)r(bcd)s ∈ B.
Case 10: t = r + u. We have that u ≤ s ≤ t. It follows that arbsctdu = (ac)t−s(abc)s−u(bcd)u ∈ B.
Case 11: u = r + min{s, t}. We infer that s = t, and thus arbsctdu = (ad)r(bcd)s ∈ B.
Case 12: r + 2t = s+ u. Observe that t ≤ s, u. Therefore, arbsctdu = (ab)s−t(ad)u−t(bcd)t ∈ B.
Case 13: r + 2s = t+ u. Clearly, s ≤ t, u. This implies that arbsctdu = (ac)t−s(ad)u−s(bcd)s ∈ B.
Now assume that none of the above cases applies. Set r′ = r− 1, s′ = s− 1, t′ = t− 1 and u′ = u− 1.

It is straightforward to show that ar
′
bs

′
ct

′
du

′ ∈ A. Since r′ < r, we infer by the induction hypothesis
that ar

′
bs

′
ct

′
du

′ ∈ B. Consequently, arbsctdu = abcdar
′
bs

′
ct

′
du

′ ∈ B.

Finally, we show that B ⊆ H̃. Since (abcd)2 = (ad)(abc)(bcd) ∈ H and H ⊆ H̃, it is clear that B ⊆ H̃.

(3) It is an easy consequence of the claim that X(H) = {abH ∪ adH, acH ∪ adH, adH ∪ bcdH, abH ∪
abcH, acH∪abcH, abcH∪bcdH}. It remains to show that

⋂
P∈X(H)HP = H. Let x ∈

⋂
P∈X(H)HP . There

are some (αi)
6
i=1, (βi)

6
i=1, (γi)

6
i=1, (δi)

6
i=1, (εi)

6
i=1 ∈ Z6 such that x = (ab)αj (ac)βj (ad)γj (abc)δj (bcd)εj for

each j ∈ [1, 6] and α1, γ1, β2, γ2, γ3, ε3, α4, δ4, β5, δ5, δ6, ε6 ∈ N0.
We infer by the claim that x ∈ H if and only if there is some k ∈ Z such that α1−2k, β1−2k, γ1+k, δ1+

3k, ε1 − k ≥ 0 if and only if there is some k ∈ Z such that min{bα1

2 c, b
β1

2 c, ε1} ≥ k ≥ max{−γ1,− δ13 }
if and only if min{bα1

2 c, b
β1

2 c, ε1} ≥ max{−γ1,− δ13 }. Therefore, it remains to prove the six inequalities

bα1

2 c+ γ1 ≥ 0, bβ1

2 c+ γ1 ≥ 0, ε1 + γ1 ≥ 0, bα1

2 c+ δ1
3 ≥ 0, bβ1

2 c+ δ1
3 ≥ 0 and ε1 + δ1

3 ≥ 0.

By the claim, there is some sequence (ki)
5
i=1 ∈ Z5 such that (α1, β1, γ1, δ1, ε1) = (αj , βj , γj , δj , εj) +

kj−1(−2,−2, 1, 3,−1) for each j ∈ [2, 6].

Since α1, γ1 ≥ 0, we have that bα1

2 c + γ1 ≥ 0. By using β2, γ2 ≥ 0, we infer that bβ1

2 c + γ1 =

bβ2−2k1
2 c+γ2+k1 = bβ2

2 c+γ2 ≥ 0. Since γ3, ε3 ≥ 0, it follows that ε1+γ1 = ε3−k2+γ3+k2 = ε3+γ3 ≥ 0.

By using α4, δ4 ≥ 0, we have that bα1

2 c+ δ1
3 = bα4−2k3

2 c+ δ4+3k3
3 = bα4

2 c+ δ4
3 ≥ 0. Since β5, δ5 ≥ 0, we

infer that bβ1

2 c + δ1
3 = bβ5−2k4

2 c + δ5+3k4
3 = bβ5

2 c + δ5
3 ≥ 0. Finally, by using δ6, ε6 ≥ 0, it follows that

ε1 + δ1
3 = ε6 − k5 + δ6+3k5

3 = ε6 + δ6
3 ≥ 0.

(4) Set T = [{a, ac, ad, cd, b, b−1}]. Clearly, T is a finitely generated overmonoid of H and T× = {bk |
k ∈ Z}. Observe that T = {arbsctdu | r, t, u ∈ N0, s ∈ Z, t ≤ r + u, u ≤ r + t}. We infer that T is root
closed (and hence it is Krull by [19, Theorem 2.7.14]) and A(T ) = {abk, abkc, abkd, bkcd | k ∈ Z}. It is
now straightforward to prove that A(T ) = {uε | u ∈ A(H), ε ∈ T×}.

(5) Assume that H is transfer Krull. By Proposition 2.1 and Lemma 2.3(2) there is an overmonoid
B of H such that B is Krull, B× ∩H = H× and H ⊆ B is inert. (In particular, A(H) ⊆ A(B).) Note

that (abcd)2 = (ad)(abc)(bcd) ∈ H and abcd ∈ H̃ ⊆ B. Consequently, there is some ε ∈ B× such that
abcdε, abcdε−1 ∈ H.

It follows by the claim that {x ∈ H | x |H (abcd)2} = {1, ad, abc, bcd, a2bcd, abcd2, ab2c2d, a2b2c2d2}.
We infer that ε ∈ {a−1b−1c−1d−1, b−1c−1, d−1, a−1, a, d, bc, abcd}. Since B×∩H̃ = H̃× = {1}, this implies
that {a, d, bc} ∩B× 6= ∅. If bc ∈ B×, then a, d ∈ B, and hence a ∈ B× or d ∈ B× (since ad ∈ A(B)).

Case 1: a ∈ B×. Since ab, ac ∈ B \ B×, we have that b, c ∈ B \ B×. Moreover, bc 'B abc ∈ A(B),
and thus bc ∈ A(B), a contradiction.

Case 2: d ∈ B×. Since ad, bcd ∈ B \ B×, it follows that a, bc ∈ B \ B×. Furthermore, abc ∈ A(B), a
contradiction. �

Note that Proposition 6.5 shows that conditions a and b in Theorem 4.2(1) are no longer equivalent
for reduced affine monoids.
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Example 6.6. Let F be the free abelian monoid with basis {a, b} and quotient group K, let H be the sub-
monoid of F generated by {a2, b2, ab, a2b, ab2}, let T1 be the submonoid of K generated by {a, ab, b2, b−2}
and let T2 be the submonoid of K generated by {b, ab, a2, a−2}.

(1) H is a reduced affine monoid with quotient group K = {arbs | r, s ∈ Z}, H̃ = F and A(H) =
{a2, b2, ab, a2b, ab2}.

(2) A(H) * A(H̃) and, in particular, H is not transfer Krull.
(3) T1 and T2 are seminormal half-factorial overmonoids of H and H = T1 ∩ T2.
(4) X(H) = {a2H ∪ abH ∪ a2bH ∪ ab2H, b2H ∪ abH ∪ a2bH ∪ ab2H} and H is seminormal and weakly

Krull.

Proof. (1) This is obvious.

(2) Note that A(H) = {a2, b2, ab, a2b, ab2} * {a, b} = A(H̃). The remaining statement follows from
Lemma 4.1(3).

(3) Clearly, T1 and T2 are overmonoids of H, T̃1 = [{a, b, b−1}] is a DVM and T̃2 = [{a, b, a−1}] is a

DVM. Moreover, T×1 = {b2r | r ∈ Z}, T×2 = {a2r | r ∈ Z}, T1 \ T×1 = T̃1 \ T̃1
×

= {arbs | r ∈ N, s ∈ Z}
and T2 \ T×2 = T̃2 \ T̃2

×
= {arbs | r ∈ Z, s ∈ N}. Therefore, T1 and T2 are seminormal. Furthermore,

A(T1) = {abs | s ∈ Z} = A(T̃1) and A(T2) = {arb | r ∈ Z} = A(T̃2). Consequently, T1 and T2 are
half-factorial.

Finally, note that H = {1} ∪ {a2r | r ∈ N} ∪ {b2s | s ∈ N} ∪ {arbs | r, s ∈ N} = ({b2s | s ∈ Z} ∪ {arbs |
r ∈ N, s ∈ Z}) ∩ ({a2s | s ∈ Z} ∪ {arbs | r ∈ Z, s ∈ N}) = T1 ∩ T2.

(4) Set P = a2H ∪ abH ∪ a2bH ∪ ab2H and Q = b2H ∪ abH ∪ a2bH ∪ ab2H. Since (ab)2 = a2b2,
(ab)3 = (a2b)(ab2), (a2b)2 = a2(ab)2 and (ab2)2 = b2(ab)2, we infer that each non-empty prime s-ideal of
H contains P or Q. It is straightforward to prove that P and Q are non-empty prime s-ideals of H. Now
it is easy to see that X(H) = {P,Q}. Observe that HP = T1 and HQ = T2. Therefore, H = HP ∩HQ is
seminormal and weakly Krull by (3). �

By Theorem 4.4, we know that every seminormal weakly factorial monoid whose root closure is a Krull
monoid has to be half-factorial. On the contrary, Example 6.6 shows that a seminormal (reduced affine)
weakly Krull monoid whose root closure is factorial need not even be a transfer Krull monoid.

Example 6.7. Let F be the free abelian monoid with basis {a, b, c} and quotient group K and let H be
the submonoid of K generated by {a, ac, ab, abc, ab2, ab2c, a2b5, a2b5c, c2, c−2}.

(1) H is an affine monoid with quotient group K and A(H) = {act, abct, ab2c, a2b5ct | t ∈ Z}.
(2) H ⊆ H̃ is inert and, in particular, H is transfer Krull.
(3) H is seminormal.
(4) H is neither Krull nor half-factorial.

Proof. (1) This is clear.

(2) We have that H̃ = [{a, ab, ab2, a2b5, c, c−1}] and H \ H× = H̃ \ H̃×. Let x, y ∈ H̃ be such that

xy ∈ H. We have to show that xε, yε−1 ∈ H for some ε ∈ H̃×. The statement clearly holds if x, y ∈ H.

Now let x 6∈ H or y 6∈ H. Without restriction let x 6∈ H. Then x ∈ H̃×. Set ε = x−1. Then ε ∈ H̃×,
xε = 1 ∈ H and yε−1 = xy ∈ H.

(3) This is clear, since H \H× = H̃ \ H̃×.

(4) Since c ∈ H̃ \ H, we have that H is not Krull. Since (ab)5 = (a2b5)a3, we obtain that H is not
half-factorial. �
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