COMMUTATIVE RINGS WITH ONE-ABSORBING FACTORIZATION

ABDELHAQ EL KHALFI, MOHAMMED ISSOUAL, NAJIB MAHDOU, AND ANDREAS REINHART

Abstract

Let R be a commutative ring with nonzero identity. A. Yassine et al. defined in the paper (Yassine, Nikmehr and Nikandish, 2020), the concept of 1-absorbing prime ideals as follows: a proper ideal I of R is said to be a 1-absorbing prime ideal if whenever $x y z \in I$ for some nonunit elements $x, y, z \in R$, then either $x y \in I$ or $z \in I$. We use the concept of 1-absorbing prime ideals to study those commutative rings in which every proper ideal is a product of 1-absorbing prime ideals (we call them $O A F$-rings). Any $O A F$-ring has dimension at most one and local $O A F$-domains (D, M) are atomic such that M^{2} is universal.

1. Introduction

Throughout this paper, all rings are commutative with nonzero identity and all modules are unital. Let \mathbb{N} denote the set of positive integers. For $m \in \mathbb{N}$, let $[1, m]=\{n \in \mathbb{N} \mid 1 \leq n \leq m\}$. Let R be a ring. An ideal I of R is said to be proper if $I \neq R$. The radical of I is denoted by $\sqrt{I}=\{x \in$ $R \mid x^{n} \in I$ for some $\left.n \in \mathbb{N}\right\}$. We denote by $\operatorname{Min}(I)$ the set of minimal prime ideals over the ideal I. The concept of prime ideals plays an important role in ideal theory and there are many ways to generalize it.

In [9] Badawi introduced and studied the concept of 2-absorbing ideals which is a generalization of prime ideals. An ideal I of R is a 2 -absorbing ideal if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. In this case $\sqrt{I}=P$ is a prime ideal with $P^{2} \subseteq I$ or $\sqrt{I}=P_{1} \cap P_{2}$ where P_{1}, P_{2} are incomparable prime ideals with $P_{1} P_{2} \subseteq I$, cf. [9, Theorem 2.4]. In [8] Anderson and Badawi introduced the concept of n-absorbing ideals as a generalization of prime ideals where n is a positive integer. An ideal I of R is called an n-absorbing ideal of R, if whenever $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $\prod_{i=1}^{n+1} a_{i} \in I$, then there are n of the a_{i} 's whose product is in I. In this case, due to Choi and Walker [13, Theorem 1], $(\sqrt{I})^{n} \subseteq I$.

In [23] M. Mukhtar et al. studied the commutative rings whose ideals have a $T A$-factorization. A proper ideal is called a $T A$-ideal if it is a 2 -absorbing ideal. By a $T A$-factorization of a proper ideal I we mean an expression of I as a product $\prod_{i=1}^{r} J_{i}$ of $T A$-ideals. M. Mukhtar et al. prove that any $T A F$ ring has dimension at most one and the local $T A F$-domains are atomic pseudo-valuations domains. Recently in [1], M. T. Ahmed et al. studied commutative rings whose proper ideals have an n-absorbing factorization.

[^0]Let I be a proper ideal of R. By an n-absorbing factorization of I we mean an expression of I as a product $\prod_{i=1}^{r} I_{i}$ of proper n-absorbing ideals of R. M. T. Ahmed et al. called $A F-\operatorname{dim}(R)$ (absorbing factorization dimension) the minimum positive integer n such that every ideal of R has an n-absorbing factorization. If no such n exists, set $A F-\operatorname{dim}(R)=\infty$. An $F A F-$ ring (finite absorbing factorization ring) is a ring such that $A F-\operatorname{dim}(R)<\infty$. Recall that a general ZPI-ring is a ring whose proper ideals can be written as a product of prime ideals. Therefore, $A F-\operatorname{dim}(R)$ measures, in some sense, how far R is from being a general $Z P I$-ring, cf. [1, Proposition 3]. By $\operatorname{dim}(R)$ we denote the Krull dimension of R.

In [25], A. Yassine et al. introduced the concept of a 1 -absorbing prime ideal which is a generalization of a prime ideal. A proper ideal I of R is a 1-absorbing prime ideal (our abbreviation $O A$-ideal) if whenever we take nonunit elements $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $c \in I$. In this case $\sqrt{I}=P$ is a prime ideal, cf. [25, Theorem 2.3]. And if R is a ring in which exists an $O A$-ideal that is not prime, then R is a local ring, that is a ring with one maximal ideal.

Let I be a proper ideal of R. By an $O A$-factorization of I we mean an expression of I as a product $\prod_{i=1}^{n} J_{i}$ of $O A$-ideals. The aim of this note is to study the commutative rings whose proper ideals (resp., proper principal ideals, resp., proper 2-generated ideals) have an $O A$-factorization.

We call R a 1-absorbing prime factorization ring ($O A F$-ring) if every proper ideal has an $O A$-factorization. An $O A F$-domain is a domain which is an $O A F$-ring. Our paper consists of five sections (including the introduction).

In the next section, we characterize $O A$-ideals (Lemma 2.1) and we prove that if I is an $O A$-ideal, then I is a primary ideal. We also show that the $O A F$-ring property is stable under factor ring (resp., fraction ring) formation (Propositions 2.2 and 2.3). Furthermore, we investigate $O A F$-rings with respect to direct products (Corollary 2.5) and polynomial ring extensions (Corollary 2.6). We prove that the general ZPI-rings are exactly the arithmetical $O A F$-rings (Theorem 2.8).

The third section consists of a collection of preparational results which will be of major importance in the fourth section. For instance, we show that the Krull dimension of an $O A F$-ring is at most one (Theorem 3.5).

The fourth section contains the main results of our paper. Among other results, we provide characterizations of $O A F$-rings (Theorem 4.2), rings whose proper principal ideals have an $O A$-factorization (Corollary 4.3) and rings whose proper (principal) ideals are $O A$-ideals (Proposition 4.5).

In the last section, we study the transfer of the various $O A$-factorization properties to the trivial ring extension.

2. Characterization of $O A$-ideals and simple facts

We start with a characterization of $O A$-ideals. Recall that a ring R is a Q-ring (cf. [3]) if every proper ideal of R is a product of primary ideals.

Lemma 2.1. Let R be a ring with Jacobson radical M and I be an ideal of R.
(1) If R is not local, then I is an $O A$-ideal if and only if I is a prime ideal.
(2) If R is local, then I is an $O A$-ideal if and only if I is a prime ideal or $M^{2} \subseteq I \subseteq M$.
(3) Every $O A$-ideal is a primary $T A$-ideal. In particular, every $O A F$ ring is both a Q-ring and a TAF-ring.

Proof. (1) This follows from [25, Theorem 2.4].
(2) Let R be local. Then M is the maximal ideal of R.
(\Rightarrow) Let I be an $O A$-ideal such that I is not a prime ideal. Since I is proper, we infer that $I \subseteq M$. Since I is not prime, there are $a, b \in M \backslash I$ such that $a b \in I$. To prove that $M^{2} \subseteq I$, it suffices to show that $x y \in I$ for all $x, y \in M$. Let $x, y \in M$. Then $x y a b \in I$. Since $x y, a, b \in M, b \notin I$ and I is an $O A$-ideal, it follows that $x y a \in I$. Again, since $x, y, a \in M, a \notin I$ and I is an $O A$-ideal, we have that $x y \in I$.
(\Leftarrow) Clearly, if I is a prime ideal, then I is an $O A$-ideal. Now let $M^{2} \subseteq$ $I \subseteq M$. Then I is proper. Let $a, b, c \in M$ be such that $a b c \in I$. Then $a b \in M^{2} \subseteq I$. Therefore, I is an $O A$-ideal.
(3) Let I be an $O A$-ideal. It is an immediate consequence of (1) and (2) that I is a primary ideal. Now let $a, b, c \in R$ be such that $a b c \in I$. We have to show that $a b \in I$ or $a c \in I$ or $b c \in I$.

First let a or b or c be a unit of R. Without restriction let a be unit of R. Since $a b c \in I$, we infer that $b c \in I$.

Now let a, b and c be nonunits. Then $a b \in I$ or $c \in I$. If $c \in I$, then $a c \in I$. The in particular statement is clear.

Proposition 2.2. Let R be an $O A F$-ring and I be a proper ideal of R. Then R / I is an $O A F$-ring.

Proof. Let J be a proper ideal of R which contains I. Let $J=\prod_{i=1}^{m} J_{i}$ be an $O A$-factorization. Then $J / I=\prod_{i=1}^{m}\left(J_{i} / I\right)$. It suffices to show that J_{i} / I is an $O A$-ideal for each $i \in[1, m]$. Let $i \in[1, m]$ and let $a, b, c \in R$ be such that $\bar{a}, \bar{b}, \bar{c}$ are three nonunit elements of R / I and $\bar{a} \bar{b} \bar{c} \in J_{i} / I$. Clearly, a, b, c are nonunit elements of R and $a b c \in J_{i}$. Since J_{i} is an $O A$-ideal of R, we get that $a b \in J_{i}$ or $c \in J_{i}$ which implies that $\bar{a} \bar{b} \in J_{i} / I$ or $\bar{c} \in J_{i} / I$. Therefore, R / I is an $O A F$-ring.
Proposition 2.3. Let S be a multiplicatively closed subset of $R \backslash \mathbf{0}$. If R is an $O A F$-ring, then $S^{-1} R$ is an $O A F$-ring. In particular, R_{M} is an $O A F$-ring for every maximal ideal M of R.

Proof. Let J be a proper ideal of $S^{-1} R$. Then $J=S^{-1} I$ for some proper ideal I of R with $I \cap S=\varnothing$. Let $I=\prod_{i=1}^{m} I_{i}$ be an $O A$-factorization. Then $J=\prod_{i=1}^{m}\left(S^{-1} I_{i}\right)$ where each $S^{-1} I_{i}$ which is proper is an $O A$-ideal by [25, Theorem 2.18]. Thus $S^{-1} R$ is an $O A F$-ring. The in particular statement is clear.

Let R be a ring. Then R is said to be a π-ring if every proper principal ideal of R is a product of prime ideals. We say that R is a unique factorization ring (in the sense of Fletcher, cf. [4]) if every proper principal ideal of R is a product of principal prime ideals. A unique factorization domain is an integral domain which is a unique factorization ring.

Remark 2.4. Let R be a non local ring.
(1) R is a general $Z P I$-ring if and only if R is an $O A F$-ring.
(2) R is a π-ring if and only if each proper principal ideal of R has an $O A$-factorization.
(3) R is a unique factorization ring if and only if each proper principal ideal of R is a product of principal $O A$-ideals.

Proof. This is an immediate consequence of Lemma 2.1(1).
In the light of the above remark we give the next result.
Corollary 2.5. Let R_{1} and R_{2} be two rings and $R=R_{1} \times R_{2}$ be their direct product. The following statements are equivalent.
(1) R is an OAF-ring.
(2) R is a general ZPI-ring.
(3) R_{1} and R_{2} are general ZPI-rings.

Proof. This follows from Remark 2.4(1) and [21, Exercise 6(g), page 223].

Let R be a ring. Then R is called a von Neumann regular ring if for each $x \in R$ there is some $y \in R$ with $x=x^{2} y$. The ring R is von Neumann regular if and only if R is a zero-dimensional reduced ring (see [19, Theorem 3.1, page 10]).

Corollary 2.6. Let R be a ring. The following statements are equivalent.
(1) $R[X]$ is an OAF-ring.
(2) R is a Noetherian von Neumann regular ring.
(3) R is a finite direct product of fields.

Proof. Observe that the polynomial ring $R[X]$ is never local, since X and $1-$ X are nonunit elements of $R[X]$, but their sum is a unit. Consequently, $R[X]$ is an $O A F$-ring if and only if $R[X]$ is a general $Z P I$-ring by Remark 2.4(1). The rest is now an easy consequence of [2, Theorem 6 and Corollary 6.1], [21, Exercise 10, page 225] and Hilbert's basis theorem.

Let R be a ring and I be an ideal of R. Then I is called divided if I is comparable to every ideal of R (or equivalently, I is comparable to every principal ideal of R).

Lemma 2.7. Let R be a local ring with maximal ideal M such that M^{2} is divided. The following statements are equivalent.
(1) Each two principal $O A$-ideals which contain M^{2} are comparable.
(2) For each $O A$-ideal I of R, we have that I is a prime ideal or $I=M^{2}$.

Proof. (1) $\Rightarrow(2)$: Let I be an $O A$-ideal of R such that I is not a prime ideal of R. Then $M^{2} \subseteq I \subset M$ by Lemma 2.1(2). Assume that $M^{2} \subset I$. Let $x \in I \backslash M^{2}$ and let $y \in M \backslash I$. Then $x, y \notin M^{2}$, and thus $M^{2} \subseteq x R, y R$ (since M^{2} is divided). It follows that $x R$ and $y R$ are (principal) $O A$-ideals of R by Lemma 2.1(2). Since $y \notin x R$ and $x R$ and $y R$ are comparable, we infer that $x R \subset y R$. Consequently, there is some $z \in M$ such that $x=y z$, and hence $x \in M^{2}$, a contradiction. Therefore, $I=M^{2}$.
$(2) \Rightarrow(1)$: This is obvious.

Let R be a ring. An ideal I of R is called 2-generated if $I=x R+y R$ for some (not necessarily distinct) $x, y \in R$. Note that every principal ideal of R is 2 -generated. We say that R is a chained ring if each two ideals of R are comparable under inclusion. Moreover, R is said to be an arithmetical ring if R_{M} is a chained ring for each maximal ideal M of R.

Theorem 2.8. Let R be a ring. The following statements are equivalent.
(1) R is a general ZPI-ring
(2) R is an arithmetical OAF-ring.
(3) R is an arithmetical ring and each proper principal ideal of R has an $O A$-factorization.

Proof. First we show that if R is an arithmetical π-ring, then R is a general $Z P I$-ring. Let R be an arithmetical π-ring and let M be a maximal ideal of R. It is straightforward to show that R_{M} is a π-ring. Moreover, R_{M} is a chained ring, and hence every 2-generated ideal of R_{M} is principal. Therefore, every proper 2-generated ideal of R_{M} is a product of prime ideals of R_{M}. Consequently, R_{M} is a general $Z P I$-ring by [22, Theorem 3.2]. This implies that $\operatorname{dim}\left(R_{M}\right) \leq 1$ by [21, page 205]. We infer that $\operatorname{dim}(R) \leq 1$, and thus R is a general $Z P I$-ring by [16, Theorems 39.2, 46.7, and 46.11].
$(1) \Rightarrow(2) \Rightarrow(3)$: This is obvious.
$(3) \Rightarrow(1)$: It is sufficient to show that R is a π-ring. If R is not local, then R is a π-ring by Remark 2.4(2). Therefore, we can assume that R is local with maximal ideal M. Since R is local, we have that R is a chained ring. Therefore, M^{2} is divided and each two $O A$-ideals of R are comparable. We infer by Lemma 2.7 that each $O A$-ideal of R is a product of prime ideals. Now it clearly follows that R is a π-ring.

3. Preparational results

From Lemma 2.1(3), we have that $|\operatorname{Min}(I)|=1$ for every $O A$-ideal I of R. In view of this remark, we obtain the following result.

Proposition 3.1. Let R be a ring and I be a proper ideal of R. If I has an $O A$-factorization, then $\operatorname{Min}(I)$ is finite.

Proof. Let $I=\prod_{i=1}^{n} I_{i}$ be an $O A$-factorization. It follows that $\operatorname{Min}(I) \subseteq$ $\bigcup_{i=1}^{n} \operatorname{Min}\left(I_{i}\right)$, and thus $|\operatorname{Min}(I)| \leq n$.

Let R be a ring and I be an ideal of R. Then I is called a multiplication ideal of R if for each ideal J of R with $J \subseteq I$, there is some ideal L of R such that $J=I L$.

Lemma 3.2. Let R be a local ring such that each proper principal ideal of R has an $O A$-factorization. Then each nonmaximal minimal prime ideal of R is principal.

Proof. Let P be a nonmaximal minimal prime ideal of R. By [2, Theorem 1] it is sufficient to show that P is a multiplication ideal.

Let $x \in P$ and let $x R=\prod_{i=1}^{n} I_{i}$ be an $O A$-factorization. There is some $j \in[1, n]$ such that $I_{j} \subseteq P$. By Lemma 2.1(2) we have that $P=I_{j}$, and hence $x R=P J$ for some ideal J of R. We infer that $x R=P(x R: P)$.

Now let I be an ideal of R such that $I \subseteq P$. Then $I=\sum_{y \in I} y R=$ $\sum_{y \in I} P(y R: P)=P \sum_{y \in I}(y R: P)$, and thus P is a multiplication ideal.

The next result is a generalization of [16, Theorem 46.8] and its proof is based on the proof of the same result.

Proposition 3.3. Let R be a local ring with maximal ideal M such that $\operatorname{dim}(R) \geq 1$ and every proper principal ideal of R has an $O A$-factorization. Then R is an integral domain and if $\operatorname{dim}(R) \geq 2$, then R is a unique factorization domain.

Proof. Let N be the nilradical of R. It follows from Proposition 3.1 and Lemma 3.2 that $\operatorname{Min}(\mathbf{0})$ is finite and each $P \in \operatorname{Min}(\mathbf{0})$ is principal.

Claim: Every proper principal ideal of R / N has an $O A$-factorization. Let I be a proper principal ideal of R / N. Then $I=(x R+N) / N$ for some $x \in M$. Let $x R=\prod_{i=1}^{n} I_{i}$ be an $O A$-factorization. We infer that $I=(x R) / N=\left(\prod_{i=1}^{n} I_{i}\right) / N=\prod_{i=1}^{n}\left(I_{i} / N\right)$. It suffices to show that I_{i} / N is an $O A$-ideal of R / N for each $i \in[1, n]$. Let $i \in[1, n]$. If I_{i} is a prime ideal of R, then $N \subseteq I_{i}$, and hence I_{i} / N is a prime ideal of R / N. Now let I_{i} be not a prime ideal of R. By Lemma 2.1(2), we have that $M^{2} \subseteq I_{i} \subseteq M$. Note that R / N is local with maximal ideal M / N. Since $(M / N)^{2}=M^{2} / N \subseteq I_{i} / N \subseteq$ M / N, it follows by Lemma 2.1(2) that I_{i} / N is an $O A$-ideal of R / N. This proves the claim.

CASE 1: R is one-dimensional. We prove that R is an integral domain. If every $O A$-ideal of R is a prime ideal, then R is π-ring, and hence R is an integral domain by [16, Theorem 46.8]. Now let not every $O A$-ideal of R be a prime ideal. It follows from Lemma 2.1(2) that M is not idempotent. Set $L=M^{2} \cup \bigcup_{Q \in \operatorname{Min}(\mathbf{0})} Q$. Next we prove that $M^{2} \subseteq x R$ for each $x \in R \backslash L$. Let $x \in R \backslash L$. Without restriction let x be a nonunit. Note that $x R$ cannot be a product of more than one $O A$-ideal, and hence $x R$ is an $O A$-ideal. By Lemma 2.1(2) we have that $M^{2} \subseteq x R$.

Now we show that $P \subseteq M^{2}$ for each $P \in \operatorname{Min}(\mathbf{0})$. Let $P \in \operatorname{Min}(\mathbf{0})$. Assume that $P \nsubseteq M^{2}$. Let $w \in R \backslash P$. Then $P+w R \nsubseteq L$ by the prime avoidance lemma, and thus there is some $v \in(P+w R) \backslash L$. It follows that $M^{2} \subseteq v R \subseteq P+w R$. Since P is a nonmaximal prime ideal, we have that R / P has no simple R / P-submodules, and hence $\bigcap_{y \in R \backslash P}(P+y R)=P$. (Note that if $\bigcap_{y \in R \backslash P}(P+y R) \neq P$, then $\bigcap_{y \in R \backslash P}(P+y R) / P$ is a simple R / P-submodule of R / P.) This implies that $M^{2} \subseteq \bigcap_{y \in R \backslash P}(P+y R)=P$, and thus $P=M$, a contradiction.

Let $Q \in \operatorname{Min}(\mathbf{0})$. By the prime avoidance lemma, there is some $z \in M \backslash L$. We infer that $Q \subset M^{2} \subset z R$. Consequently, $Q=z Q$. Since Q is principal, it follows that $Q=\mathbf{0}$ (e.g. by Nakayama's lemma), and hence R is an integral domain.

Case 2: $\operatorname{dim}(R) \geq 2$ and R is reduced. We show that R is a unique factorization domain. There is some nonmaximal nonminimal prime ideal Q of R. By the prime avoidance lemma, there is some $x \in Q \backslash \bigcup_{P \in \operatorname{Min}(\mathbf{0})} P$. Since R is reduced, we have that $\bigcap_{L \in \operatorname{Min}(\mathbf{0})} L=\mathbf{0}$. If $y \in R$ is nonzero with $x y=0$, then $y \notin L$ and $x y \in L$ for some $L \in \operatorname{Min}(\mathbf{0})$, and hence $x \in L$, a
contradiction. We infer that x is a regular element of R. Let $x R=\prod_{i=1}^{n} I_{i}$ be an $O A$-factorization. Then $I_{j} \subseteq Q$ for some $j \in[1, n]$. Since x is regular, I_{j} is invertible, and hence I_{j} is a regular principal ideal (because invertible ideals of a local ring are regular principal ideals). Since $I_{j} \subseteq Q$ and $Q \neq M$, we have that I_{j} is a prime ideal by Lemma 2.1(2). Consequently, $P \subseteq I_{j}$ for some $P \in \operatorname{Min}(\mathbf{0})$. Since I_{j} is regular, we infer that $P \subset I_{j}$, and hence $P=P I_{j}$ (since I_{j} is principal). It follows (e.g. from Nakayama's lemma) that $P=\mathbf{0}$ (since P is principal). We obtain that R is an integral domain.

To show that R is a unique factorization domain, it suffices to show by [4, Theorem 2.6] that every nonzero prime ideal of R contains a nonzero principal prime ideal. Since $\operatorname{dim}(R) \geq 2$ and R is local, we only need to show that every nonzero nonmaximal prime ideal of R contains a nonzero principal prime ideal. Let L be a nonzero nonmaximal prime ideal of R and let $z \in L$ be nonzero. Let $z R=\prod_{k=1}^{m} J_{k}$ be an $O A$-factorization. Then $J_{\ell} \subseteq L$ for some $\ell \in[1, m]$. Since R is an integral domain, $z R$ is invertible, and hence J_{ℓ} is invertible. Therefore, J_{ℓ} is nonzero and principal (since R is local). Since $L \neq M$, it follows from Lemma 2.1(2) that J_{ℓ} is a prime ideal.

CASE 3: $\operatorname{dim}(R) \geq 2$. We have to show that R is a unique factorization domain. Note that R / N is a reduced local ring with maximal ideal M / N and $\operatorname{dim}(R / N) \geq 2$. Moreover, each proper principal ideal of R / N has an $O A$-factorization by the claim. It follows by Case 2 that R / N is a unique factorization domain, and thus N is the unique minimal prime ideal of R. Since R / N is a unique factorization domain and $\operatorname{dim}(R / N) \geq 2$, R / N possesses a nonzero nonmaximal principal prime ideal. We infer that there is some nonminimal nonmaximal prime ideal Q of R such that Q / N is a principal ideal of R / N. Consequently, there is some $q \in Q$ such that $Q=q R+N$. Let $q R=\prod_{i=1}^{n} I_{i}$ be an $O A$-factorization. Then $I_{j} \subseteq Q$ for some $j \in[1, n]$. Since $Q \neq M$, we infer by Lemma 2.1(2) that I_{j} is a prime ideal of R. Therefore, $Q=q R+N \subseteq I_{j} \subseteq Q$, and hence $I_{j}=Q$.

Assume that $Q \neq q R$. Then $q R=Q J$ for some proper ideal J of R. It follows that $q \in q R=(q R+N) J \subseteq q J+N$, and thus $q(1-a) \in N$ for some $a \in J$. Since a is a nonunit of R, we obtain that $q \in N$. This implies that $Q=q R+N=N$, a contradiction. We infer that $Q=q R$. Since $N \subset Q$ and N is a prime ideal of R, we have that $N=N Q$. Consequently, $N=\mathbf{0}$ (e.g. by Nakayama's lemma, since N is principal), and thus $R \cong R / N$ is a unique factorization domain.
Proposition 3.4. Let R be a local ring with maximal ideal M such that each proper 2-generated ideal of R has an $O A$-factorization. Then $\operatorname{dim}(R) \leq 2$ and each nonmaximal prime ideal of R is principal.
Proof. First we show that $\operatorname{dim}\left(R_{P}\right) \leq 1$ for each nonmaximal prime ideal P of R. Let P be a nonmaximal prime ideal and let I be a proper 2generated ideal of R_{P}. Observe that $I=J_{P}$ for some 2-generated ideal J of R with $J \subseteq P$. Let $J=\prod_{i=1}^{n} J_{i}$ be an $O A$-factorization. Then $I=J_{P}=\prod_{i=1}^{n}\left(J_{i}\right)_{P}=\prod_{i=1, J_{i} \subseteq P}^{n}\left(J_{i}\right)_{P}$. If $i \in[1, n]$ is such that $J_{i} \subseteq P$, then J_{i} is a prime ideal of R by Lemma 2.1(2), and thus $\left(J_{i}\right)_{P}$ is a prime ideal of R_{P}. We infer that I is a product of prime ideals of R_{P}. It follows from [22, Theorem 3.2], that R_{P} is a general $Z P I$-ring. It is an easy consequence of [21, page 205] that $\operatorname{dim}\left(R_{P}\right) \leq 1$.

This implies that $\operatorname{dim}(R) \leq 2$. It remains to show that every nonmaximal prime ideal of R is principal. Without restriction let $\operatorname{dim}(R) \geq 1$. It follows from Proposition 3.3 that R is either a one-dimensional domain or a twodimensional unique factorization domain. In any case we have that each nonmaximal prime ideal of R is principal.

In the next result we will prove a generalization of the fact that every $O A F$-ring has Krull dimension at most one.

Theorem 3.5. Let R be a ring such that every proper 2 -generated ideal of R has an $O A$-factorization. Then $\operatorname{dim}(R) \leq 1$.

Proof. If every $O A$-ideal of R is a prime ideal, then R is a general $Z P I$-ring by $[22$, Theorem 3.2], and hence $\operatorname{dim}(R) \leq 1$ by [21, page 205]. Now let not every $O A$-ideal of R be a prime ideal. We infer by Lemma 2.1 that R is local and the maximal ideal of R is not idempotent. Let M be the maximal ideal of R. It suffices to show that if Q is a nonmaximal prime ideal of R, then $Q=\mathbf{0}$. Let Q be a nonmaximal prime ideal of R.

Assume that $Q \nsubseteq M^{2}$. Since $\operatorname{dim}(R) \leq 2$ by Proposition 3.4, there is some prime ideal P of R such that $Q \subseteq P$ and $\operatorname{dim}(R / P)=1$. Next we show that $M^{2} \subseteq P+y R$ for each $y \in R \backslash P$. Let $y \in R \backslash P$ and set $J=P+y R$. Without restriction let $J \subset M$. Note that J is 2-generated by Proposition 3.4. Since $J \nsubseteq M^{2}$, J cannot be a product of more than one $O A$-ideal, and thus J is an $O A$-ideal of R. Since $P \subset J \subset M$, we have that J is not a prime ideal of R, and thus $M^{2} \subseteq J$ by Lemma 2.1(2). Moreover, R / P is an integral domain that is not a field. Consequently, R / P does not have any simple R / P-submodules, which implies that $P=\bigcap_{x \in R \backslash P}(P+x R)$. (Observe that if $\bigcap_{x \in R \backslash P}(P+x R) \neq P$, then $\bigcap_{x \in R \backslash P}(P+x R) / P$ is a simple R / P-submodule of R / P.) Therefore, $M^{2} \subseteq \bigcap_{x \in R \backslash P}(P+x R)=P$, and hence $P=M$, a contradiction. We infer that $Q \subseteq M^{2}$.

There is some $z \in M \backslash M^{2}$ (since M is not idempotent). Since $z R$ is a product of $O A$-ideals, we have that $z R$ is an $O A$-ideal of R. As shown before, $L \subseteq M^{2}$ for each nonmaximal prime ideal L of R, and thus $z R$ is not a nonmaximal prime ideal. Consequently, $Q \subset M^{2} \subset z R$ by Lemma 2.1(2), and hence $Q=z Q$. Since Q is principal by Proposition 3.4, it follows (e.g. by Nakayama's lemma) that $Q=\mathbf{0}$.

Lemma 3.6. Let D be a local domain with maximal ideal M. Then each proper principal ideal of D has an $O A$-factorization if and only if D is atomic and each irreducible element generates an OA-ideal. If these equivalent conditions are satisfied, then $\bigcap_{n \in \mathbb{N}} P^{n}=\mathbf{0}$ for each height-one prime ideal P of D.

Proof. (\Rightarrow) Let each proper principal ideal of D have an $O A$-factorization. If D is a unique factorization domain, then D is atomic and each irreducible element generates a prime ideal. Now let D be not a unique factorization domain. Then $\operatorname{dim}(D)=1$ by Proposition 3.3.

Assume that M^{2} is principal. Then M is invertible, and hence M is principal (since D is local). Note that D is a $D V R($ since $\operatorname{dim}(D)=1)$, and hence D is a unique factorization domain, a contradiction.

We infer that M^{2} is not principal. We show that D is atomic. Let $y \in D$ be a nonzero nonunit. Then $y D=\prod_{i=1}^{n} I_{i}$ for some principal $O A$-ideals I_{i}. There are nonzero nonunits $x_{i} \in D$ such that $y=\prod_{i=1}^{n} x_{i}$ and $I_{j}=x_{j} D$ for each $j \in[1, n]$. Let $i \in[1, n]$. If I_{i} is a prime ideal, then x_{i} is a prime element, and thus x_{i} is irreducible. Now let I_{i} not be a prime ideal. It follows from Lemma 2.1(2) that $M^{2} \subseteq I_{i}$. Since M^{2} is not principal, we have that $x_{i} \notin M^{2}$. Therefore, x_{i} is irreducible.

Finally, let $z \in D$ be irreducible. Then $z D=\prod_{j=1}^{m} J_{j}$ for some principal $O A$-ideals J_{j}. Since $z D$ is maximal among the proper principal ideals of D, we obtain that $z D=J_{j}$ for some $j \in[1, n]$.
(\Leftarrow) Let D be atomic such that each irreducible element generates an $O A$-ideal. Let I be a proper principal ideal of D. Without restriction let I be nonzero. Then $I=x D$ for some nonzero nonunit $x \in D$. Observe that $x=\prod_{i=1}^{n} x_{i}$ for some irreducible elements $x_{i} \in D$. It follows that $\prod_{i=1}^{n} x_{i} D$ is an $O A$-factorization of I.

Now let the equivalent conditions be satisfied and let P be a height-one prime ideal of D. First let $P \neq M$. Then D is a unique factorization domain by Proposition 3.3, and hence P is principal. Therefore, $\bigcap_{n \in \mathbb{N}} P^{n}$ is a prime ideal of D by [5, Theorem 2.2(1)]. Since $\bigcap_{n \in \mathbb{N}} P^{n} \subset P$, we infer that $\bigcap_{n \in \mathbb{N}} P^{n}=\mathbf{0}$.

Now let $P=M$. Assume that $\bigcap_{n \in \mathbb{N}} M^{n} \neq \mathbf{0}$ and let $x \in \bigcap_{n \in \mathbb{N}} M^{n}$ be nonzero. Then $x D$ is a product of $m O A$-ideals of D for some positive integer m. We infer by Lemma 2.1(2) that $M^{2 m} \subseteq x D$, and hence $M^{2 m} \subseteq$ $x D \subseteq M^{4 m} \subseteq M^{2 m}$. This implies that $x D=M^{2 m}=M^{4 m}=x^{2} D$, and thus x is a unit of D, a contradiction. Therefore, $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.

Lemma 3.7. Let R be a local ring with maximal ideal M such that M^{2} is divided and such that either M is nilpotent or R is an integral domain with $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$. Then R is an OAF-ring and every proper principal ideal of R is a product of principal $O A$-ideals.

Proof. If M is idempotent, then $M=\mathbf{0}$, and hence R is a field and both statements are clearly satisfied. Now let M be not idempotent. There is some $x \in M \backslash M^{2}$. In what follows, we freely use the fact that if N is an ideal of R and $z \in R$ such that $N \subseteq z R$, then $N=z(N: z R)$, and hence $N=z J$ for some ideal J of R.
Next we prove that $M^{2}=x M$ and $x R$ is an $O A$-ideal of R. Since $x \notin M^{2}$ and M^{2} is divided, we have that $M^{2} \subseteq x R \subseteq M$. Therefore, $x R$ is an $O A$-ideal by Lemma 2.1(2). Since $M^{2} \subset x R$, there is some proper ideal J of R with $M^{2}=x J$, and thus $M^{2} \subseteq x M$. Obviously, $x M \subseteq M^{2}$, and hence $M^{2}=x M$.

Now we show that R is an $O A F$-ring. Let I be a proper ideal of R. First let $I=\mathbf{0}$. If M is nilpotent, then I is obviously a product of $O A$-ideals. If R is an integral domain, then I is an $O A$-ideal. Now let I be nonzero. In any case there is a largest positive integer n such that $I \subseteq M^{n}$. Observe that $I \subseteq M^{n}=x^{n-1} M \subseteq x^{n-1} R$. Consequently, $I=x^{n-1} L=(x R)^{n-1} L$ for some proper ideal L of R. Assume that $L \subseteq M^{2}$. Note that $L \subseteq M^{2}=$ $x M \subseteq x R$. This implies that $L=x A$ for some proper ideal A of R, and hence $I=x^{n} A \subseteq x^{n} M=M^{n+1}$, a contradiction. We infer that $M^{2} \subseteq L$
(since M^{2} is divided). It follows from Lemma 2.1(2) that L is an $O A$-ideal. In any case, I is a product of $O A$-ideals.

Finally, we prove that every proper principal ideal of R is a product of principal $O A$-ideals. Let $y \in M$. First let $y=0$. If M is nilpotent, then $x^{k}=0$ for some $k \in \mathbb{N}$, and thus $y R=(x R)^{k}$ is a product of principal $O A$ ideals. If R is an integral domain, then $y R$ is a principal $O A$-ideal. Now let y be nonzero. There is some greatest $\ell \in \mathbb{N}$ such that $y \in M^{\ell}$. Therefore, $y=x^{\ell-1} z$ for some $z \in M$. If $z \in M^{2}$, then $z=x v$ for some $v \in M$, and hence $y=x^{\ell} v \in M^{\ell+1}$, a contradiction. We infer that $z \notin M^{2}$, and thus $M^{2} \subseteq z R \subseteq M$. It follows from Lemma 2.1(2) that $z R$ is an $O A$-ideal of R. Consequently, $y R=(x R)^{\ell-1}(z R)$ is a product of principal $O A$-ideals.

4. Characterization of $O A F$-rings and related concepts

First we recall several definitions and discuss the factorization theoretical properties of local one-dimensional $O A F$-domains. Let D be an integral domain with quotient field K. Then $\widehat{D}=\{x \in K \mid$ there is some nonzero $c \in D$ such that $c x^{n} \in D$ for all $\left.n \in \mathbb{N}\right\}$ is called the complete integral closure of D. Let $(D: \widehat{D})=\{x \in D \mid x \widehat{D} \subseteq D\}$ be the conductor of D in \widehat{D}. The domain D is called completely integrally closed if $D=\widehat{D}$ and D is said to be seminormal if for all $x \in K$ such that $x^{2}, x^{3} \in D$, it follows that $x \in D$. Note that every completely integrally closed domain is seminormal. We say that D is a finitely primary domain of rank one if D is a local one-dimensional domain such that \widehat{D} is a $D V R$ and $(D: \widehat{D}) \neq \mathbf{0}$. For each subset $X \subseteq K$ let $X^{-1}=\{x \in K \mid x X \subseteq D\}$ and $X_{v}=\left(X^{-1}\right)^{-1}$. An ideal I of D is called divisorial if $I_{v}=I$. Moreover, D is called a Mori domain if D satisfies the ascending chain condition on divisorial ideals. It is well known that every unique factorization domain and every Noetherian domain is a Mori domain (see [14, Corollary 2.3.13] and [11, page 57$]$). We say that D is half-factorial if D is atomic and each two factorizations of each nonzero element of D into irreducible elements are of the same length. Finally, D is called a C-domain if the monoid of nonzero elements of D (i.e., $D \backslash \mathbf{0}$) is a C-monoid. For the precise definition of C-monoids we refer to [14, Definition 2.9.5].

Let D be a local domain with quotient field K and maximal ideal M. Set $(M: M)=\{x \in K \mid x M \subseteq M\}$. Then ($M: M$) is called the ring of multipliers of M. Moreover, M^{2} is said to be universal if $M^{2} \subseteq u D$ for each irreducible element $u \in D$.

Theorem 4.1. Let D be a local domain with maximal ideal M such that D is not a field. The following statements are equivalent.
(1) D is an $O A F$-domain.
(2) D is a TAF-domain.
(3) D is one-dimensional and every proper principal ideal has an $O A$ factorization.
(4) D is one-dimensional and atomic and every irreducible element generates an $O A$-ideal.
(5) D is atomic such that M^{2} is universal.
(6) $(M: M)$ is a $D V R$ with maximal ideal M.
(7) D is a seminormal finitely primary domain of rank one.

If these equivalent conditions are satisfied, then D is a half-factorial C domain and a Mori domain.

Proof. (1) $\Rightarrow(2)$: This follows from Lemma 2.1(3).
$(1) \Rightarrow(3)$: By Theorem 3.5, D is one-dimensional. The rest of assertion (3) is clear.
$(2) \Leftrightarrow(5) \Leftrightarrow(6)$: This follows from [23, Theorem 4.3].
$(3) \Leftrightarrow(4)$: This is an immediate consequence of Lemma 3.6.
$(4) \Rightarrow(5)$: Let $y \in D$ be an irreducible element. Since $y D$ is an $O A$-ideal and $\sqrt{y D}=M$, we deduce from Lemma 2.1(2) that $M^{2} \subseteq y D$. Hence M^{2} is universal.
$(5)+(6) \Rightarrow(1)$: It follows from $\left[6\right.$, Theorem 5.1] that M^{2} is comparable to every principal ideal of D, and thus M^{2} is divided. Since $(M: M)$ is a $D V R$ with maximal ideal M, we have that $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$. Consequently, D is an $O A F$-domain by Lemma 3.7.
$(5)+(6) \Rightarrow(7)$: First we show that D is finitely primary of rank one. Let P be a nonzero prime ideal of D. Then P contains an irreducible element $y \in D$, and hence $M^{2} \subseteq y D \subseteq P$. Therefore, $P=M$, and thus D is onedimensional. It remains to show that \widehat{D} is a $D V R$ and $(D: \widehat{D}) \neq \mathbf{0}$. Since $(M: M)$ is a $D V R$, we have that $(M: M)$ is completely integrally closed. Observe that $D \subseteq(M: M) \subseteq \widehat{D}$, and hence $\widehat{D} \subseteq(\widehat{M: M})=(M: M)$. Therefore, $\widehat{D}=(M: M)$ is a $D V R$. Since $M \widehat{D}=M(M: M) \subseteq M \subseteq D$ and $M \neq \mathbf{0}$, we infer that $(D: \widehat{D}) \neq \mathbf{0}$.

Next we show that D is seminormal. Let V be the group of units of \widehat{D}. Let K be the field of quotients of D and let $x \in K$ be such that $x^{2}, x^{3} \in D$. Then $x^{2}, x^{3} \in \widehat{D}$. Since \widehat{D} is a $D V R, \widehat{D}$ is seminormal, and thus $x \in \widehat{D}$. In particular, $x \in M$ or $x \in V$. If $x \in M$, then $x \in D$. Now let $x \in V$. Note that $V \cap D$ is the group of units of D (by [24, Corollary 1.4] and [12, Proposition 2.1]), and thus x^{2} and x^{3} are units of D. Therefore, $x=x^{-2} x^{3}$ is a unit of D, and hence $x \in D$.
$(7) \Rightarrow(6):$ By [15, Lemma 3.3.3], we have that M is the maximal ideal of \widehat{D}. If $x \in \widehat{D}$, then $x M \subseteq M$ (since M is an ideal of \widehat{D}). It is straightforward to show that $(M: M) \subseteq \widehat{D}$. We infer that $(M: M)=\widehat{D}$ is a $D V R$.

Now let the equivalent statements of Theorem 4.1 be satisfied. It remains to show that D is a half-factorial C-domain and a Mori domain. It follows from [6, Theorem 6.2] that D is a half-factorial domain. Obviously, V is a subgroup of finite index of V and $V M \subseteq \widehat{D} M=(M: M) M \subseteq M$. It follows from [18, Corollary 2.8] and [14, Corollary 2.9.8] that D is a C domain. Moreover, D is a Mori domain by [18, Proposition 2.5.1].

We want to point out that a local one-dimensional $O A F$-domain need not be Noetherian. Let $K \subseteq L$ be a field extension such that $[L: K]=\infty$ and let $D=K+X L \llbracket X \rrbracket$. Then D is a local one-dimensional domain with maximal ideal $M=X L \llbracket X \rrbracket$ and $(M: M)=L \llbracket X \rrbracket$ is a $D V R$ with maximal ideal M. Consequently, D is an $O A F$-domain by Theorem 4.1. Since $[L: K]=\infty$, it follows that D is not Noetherian.

An integral domain D is called a Cohen-Kaplansky domain if D is atomic and D has only finitely many irreducible elements up to associates. It follows from [6, Example 6.7] that there exists a local half-factorial CohenKaplansky domain with maximal ideal M for which M^{2} is not universal. We infer by Theorem 4.1 that the aforementioned domain is not an $O A F$ domain.
Theorem 4.2. Let R be a ring with Jacobson radical M. The following statements are equivalent.
(1) R is an OAF-ring.
(2) Each proper 2-generated ideal of R has an $O A$-factorization.
(3) $\operatorname{dim}(R) \leq 1$ and each proper principal ideal has an $O A$-factorization.
(4) R satisfies one of the following conditions.
(A) R is a general ZPI-ring.
(B) R is a local domain, M^{2} is divided and $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.
(C) R is local, M^{2} is divided and M is nilpotent.

Proof. (1) \Rightarrow (2): This is obvious.
$(2) \Rightarrow(3)$: This is an immediate consequence of Theorem 3.5.
$(3) \Rightarrow(4)$: First let each $O A$-ideal of R be a prime ideal. Then R is a π-ring. By [16, Theorems 39.2, 46.7, and 46.11], R is a general $Z P I$-ring. Now let there be an $O A$-ideal of R which is not a prime ideal. It follows from Lemma 2.1 that R is local with maximal ideal M and M is not idempotent. Note that if $x \in M \backslash M^{2}$, then $x R$ cannot be a product of more than one $O A$-ideal, and hence $x R$ is an $O A$-ideal.

CASE 1: R is zero-dimensional. Let $x \in M \backslash M^{2}$. Then $x R$ is an $O A$-ideal. We infer by Lemma 2.1(2) that $M^{2} \subseteq x R$. Consequently, M^{2} is divided. It follows from Lemma 2.1 that $M^{2} \subseteq I$ for each $O A$-ideal I of R. Since $\mathbf{0}$ is a product of $O A$-ideals, we have that $\mathbf{0}$ contains a power of M. This implies that M is nilpotent.

CASE 2: R is one-dimensional. It follows from Proposition 3.3 that R is an integral domain, and hence $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$ by Lemma 3.6. It remains to show that M^{2} is divided. Let $x \in R \backslash M^{2}$. Without restriction let x be a nonunit. Then $x R$ is an $O A$-ideal. By Lemma 2.1(2) we have that $M^{2} \subseteq x R$.
(4) \Rightarrow (1): Clearly, every general $Z P I$-ring is an $O A F$-ring. The rest follows from Lemma 3.7.
Corollary 4.3. Let R be a ring with Jacobson radical M. The following statements are equivalent.
(1) Each proper principal ideal of R has an $O A$-factorization.
(2) R is a π-ring or an OAF-ring.
(3) R satisfies one of the following conditions.
(A) R is a π-ring.
(B) R is a local domain, M^{2} is divided and $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.
(C) R is local, M^{2} is divided and M is nilpotent.

Proof. (1) $\Rightarrow(2)$: If R is not local, then R is a π-ring by Remark 2.4(2). Now let R be local. If $\operatorname{dim}(R) \geq 2$, then R is a unique factorization domain by Proposition 3.3, and hence R is a π-ring. If $\operatorname{dim}(R) \leq 1$, then R is an $O A F$-ring by Theorem 4.2.
$(2) \Rightarrow(1)$: This is obvious.
$(2) \Leftrightarrow(3)$: This is an immediate consequence of Theorem 4.2 and the fact that every general $Z P I$-ring is a π-ring.
Corollary 4.4. Let R be a ring with Jacobson radical M. The following statements are equivalent.
(1) Each proper principal ideal of R is a product of principal $O A$-ideals.
(2) R satisfies one of the following conditions.
(A) R is a unique factorization ring.
(B) R is a local domain, M^{2} is divided and $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.
(C) R is local, M^{2} is divided and M is nilpotent.

Proof. (1) \Rightarrow (2): If R is not local, then R is a unique factorization ring by Remark 2.4(3). If R is local, then the statement follows from Corollary 4.3 and the fact that every local π-ring is a unique factorization ring ([4, Corollary 2.2]).
$(2) \Rightarrow(1)$: Obviously, if R is a unique factorization ring, then each proper principal ideal of R is a product of principal $O A$-ideals. The rest is an immediate consequence of Lemma 3.7.

In Lemma 2.1, we saw that if R is a local ring with maximal ideal M and I is an ideal of R such that $M^{2} \subseteq I$, then I is an $O A$-ideal of R. Now we will give a characterization of the rings for which every proper (principal) ideal is an $O A$-ideal.

Proposition 4.5. Let R be a ring with Jacobson radical M. The following statements are equivalent.
(1) Every proper ideal of R is an $O A$-ideal.
(2) Every proper principal ideal of R is an $O A$-ideal.
(3) R is local and $M^{2}=\mathbf{0}$.

Proof. (1) \Rightarrow (2): This is obvious.
$(2) \Rightarrow(3)$: Assume that R is not local. Then every proper principal ideal of R is a prime ideal by Lemma 2.1(1). Consequently, R is an integral domain. If $x \in R$ is a nonunit, then $x^{2} R$ is a prime ideal, and hence $x^{2} R=x R$ and $x=0$. Therefore, R is a field, a contradiction. This implies that R is local with maximal ideal M. We infer by Lemma 2.1(2) that $\mathbf{0}$ is a prime ideal or $M^{2}=\mathbf{0}$.

Assume that $M^{2} \neq \mathbf{0}$. Then R is an integral domain and there is some nonzero $x \in M^{2}$. It follow from Lemma 2.1(2) that $x^{2} R$ is a prime ideal or $M^{2} \subseteq x^{2} R$. If $x^{2} R$ is a prime ideal, then $x^{2} R=x R$. If $M^{2} \subseteq x^{2} R$, then $M^{2} \subseteq x^{2} R \subseteq x R \subseteq M^{2}$, and thus $x^{2} R=x R$. In any case we have that $x^{2} R=x R$, and hence x is a unit (since x is regular), a contradiction.
$(3) \Rightarrow(1)$: This is an immediate consequence of Lemma 2.1(2).

5. $O A$-factorization properties and trivial ring extensions

Let A be a ring and E be an A-module. Then $A \propto E$, the trivial (ring) extension of A by E, is the ring whose additive structure is that of the external direct sum $A \oplus E$ and whose multiplication is defined by $(a, e)(b, f)=(a b, a f+b e)$ for all $a, b \in A$ and all $e, f \in E$. (This construction is also known by other terminology and other notation, such as
the idealization $A(+) E$.) The basic properties of trivial ring extensions are summarized in the textbooks [17, 19]. Trivial ring extensions have been studied or generalized extensively, often because of their usefulness in constructing new classes of examples of rings satisfying various properties (cf. $[7,10,20])$. We say that E is divisible if $E=a E$ for each regular element $a \in A$.

We start with the following lemma.
Lemma 5.1. Let A be a ring, I be an ideal of A and E be an A-module. Let $R=A \propto E$ be the trivial ring extension of A by E.
(1) $I \propto E$ is an $O A$-ideal of R if and only if I is an $O A$-ideal of A.
(2) Assume that A contains a nonunit regular element and E is a divisible A-module. Then the $O A$-ideals of R have the form $L \propto E$ where L is an $O A$-ideal of A.

Proof. (1) This follows immediately from [25, Theorem 2.20].
(2) Let J be an $O A$-ideal of R. Our aim is to show that $\mathbf{0} \propto E \subseteq J$. Let $e \in E$ and let $a \in A$ be a nonunit regular element. Then $e=a f$ for some $f \in E$ and thus $(a, 0)(0, f)(0, e)=(0,0) \in J$. Since J is an $O A$-ideal, we conclude that $(a, 0)(0, f)=(0, e) \in J$ or $(0, e) \in J$ which implies that $\mathbf{0} \propto E \subseteq J$. Therefore, $J=L \propto E$ with $L=\{b \in A \mid(b, g) \in J$ for some $g \in E\}$ and L is an ideal of A by [7, Theorems 3.1 and 3.3(1)]. Now the result follows from (1).

Corollary 5.2. Let A be an integral domain that is not a field, E be a divisible A-module and $R=A \propto E$. Then the $O A$-ideals of R have the form $I \propto E$ where I is an $O A$-ideal of A.

Next, we study the transfer of the $O A F$-ring property to the trivial ring extension.

Theorem 5.3. Let A be a ring with Jacobson radical M, E be an A-module and $R=A \propto E$.
(1) R is an $O A F-$ ring if and only if one of the following conditions is satisfied.
(A) A is a general ZPI-ring, E is cyclic and the annihilator of E is a (possibly empty) product of idempotent maximal ideals of A.
(B) A is local, M^{2} is divided, $E=\mathbf{0}$ and either M is nilpotent or A is a domain with $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.
(C) A is local, $M^{2}=\mathbf{0}, M E=a E$ for each nonzero $a \in M$ and $M E=M x$ for each $x \in E \backslash M E$.
In particular, if R is an $O A F$-ring, then A is an $O A F$-ring.
(2) Every proper ideal of R is an $O A$-ideal if and only if A is local, $M^{2}=\mathbf{0}$ and $M E=\mathbf{0}$.

Proof. $(1)(\Rightarrow)$ First let R be an $O A F$-ring. By Theorem 4.2, it follows that (a) R is a general $Z P I$-ring or (b) R is local with maximal ideal N, N^{2} is divided and (N is nilpotent or R is a domain such that $\bigcap_{n \in \mathbb{N}} N^{n}=\mathbf{0}$). If R is a general $Z P I$-ring, then condition (A) is satisfied by [7, Theorem 4.10].

From now on let R be local with maximal ideal N such that N^{2} is divided. Observe that A is local with maximal ideal M and $N=M \propto E$ by [7,

Theorem 3.2(1)]. If R is a domain such that $\bigcap_{n \in \mathbb{N}} N^{n}=\mathbf{0}$, then $E=\mathbf{0}$ (for if $z \in E$ is nonzero, then $(0, z)$ is a nonzero zero-divisor of R), and hence $A \cong R$ is a domain, M^{2} is divided and $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.

Now let N be nilpotent. If $E=\mathbf{0}$, then $A \cong R$, and thus M^{2} is divided and M is nilpotent. From now on let E be nonzero. There is some $k \in \mathbb{N}$ such that $N^{k}=\mathbf{0}$. Note that $N^{2}=M^{2} \propto M E$ and $N^{k}=M^{k} \propto M^{k-1} E$, and thus $M^{k}=\mathbf{0}$. Since N^{2} is divided, we have that $\mathbf{0} \propto E \subseteq N^{2}$ or $N^{2} \subseteq \mathbf{0} \propto E$. If $\mathbf{0} \propto E \subseteq N^{2}$, then $E=M E$, and hence $E=M^{k} E=\mathbf{0}$, a contradiction. Therefore, $N^{2} \subseteq \mathbf{0} \propto E$, which implies that $M^{2}=\mathbf{0}$.

Let $a \in M$ be nonzero. Then $(a, 0) \notin N^{2}$, and hence $N^{2} \subseteq(a, 0) R=$ $a A \propto a E$. Consequently, $M E \subseteq a E$, and thus $M E=a E$. Finally, let $x \in E \backslash M E$. Then $(0, x) \notin N^{2}$. We infer that $N^{2} \subseteq(0, x) R=\mathbf{0} \propto A x$. This implies that $M E \subseteq A x$. If $M E \nsubseteq M x$, then $b x \in M E$ for some unit $b \in A$, and hence $x \in M E$, a contradiction. It follows that $M E \subseteq M x$, which clearly implies that $M E=M x$.
(\Leftarrow) Next we prove the converse. If condition (A) is satisfied, then R is a general $Z P I$-ring by [7, Theorem 4.10], and thus R is an $O A F$-ring. If condition (B) is satisfied, then A is an $O A F$-ring by Theorem 4.2, and hence $R \cong A$ is an $O A F$-ring. Now let condition (C) be satisfied. Set $N=M \propto E$. Then R is local with maximal ideal N by [7, Theorem 3.2(1)]. By Theorem 4.2, it suffices to show that N is nilpotent and N^{2} is divided. Since $M^{2}=\mathbf{0}$, we obtain that $N^{3}=M^{3} \propto M^{2} E=\mathbf{0}$, and thus N is nilpotent. It remains to show that $N^{2} \subseteq(a, x) R$ for each $(a, x) \in R \backslash N^{2}$. Let $a \in A$ and $x \in E$ be such that $(a, x) \notin N^{2}$. Since $N^{2}=\mathbf{0} \propto M E$, we have to show that $\mathbf{0} \propto M E \subseteq(a, x) R$. If a is a unit of A, then (a, x) is a unit of R by [7, Theorem 3.7] and the statement is clearly true. Let $z \in \mathbf{0} \propto M E$. Then $z=(0, y)$ for some $y \in M E$.

CASE 1: a is a nonzero nonunit. Since $M E=a E$, there is some $v \in E$ such that $y=a v$. Observe that $z=(0, a v)=(a, x)(0, v) \in(a, x) R$.

Case 2: $a=0$. Then $x \in E \backslash M E$ (since $\left.(a, x) \notin N^{2}\right)$. Since $M E=M x$, there is some $b \in M$ such that $y=b x$. It follows that $z=(0, b x)=$ $(a, x)(b, 0) \in(a, x) R$.

The in particular statement now follows from Theorem 4.2.
(2) First let every proper ideal of R be an $O A$-ideal. By Proposition 4.5, we have that R is local with maximal ideal N and $N^{2}=\mathbf{0}$. It follows that A is local with maximal ideal M and $N=M \propto E$ by [7, Theorem 3.2(1)]. Moreover, $\mathbf{0}=N^{2}=M^{2} \propto M E$, and hence $M^{2}=\mathbf{0}$ and $M E=\mathbf{0}$.

Conversely, let A be local, $M^{2}=\mathbf{0}$ and $M E=\mathbf{0}$. Set $N=M \propto E$. Then R is local with maximal ideal N by [7, Theorem 3.2(1)] and $N^{2}=M^{2} \propto$ $M E=0$. We infer by Proposition 4.5 that each proper ideal of R is an $O A$-ideal.

Corollary 5.4. Let A be an integral domain, E be a nonzero A-module and $R=A \propto E$. The following statements are equivalent.
(1) R is an OAF-ring.
(2) A is a field.
(3) Every proper ideal of R is an $O A$-ideal.

Proof. (1) $\Rightarrow(2)$: It follows from Theorem $5.3(1)$ that A is a general $Z P I$ ring and the annihilator of E is a product of idempotent maximal ideals of A or that A is local with maximal ideal M such that $M^{2}=\mathbf{0}$.

First let A be a general $Z P I$-ring such that the annihilator of E is a product of idempotent maximal ideals of A. Note that A is a Dedekind domain, and thus the only proper idempotent ideal of A is the zero ideal. Since E is nonzero, the annihilator of E is a proper ideal of A, and hence A must possess an idempotent maximal ideal. We infer that the zero ideal is a maximal ideal of A, and thus A is a field.

Now let A be local with maximal ideal M such that $M^{2}=\mathbf{0}$. Since A is an integral domain, it follows that $M=\mathbf{0}$, and hence A is a field.
$(2) \Rightarrow(3):$ Set $M=\mathbf{0}$. Then A is local with maximal ideal $M, M^{2}=\mathbf{0}$ and $M E=\mathbf{0}$. Now the statement follows from Theorem 5.3(2).
$(3) \Rightarrow(1)$: This is obvious.
Remark 5.5. In general, if A is an $O A F$-ring and E is an A-module, then $A \propto E$ need not be an $O A F$-ring. Indeed, let A be an $O A F$-domain that is not a field and let E be a nonzero A-module. By Corollary 5.4, $A \propto E$ is not an $O A F$-ring.

Corollary 5.6. Let A be a local ring with maximal ideal M and E be a nonzero A-module such that $M E=\mathbf{0}$. Set $R=A \propto E$. The following statements are equivalent.
(1) R is an $O A F$-ring.
(2) $M^{2}=\mathbf{0}$.
(3) Every proper ideal of R is an $O A$-ideal.

Proof. (1) $\Rightarrow(2)$: Assume that $M^{2} \neq \mathbf{0}$. By Theorem $5.3(1), A$ is a local general ZPI-ring and M is idempotent (since the annihilator of E is a nonempty product of idempotent maximal ideals of A and M is the only maximal ideal of A). We infer by [21, Corollary 9.11] that A is a Dedekind domain or each proper ideal of A is a power of M (because local rings are indecomposable). If A is a Dedekind domain, then clearly $M^{2}=M=\mathbf{0}$ (since M is idempotent and a Dedekind domain has no nonzero proper idempotent ideals). Moreover, if every proper ideal of A is a power of M, then again $M^{2}=M=\mathbf{0}$ (since M is idempotent). In any case, we obtain that $M^{2}=\mathbf{0}$, a contradiction.
$(1) \Leftarrow(2) \Leftrightarrow(3)$: This follows from Theorem 5.3.
Example 5.7. Let A be a local principal ideal ring with maximal ideal M such that A is not a field and $M^{2}=\mathbf{0}$ (e.g. $A=\mathbb{Z} / 4 \mathbb{Z}$). Set $R=A \propto A$. Then R is an $O A F$-ring, and yet not every proper ideal of R is an $O A$-ideal.

Proof. Since $M \neq \mathbf{0}$, it follows from Theorem 5.3(2) that not every proper ideal of R is an $O A$-ideal. By Theorem 5.3(1) it remains to show that $M=a A$ for each nonzero $a \in M$ and $M=M x$ for each $x \in A \backslash M$. Note that $M=z A$ for some $z \in M$. If $a \in M$ is nonzero, then $a=z b$ for some $b \in A$. Clearly, $b \notin M$, and thus b is a unit of A, which clearly implies that $M=z A=a A$. Finally, if $x \in A \backslash M$, then x is a unit of A, and thus $M=M x$.

Remark 5.8. Let A be a ring with Jacobson radical M, E be an A module and $R=A \propto E$. Then each proper principal ideal of R has an $O A$-factorization if and only if one of the following conditions is satisfied.
(1) A is a π-ring, E is cyclic and the annihilator of E is a (possibly empty) product of idempotent maximal ideals of A.
(2) A is local, M^{2} is divided, $E=\mathbf{0}$ and either M is nilpotent or A is a domain with $\bigcap_{n \in \mathbb{N}} M^{n}=\mathbf{0}$.
(3) A is local, $M^{2}=\mathbf{0}, M E=a E$ for each nonzero $a \in M$ and $M E=$ $M x$ for each $x \in E \backslash M E$.

Proof. This can be proved along similar lines as Theorem $5.3(1)$ by using Corollary 4.3 and [7, Theorems $3.2(1)$ and 4.10].

ACKNOWLEDGEMENTS. We want to thank the referee for many helpful suggestions and comments which improved the quality of this paper. The fourth-named author was supported by the Austrian Science Fund FWF, Project Number J4023-N35. The first three authors dedicate this work to their Professor Faycal Lamrini for his retirement.

References

[1] Ahmed, M. T., Dumitrescu, T., Khadam, A. (2020). Commutative rings with absorbing factorization. Commun. Algebra, 48(12):5067-5075. DOI: 10.1080/00927872.2020.1778714.
[2] Anderson, D. D. (1976). Multiplication ideals, multiplication rings, and the ring $R(X)$. Can. J. Math. 28(4):760-768. DOI: 10.4153/CJM-1976-072-1.
[3] Anderson, D. D., Mahaney, L. A. (1987). Commutative rings in which every ideal is a product of primary ideals. J. Algebra 106(2):528-535. DOI: 10.1016/0021-8693(87)90014-7.
[4] Anderson, D. D., Markanda, R. (1985). Unique factorization rings with zero divisors. Houston J. Math. 11(1):15-30.
[5] Anderson, D. D., Matijevic, J., Nichols, W. (1976). The Krull intersection theorem. II. Pacific J. Math. 66(1):15-22. DOI: 10.2140/pjm.1976.66.15.
[6] Anderson, D. D., Mott, J. L. (1992). Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements. J. Algebra 148(1):17-41. DOI: 10.1016/0021-8693(92)90234-D.
[7] Anderson, D. D., Winders, M. (2009). Idealization of a module. J. Commut. Algebra 1(1):3-56. DOI: 10.1216/JCA-2009-1-1-3.
[8] Anderson, D. F., Badawi, A. (2011). On n-absorbing ideals of commutative rings. Commun. Algebra 39(5):1646-1672. DOI: 10.1080/00927871003738998.
[9] Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. 75(3):417-429. DOI: 10.1017/S0004972700039344.
[10] Bakkari, C., Kabbaj, S., Mahdou, N. (2010). Trivial extensions defined by Prüfer conditions. J. Pure Appl. Algebra 214(1):53-60. DOI: 10.1016/j.jpaa.2009.04.011.
[11] Barucci, V. (2000). Mori domains. Non-Noetherian commutative ring theory. In: Math. Appl., Vol. 520, Dortrecht: Kluwer Acad. Publ., pp. 57-73. DOI: 10.1007/978-1-4757-3180-4_3.
[12] Barucci, V., Dobbs, D. E. (1984). On chain conditions in integral domains. Canad. Math. Bull. 27(3):351-359. DOI: 10.4153/CMB-1984-053-1.
[13] Choi, S. H., Walker, A. (2020). The radical of an n-absorbing ideal. J. Commut. Algebra 12(2):171-177. DOI: 10.1216/jca.2020.12.171.
[14] Geroldinger, A., Halter-Koch, F. (2006). Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure Appl. Math., Boca Raton, FL: Chapman \& Hall/CRC.
[15] Geroldinger, A., Kainrath, F., Reinhart, A. (2015). Arithmetic of seminormal weakly Krull monoids and domains. J. Algebra 444:201-245. DOI: 10.1016/j.jalgebra.2015.07.026.
[16] Gilmer, R. (1992). Multiplicative ideal theory. 90 Queen's Papers.
[17] Glaz, S. (1989). Commutative Coherent Rings. Lecture Notes in Mathematics, Berlin: Springer.
[18] Halter-Koch, F., Hassler, W., Kainrath, F. (2004). Remarks on the multiplicative structure of certain one-dimensional integral domains. In: Rings, modules, algebras, and abelian groups. Lecture Notes in Pure and Applied Mathematics, Vol. 236, New York: Marcel Dekker, pp. 321-331.
[19] Huckaba, J. A. (1988). Commutative Rings with Zero Divisors. New York: Marcel Dekker.
[20] Kabbaj, S., Mahdou, N. (2004). Trivial extensions defined by coherent-like conditions. Commun. Algebra 32(10):3937-3953. DOI: 10.1081/AGB-200027791.
[21] Larsen, M., McCarthy, P. (1971). Multiplicative theory of ideals. Pure Appl. Math., New York: Academic Press.
[22] Levitz, K. B. (1972). A characterization of general Z.P.I.-rings. II. Pacific J. Math. 42(1):147-151. DOI: 10.2140/pjm.1972.42.147.
[23] Mukhtar, M., Ahmed, M. T., Dumitrescu, T. (2018). Commutative rings with two-absorbing factorization. Commun. Algebra 46(3):970-978. DOI: 10.1080/00927872.2017.1332202.
[24] Ohm, J. (1966). Some counterexamples related to integral closure in $D[[x]]$. Trans. Amer. Math. Soc. 122(2):321-333. DOI: 10.2307/1994550.
[25] Yassine, A., Nikmehr, M. J., Nikandish, R. (2020). On 1-absorbing prime ideals of commutative rings. J. Algebra Appl., to appear. DOI: 10.1142/S0219498821501759.

El Khalfi Abdelhaq, Modelling and Mathematical Structures Laboratory, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

$$
E-\text { mail address : abdelhaq.elkhalfi@usmba.ac.ma }
$$

Mohammed Issoual, Modelling and Mathematical Structures Laboratory, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

$$
E-\text { mail address : issoual2@yahoo.fr }
$$

Najib Mahdou, Modelling and Mathematical Structures Laboratory, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

$$
E-\text { mail address : mahdou@hotmail.com }
$$

Andreas Reinhart, Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, NAWI Graz, Heinrichstrasse 36, 8010 Graz, Austria.

E-mail address : andreas.reinhart@uni-graz.at

[^0]: 2010 Mathematics Subject Classification. Primary 13B99; Secondary 13A15, 13G05, 13B21.

 Key words and phrases. $O A$-ideal, $O A F$-ring, trivial ring extension.

