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So we take the bold approach: we say that two sets X and Y have the same
cardinality if there is a bijection between them — we do not define yet what the
cardinality of a set is. We write |X| = |Y|if X and Y have the same cardinality,
but, again, we do not yet assign any meaning to the symbol |X| in isolation.
(This will be done later!)

More generally, we say that the set X has smaller cardinality than the set
Y (in symbols, |X| < |Y|) if there is an injection (a one-to-one mapping) from
X to Y. If this holds, and if X and Y do not have the same cardinality, then
we say that X has strictly smaller cardinality than Y, and write | X| < |Y].

Surprisingly, many assertions which might seem quite obvious or natural
cannot be proved without the Axiom of Choice. These include the statements

e any two sets X and Y are comparable (in the sense that either |X| < |Y| or
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Y] < 1X]); and
o if X # &, there is an injective function from X to Y if and only if there is

a surjective function from Y to X.

This being the case, it is important to see just what we can prove. At least the
following two statements are true.

Theorem 1.8

If there is an injective function from X to Y, and X # o, then there is a
surjective function from Y to X.

Proof

Let f: X — Y be injective. Let a be an arbitrary element of X. Now define a
function g : Y — X by the rule

_ )z if HAQV =Y,
) = * a 1f no such z exists.

Since f is injective, if z exists, then it is unique; so the function is well-defined.
Now for any z € X, we have z = g(f(z)); so g is surjective. O

Theorem 1.9 (Schroder-Bernstein Theorem)

If there is an injective function from X to Y and an injective function from Y
to X, then there is a bijective function from X to Y.
In other words, if |[X| < |Y] and |Y| < | X|, then |X| = [Y].

Proof

We are given injective functions f : X — Y and ¢ : Y — X, and have to
construct from them a bijection between the two sets. We give two similar proofs
of this important result. The first is more intuitive, but uses some elementary
properties of natural numbers, whereas the second uses nothing but set theory.
Without loss of generality, X and Y are disjoint. (Given any sets X and Y,
we can find disjoint sets X’ and Y’ bijective with X and Y': for example, take
X=X x {1} and Y/ =Y x {2}.) This dodge is not needed for the second
proof.

First Proof

We say that y € Y is the parent of z € X if g(y) = z; dually, z € X is the
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parent of y € Y if f(2) = y. Each element of X or Y has at most one parent.
An ancestral chain for z € X UY is a tuple (2o, 21,...,2,) such that zo0 = 2
and z;11 is the parent of z; for ¢ = 0,...,n—1. (Its elements belong alternately
to X and Y.) The length of such a chain is n (the number of steps, not the
number of elements). o

Now there are two possibilities for any element z. Either there are E..URBEG
long ancestral chains for z, in which case we shall say that z has infinite &m@.ﬁ
or there is a unique longest ancestral chain for z, ending s:..mr.@: element with
no parent, in which case we say that the length of this ormE is the %.E: oﬁu z.
(The second possibility includes the case when z itself has no parent, in s;:o.w
case its depth is 0.) We let X, denote the set of elements of X whose depth is
even; X, the set of elements of X with odd depth; and X, the set of elements
with infinite depth. We define Y., Y, and Y, similarly.

If z € X has finite depth, then f(z) has depth one greater than the depth
of X; and if £ € X has infinite depth, then so does f(z). So f maps Xe = Yy,
Xo = Y., and Xo — Y. A similar assertion holds for the action of ¢ on
elements in Y. Furthermore, elements of Y, or Y, have parents; so \ maps
Xe = Y, and Xoo — Yoo bijectively. (This does not hold for X, — Y, since an
element of Y. may have no parent.)

Define amap h: X - Y by

_ [ f(=) ifreXeUXy,
h(e) = g Hz) ifzeX,.
Then it is easily seen that h is a bijection. O

Second Proof

We first prove a couple of lemmas.

Lemma 1.1

Let X be aset, and p: P X — P X a function which is monotonic, in the sense
that if A C B C X, then p(A) C p(B). Then there is a set Z C X such that
EANV =Z.

Proof

Weset Z =\J{A C X :AC p(A)}. Take z € Z. Then there is a set A C X
such that z € A and A C p(A). So z € p(A). Moreover, A C Z, so p(A) m.ENv
by hypothesis. Thus z € p(Z). We have shown that N. C p(2). ».PmmE by
hypothesis, p(Z) C p(p(Z)). So p(Z) is one of the sets in the family whose

2

Ordinal numbers

We have learned to pass with such facility from cardinal to ordinal
number that the two aspects appear to us as one. To determine the
plurality of a collection, that is, its cardinal number, we do not bother
anymore to find a model collection with which we can match it — we
count it ... The operations of arithmetic are based on the tacit as-
sumption that we can always pass from any number to its successor,
and this is the essence of the ordinal concept,.

And so matching by itself is incapable of creating an art of reckon-
ing. Without our ability to arrange things in ordered succession little
progress could have been made. Correspondence and succession ... are

“woven into the very fabric of our number system.

Tobias Dantzig, Number: The Language of Science [12]

We learn numbers and counting as a process of succession. ‘Eleven’ has little
real meaning to us except as ‘the number after ten’. In this chapter, we use
this process of succession to define the natural numbers - to do God’s work,
in Kronecker’s phrase — starting from nothing (more precisely, the empty set)
and progressing from one number to the next. As succession is the defining
characteristic of natural numbers, so induction is the key proof technique. We
can use it to define the arithmetic operations and to prove their basic properties.

But we do not have to stop there. By adding the principle of gathering up

all the numbers so far constructed, we extend the ordinal number system into
the infinite. We have transfinite induction to re

place ordinary induction in our
proofs. And, just as any finite set can be count

ed by a natural number, so any
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well-ordered set can be counted by a unique ordinal number. Moreover, when
we come to define cardinal numbers in Chapter 6, we will see Dantzig’s claim
borne out: the only sets for which a satisfactory theory of cardinal number has
been developed are those which can be well-ordered.

The ordinal numbers have another important role to play in the foundations.

The strategy for developing a consistent set theory avoiding Russell’s Paradox
is to generate the sets out of nothing (that is, out of the empty set) in stages.
In this way, the complete totality of sets is never formed, and Russell’s ‘sel, of
all sets which are not members of themselves’ is not defined. The stages in this
process cannot just proceed through the natural numbers but must continue
into the transfinite, at each stage admitting all subsets of the sets constructed
at previous stages. The ordinals give a precise description of these stages. This
is the most technical part of set theory which has to be developed before we
begin the axiomatic approach. Having secured our theory from contradiction
in this way, we follow standard mathematical practice by writing down axioms
which capture the theory we have developed.

2.1 Well-order and induction

A well-orderon a set X is a total order < on X having the property that every
non-empty subset of X has a least element (with respect to the restriction
of <). This grammatically monstrous term is a back-formation from the term
well-ordered set, which we apply to the ordered set (X, <): strictly speaking we
should talk about a ‘good order’, but the term ‘well-order” has become firmly
established and we continue to use it.

For example, the natural numbers (with the usual ordering) form a well-
ordered set: every non-empty subset of natural numbers has a least element.
Indeed, (N, <) is the simplest infinite well-ordered set. Any finite totally ordered
set is well-ordered.

You should recognize that the well-ordering of the natural numbers is closely
related to the idea of ‘proof by induction’. One version of proof by induction
which is commonly used is the ‘minimal counterexample’ technique, where we
suppose that the proposition we are proving for all natural numbers is [alse,
and argue on the smallest number which is a counterexample, using the fact
that the proposition is true for all smaller numbers. Clearly this technigue will
work in any well-ordered set.

Theorem 2.1

Let (X, <) be a well-ordered set. Suppose that Y is a subset of X with the

property that, for all z € X, if it holds that y € Y for all y < z, then it holds
that z € Y. Then Y = X.

Proof

Suppose that Y # X, so that X \ Y # . Since X is well-ordered, X \ Y has
a least element, say z. By definition, any y < & does not lie in X \ Y, and so
lies in Y. The hypothesis of the theorem now shows that z € Y, contrary to
our choice of z. So it cannot be that Y # X. O

With a slight change, this becomes the Principle of Induction:

Theorem 2.2 (Principle of Induction)

Let (X,<) be a well-ordered set. Let P be a property which may hold for
elements of X. Suppose that, for all z € X, if every element y < = has prop-
erty P, then z has property P. Then we conclude that every element of X has
property P. -

This follows on choosing Y to be the set of elements of X which have
property P. Note that we don’t have to do the base case of this induction: our
hypotheses guarantee that the induction starts. For, if z 1s the smallest element
of X, then there are no elements y < z, so vacuously all such elements have
property P, whence z has property P by hypothesis.

2.2 The ordinals

We now develop the theory of ordinals, sometimes called ordinal numbers. These
‘measure’ well-ordered sets in the same way that natural numbers ‘measure’
finite sets. That is, given any finite set S, there is a unique natural number n
such that a bijection exists between S and {1,2,...,n}: the number n is the

cardinality of the set S. Inspired by this, we are going to prove the following
theorem:

Theorem 2.3

Any well-ordered set is isomorphic to a unique ordinal.
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The proof of this theorem is going to take the rest of this section. First, of
course, we must define ordinals!

Given a totally ordered set (X, <), and an element a € X, we define the
section X, to consist of all elements of X which are less than a:

X,={z€X :z<a}.

An ordinal is a well-ordered set (X, <) with the property that X, = a for all
a € X. In other words, each element of X is the set of all its predecessors.

It is not immediately clear that ordinals exist. But we can see how they start.
Let X be an ordinal. It has a least element a. Since @ is the least element, we
have X, = @. But X is an ordinal, so X, = a. Thus a = &. So the smallest
element of any non-empty ordinal is @. Moreover, @ is (vacuously) an ordinal.
Continuing, if X # {a}, then the subset X \ {a} has a least element b; and we
have b = X, = {a} = {@}, so {@} is the second ordinal. Continuing, we find
that the next ordinal is {&, {@}}, and so on.

We will identify these ‘starting ordinals’ with the natural numbers — indeed,
this will be our definition of natural numbers. We take

= O
{o} = {0}

{2,{e}} ={0,1}

0
1
2
3
and so on. In general, we have

n=1{0,1,2,...,n—1},

as we anticipated in the last chapter. So every natural number is an ordinal.
But the ordinals continue after the natural numbers leave off. If w denotes

the smallest ordinal which is not a natural number, then w is the set of all

natural numbers. Then the next ordinal after w is w U {w}, and so on .

Before we begin the proof of the theorem, it is convenient to have a result
which shows that the above methods of constructing ordinals are typical.

Theorem 2.4

(a) If z is an ordinal, then so is z U {z} (with y < z for all y € z).

(b) The union of a set of ordinals is an ordinal.

Proof

(a) The set a = zU{z} (with order as specified in the statement of the theorem)
has as sections all the sections of z and one additional one, namely a,. But
since all the elements of z are smaller than z, we have a, = z. Moreover, for
y € z, we have ay = z, = y, since z is an ordinal.

(b) We defer the proof of this assertion until we know a little more about
ordinals (after Lemma 2.7 below). a

The proof of the theorem requires a series of technical lemmas.

Lemma 2.1

If (X,<) is well-ordered, Y C X, and f : X — Y is an isomorphism, then
f(z) >z forallz € X.

Proof

Induction. Let E = {z € X : f(z) < z}. If E # &, then E has a least element,
zo say. Then f(zo) < zo. Since f is an isomorphism, f(f(zo)) < f(zo). But
this shows that f(zo) € E, whereas f(zo) is smaller than the smallest element
zg € F, a contradiction. So E = &. O

Lemma 2.2

There is at most one isomorphism between any two well-ordered sets.

Proof ay

Let f,g : X — Y be isomorphisms. Then f o g¢~! is an isomorphism from X
to X, so ¢ < g7!(f(z)) for all z € X by Lemma 2.1, from which we see that
g(z) < f(z) since g is an isomorphism. But a similar argument shows that
f(z) < g(z) for all z, whence f(z) = g(z) by antisymmetry. O

Lemma 2.3

There is no isomorphism from a well-ordered set to a section of itself.



Proof

If f: X = X, is an isomorphism, then f(a) € X,, so f(a) < a, contradicting

Lemma 2.1. O

Lemma 2.4

Let (X, <) be a well-ordered set, and let A = {X, : a € X} be the set of
sections of X. Then (4, C) = (X, <).

Proof

The isomorphism from X to A is given by f(a) = X,. It is one-to-one since, if
a < b, then a € X}, but a ¢ Xa, so Xa # Xp; and clearly it 1s onto. Suppose
that @ < b. Then for any £ € X, we have z < a, so z < b, so z € Xp; thus
X, C Xp. We already saw that these sets are not equal, so X, C Xp. This

shows that f is an isomorphism. ]

Lemma 2.5

Every section of an ordinal is an ordinal.

Proof

Let X be an ordinal and X, a section of X. What is (X,)s for b € X7 It
consists of all the elements z € X, which are less than b. But any « which is
less than b is automatically less than a. So (X,)s = Xp = b, the last equality
holding since X is an ordinal. We conclude that X, is an ordinal. O

Lemma 2.6

&

If X and Y are ordinals and Y C X, then X is a section of X.

Proof

Take a to be the least element of X \' Y. Then X, C Y. Choose any y €Y. If
a < y, then X, = y =Y, contains a,s0 a € Y, contrary to assumption. Also
y = a is impossible since y €Y and a ¢ Y. So y < g, and y € X,. So we have
Y C X,. We conclude that Y = X,. O
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Lemma 2.7

Let X and Y be distinct ordinals. Then one is a section of the other.

Proof

First, X NY is an ordinal: for, if a € X NY, then X, = a = Y,, so all elements
of a belong to both X and Y, and a = (X NY),. Hence, by Lemma 2.6, X NY
1s a section of both X and Y.} -

Now suppose that X ﬂ YandY ¢ X. Then’ X NY = X, for some a € X,
and X NY =Y, for some b € Y. But then

a=X,=XNY=Y,=be XNY,

a contradiction. O

Proof of Theorem 2.4

First, note that any member of an ordinal is an ordinal. For, if z is an ordinal,
ye€z,and z €y, theny =2y, 50 y, = (zy), =z, = 2.

Now let X be a set of ordinals. By the above remark, A = J X is also a set
of ordinals, and so there is an irreflexive and antisymmetric ralation < defined
on A by the rule that z < y if z is a section of y. Now < is an order: for, if
¢ <y<zthen y=2, and so £ = y; = (2)r = 25, 50 £ < 2. Now Lemma 2.7
shows that < is a total order. Moreover, it is a well-order: for given a non-empty
subset B of A, choose any b € B; if it is not least, then all smaller elements are
sections of b, and there is a least element among them since b is well-ordered.
(This argument shows that any set of ordinals is well-ordered.) Finally, choose
any a € A; suppose that a € £ € X. Then a = z,, so all elements of a are in z,
and hence in A, and we have a = A, as required. So A is an ordinal. a

Lemma 2.8

If X and Y are isomorphic ordinals then X = Y.

Proof

Let f : X = Y be an isomorphism, and E = {z € X : f(z) # z}. f E = g,
then X =Y; so suppose not. If a is the least element of E, then f(x) = z for
all £ < a, and so

a= Xn = M\\?v = H-AQVV

a contradiction. ]
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Proof of Theorem 2.3

We claim the following:

If (X, <) is a well-ordered set such that, for each a € X, the section
X, is isomorphic to an ordinal, then X is isomorphic to an ordinal.

Let us first see that this claim suffices to prove the theorem. Let P(a) be
the property ‘X, is isomorphic to an ordinal’. Then, assuming the claim, P(a)
holds for all a € X, by induction; appealing to the claim one last time, X itself
is isomorphic to an ordinal. Finally, if X is isomorphic to two ordinals, they are
isomorphic to one another, and hence are equal, by Lemma 2.8. So the theorem
is proved from the claim, and we now only have to establish the claim. O

Proof of the Claim

Let go : Xa — Z(a) be an isomorphism for each @ € X, where Z(a) is an
ordinal. Note that Z(a) and g, are unique, by Lemmas 2.8 and 2.2. We can
consider Z as a function on the set X. Let W be its range:

S\HANAQVUQmN@.

Now, if z,y € X and z < y, then Z(z) C Z(y). For Z(z) and Z(y) are ordinals,
and are not equal (since they are isomorphic to distinct sections of X ); so one
is a section of the other, by Lemma 2.7. It cannot be that Z(y) is a section
of Z(z), else we could construct an isomorphism from X, into its section Xy
by composing gy, the inclusion, and the inverse of g-. So the function Z is a
bijection, and indeed an isomorphism, from X to W (where W is ordered by
inclusion). Thus W is well-ordered (being isomorphic to a well-ordered set). To
finish the proof, we show that W is an ordinal. This holds because its members

are ordinals, so any section W, is equal to a. 0O

The ordinals thus form a sequence of well-ordered sets, each contained in
the next, which go on for ever. One variant of Russell’s Paradox, known as the
Burali-Forti paradoz, is the following assertion:

Theorem 2.5

The ordinal numbers do not form a set.

Proof

If there were a set O consisting of the ordinal numbers, then it would itself be
an ordinal number, and so it would be a member of itself; but it is obviously
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greater than each of its members! O

Despite the fact that the ordinals do not form a set, it is still possible to

think of them as if th i 1
funk ey were a set. In particular, the ordinals form an ‘ordered

Theorem 2.6

For ordinals ¢ and y, the following are equivalent:
(a) z < y;
(b) z € y;
(c)zCuy.

Moreover, exactly one of 2 < y, z =y, y < « holds.

Proof

wu_w HmEde 2.7, mxwo.z% oneof z Cy, z =y, y C = holds. So the last assertion
ollows from a.:o equivalence of (a) and (c). Now (a) requires a little interpre-
nmﬁosn we write < y if z and y are members of some larger ordinal z for
which this holds. Indeed, this doesn’t depend on which ordinal z we take. since
=z and Y= 25 and, if z is a section of y, then z = y U {y} is an ow&bm_
SEQ.H contains both z and y. Now (a) and (b) are equivalent since z < y if and
only if z € zy = y. For (a) and (¢), fz < ythenz =2, C z, = y; and if z £

then z = y or y < z, the latter implying y C z, so z 7y ’ v M

It is also possible (and important) to do induction over all the ordinals:

Theorem 2.7
Let P be a property of ordinals. Suppose that, whenever z is an ordinal for

QCTHOT MUA@V ro—am M.OH m.:. OHQHH—QMM Q T ﬁrm: ~ T TO ﬁww. H €en x OMQM or
< )

Proof

To prove P(z), it suffi 1 i i ini
oy (z) ces to do induction over an ordinal containing z, such as
O

U&.P.:.rocmr we have defined ordinals in a uniform way, it is convenient to
subdivide them into three types; in many applications, the methods of handling
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these types are quite different.

The first type of ordinal consists only of zero, the smallest ordinal. (In
inductive proofs, we are taught to make a separate argument for the base case
where the value of the parameter is zero.)

The second type consists of successor ordinals. We observed above that, for
any ordinal o, the set aU {a} is also an ordinal, called the successor of ov. The
positive natural numbers are all successor ordinals: n 4+ 1 is the successor of n.
In general, the successor of a is the smallest ordinal which is greater than a.
We write the successor of o as s(a)

A non-zero ordinal ) is called a limit ordinal if it is the union of all its

predecessors:
A= CQA» @.

A successor ordinal is not a limit ordinal: for if A = a U {a}, then the ordinals
smaller than A are all contained in @, and so is their union.

Theorem 2.8

Any non-zero ordinal is either a successor ordinal or a limit ordinal.

Proof

Suppose that A is non-zero and is not a successor ordinal. Let

H= CQAv, .

Since a union of ordinals is an ordinal, we see that p 1s an ordinal; and clearly
g C A, that is, p < A, Suppose that p < A. Then p is one of the sets in the
union defining itself; so it is the greatest ordinal less than A, Since A > pu, we
have A > s(p); and we cannot have strict inequality here, or else s(p) would
be in the family whose union is g, that is, s(p) < p, which is clearly false. So
X = s(p) is a successor ordinal, a contradiction. We conclude that A = u and

so A is a limit ordinal. O

As we remarked earlier, many arguments about ordinals (especially induc-
tion arguments) require different methods for the cases of zero, successors, and
limit ordinals. For example, we can re-formulate induction so that it looks more
like ordinary induction (at least in the case of successor ordinals):

Theorem 2.9
Let P be a property of ordinals. Assume that

e WG TIWINiveTa

e P(0) is true;
e P(a) implies P(s(a)) for any ordinal a;
o if A is a limit ordinal and P(8) holds for all # < ), then P()) holds.

Then P(«) is true for all ordinals a.

Proof

We let @ be the property which holds at « if and only if P(B) holds for all
m < a. Now we verify the hypotheses of Theorem 2.7 for Q. Suppose that QB
is _“L.:.o for all 8 < a. Then a fortiori, P(8) holds for all # < . If @ = 0 or « is
a limit ordinal, it follows from the hypotheses of the theorem that P (a) holds
Suppose that a = s(8). Then P(8) holds so, by hypothesis, P(a) holds .
Thus P(a) is true in all cases. Since we know that P(f) is true for m:“m <a
we now deduce that @(a) holds. “

By Theorem 2.7, Q(a) (and hence P(«)) is true for all ordinals a. o

2.3 The hierarchy of sets

Zermelo’s hierarchy was an approach to set theory aimed at avoiding the para-
doxes. With modifications suggested by Fraenkel, it is the approach most com-
monly used today. Zermelo’s idea was to build the sets in well-ordered stages
If sets which are not members of themselves continue to appear at every mﬁmmo.
then there will be no stage at which they all exist and can be gathered 5?“
a m.o_: so Russell’s Paradox will not arise. The stages of the construction will
be indexed by the ordinals (since any well-ordered set is order-isomorphic to a

win:o. ordinal). Let V, be the set of all sets constructed at stage a. Then the
inductive definition is as follows:

Voo = @
SAQV = P <Q
Vi = Uacy Ve for limit ordinals A.
Thus,
i = {o}

V» = {o,{a}}
Vs = {o,{e} {{e}},{e,{2}}};

Va4 is a set with sixteen elements; and so on.

w
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The main content of Zermelo’s approach is that this procedure gives us all
sets. That is, every set is contained in V, for some ordinal c. Symbolically, we
can write

V= CQmO: «\nf

where V is the ‘class’ of all sets and On the ‘class’ of all ordinal numbers. (This
is only an aide-mémoire, not a mathematical expression!)

We derive now a couple of facts about the Zermelo hierarchy, using transfi-
nite induction. First, it really is a hierarchy: the sets get larger as we progress.
(This is not obvious; each set 1s the power set of its predecessor, and most sets
X don’t satisfy X C P X.)

Theorem 2.10
Vo C Vg for a < 8.

Proof

The proof actually requires a double induction, which we separate into two

steps.

Step 1

We claim that it suffices to prove that V,, C V(4 for all ordinals a. For suppose
that this holds, and suppose that @ < 8 and Vo € V. Let B be the smallest
such ordinal (for given a). Clearly § # 0, so there are two cases:

Case 1: B is a successor ordinal, say 8 = s(v). Then @ <7, so
Vo C V4 C «\.‘Sv = Vg,
the second inclusion following from the claim.

Case 2: f is a limit ordinal. Then Vo C V) for all a < A< 8, s0

<Q m CVAQ d\v, = ﬂ\h

Step 2
We prove that Vo C V() for all ordinals & by induction.
Case 1: a = 0. Then V, is the empty set, which is a subset of any set.

2. Ordinal numbers

49
Case 2: a = s(v) for some 5. Take z € V,,. Then
e CVyCVyy) = Va,
. soz€EPV,= 3(a)-
Case 3: o is a limit ordinal. Take z € V. Then z € Vs for some § < a; so
z € V) C Vi(a),
since Vy(5y =P Vs CPYV, = Vi(a)- [}

Theorem 2.11

For any ordinal a, we have o C V,,, and hence o € Vi(a)-

Proof

Again the proof is by induction.
Case 1: @ = 0 = @: then « is a subset of any set!

Case m a=s(y)=yU{y}.Now y CV, C V,,and vy € Vs(y) = Va, both by
the induction hypothesis; so a C V,. )

Case 3: « is a limit ordinal. Then

@ = CmAQ% - C&AQ Vs = Va-
0

. There are two drawbacks with this simple approach to rigorous set theory
m,:m?. we appear to be defining sets in terms of ordinals, which are ﬁrm5m0_<om.
sets: 1s our procedure not circular? Second, it is not easy, from this approach
to prove things about sets. .

. In Chapter 6, we will deduce from Zermelo’s hierarchy a number of asser-
tions about sets. We will then take these assertions as axioms for a formal the-
ory of sets. As always in mathematics, axiomatization represents a development
in a field which has already achieved some mathematical madturity. Zermelo’s
insight gives us confidence in our formal manipulations with the axioms.

2.4 Ordinal arithmetic

‘Can you do Addition?’ the White Queen asked. ‘What’s one and
one and one and one and one and one and one and one and one?’
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‘T don’t know,’ said Alice. ‘I lost count.’
‘She can’t do Addition,” the Red Queen interrupted.

Lewis Carroll, Through the Looking-Glass, and what Alice found there

The ordinals we have defined are a kind of numbers — indeed, they include
the natural numbers — although they are designed for ‘counting’ well-ordered
sets, not arbitrary sets. Accordingly, we would like to do arithmetic with them,;
in particular, to add and multiply them. There are two approaches to this.

First is the structural approach: we figure out how to ‘add’ and ‘multiply’
well-ordered sets, and use these to define the operations on ordinals. Essentially,
we take the ‘ordered sum’ of two ordered sets to be their disjoint union, with
each element of the first set preceding each element of the second set. Since the
sets may not be disjoint (as will indeed happen if they are non-zero ordinals),
we ‘tag’ them to make disjoint copies, as in the first proof of the Schroder—
Bernstein theorem. (We take the tags to be the first two ordinals, 0 = @ and
1 = {@}, though in fact any two distinct tags would do.) For multiplication, we
take the ‘lexicographic product’ (the cartesian product with the lexicographic

order).

Definition 2.1

Let (X,<x) and (Y,<y) be ordered sets. We define the ordered sum of these
sets to be (Z,<z), where

o Z=(Xx{0)u (Y x{1});

e (21,0) <z (z2,0) if and only if 1 <x Z2;

o (y1,1) <z (y2,1) if and only if y1 <y ¥2;

o (z,0)<z (y, 1) forallze X,y€Y.
We define the lexicographic product of the sets to be (W, <w), where
eW=XxY;

o (z1,11) <w (22, ¥2) if y1 <y y2;

o (z1,y) <w (z2,) if 1 <x 2.

It can be shown that the ordered sum and lexicographic product of totally

ordered sets are totally ordered sets; and ordered sum and lexicographic product
of well-ordered sets are well-ordered sets.
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Definition 2.2

Let o and 3 be ordinals. We define « + 8 to be the unique ordinal isomorphic

to ﬂro.oamqmn_ sum of & and B3, and o - B to be the unique ordinal isomorphic
to their lexicographic product.

The second definition is more formal, using transfinite induction.

Definition 2.3

ea+0=aq.

e a+s(f) =s(a+p).
e If A is a limit ordinal then o + A = Usera+ 8.

ea-s(f)=a-B+a.
e If ) is a limit ordinal then a-A=gera-B.

It can be shown that this definition agrees with the previous one. (The proof,
of course, is by induction.) The advantage of this approach is its :mi_u::‘u.\
Hro last clause in the definition is essentially the same in both cases E._a.
1s easily modified for other situations. So if we want to define, for oxmmdwrw
exponentiation of ordinals, we can proceed as follows: “

Definition 2.4

° QuAmv —af. .

e If X is a limit ordinal then a* = Us<a a”.

. .Zoi the natural numbers are just the ordinals less than w, so we have
incidentally defined them and shown how to add and multiply them. (The
definitions are most easily obtained from Definition 2.3 by dropping the clauses
about limit ordinals.) Now the properties of natural numbers that we used in
Section 1.8 can be proved by induction: see Exercise 2.4. We use the usual
.so_pwaos for the natural numbers, so that, for example, 2 = {@, {@}}. The first
infinite ordinal (the set of all natural numbers) is usually denoted by w.
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Various properties of ordinal arithmetic can be proved (see Exercise 2.6 for
some of these). Perhaps more interesting are the properties which are not true.

For example,
l4w=w#w+1

So the commutative law for addition and the cancellation law both fail. Indeed,
if we take an infinite sequence and place a new element to the left, we still have
an infinite sequence; but if we place a new element to the right, we get a different
ordered set (one with a greatest element).

Ordinals soon grow to a point where it is not easy to imagine the resulting
sets. For example, w? is an infinite sequence of infinite sequences. Further along

the sequence, we come to w®, w?*, ..., and then

EE = C:mZE:.

But we can continue, to reach ordinals like W (a ‘tower’ of n + 1 omegas),
which we denote by w,. More generally, we can define w, by

® Wy = W,

—_ w
® Wila) = WU,

owy = Jycr Wo for limit ordinals A.

Then w,, is an infinite ‘tower’ W m@i:w:%v we reach the unimaginably

large € = w,,.

However, vast as these ordinals are, they are all countable, since each 1s a
countable union of countable ordinals. Somewhere, even further down the line,
lies the first uncountable ordinal . ..

EXERCISES

9.1 Prove that the ordered sum and lexicographic product of
totally ordered (resp., well-ordered) sets is totally ordered (resp.,
well-ordered).

2.2 Let X be any set, and define X* to be the set of all finite

sequences of elements of X. Prove that, if X can be well-ordered,
then so can X*. [Hint: X* = [J,yX"; arrange the n-tuples in
dictionary order.] Show that dictionary order on the set X* is
never a well-ordering if | X| > 1.

™y Ry g gy W gty a 23

2.3 According to our definition, any natural number can be
described in symbols as a sequence whose terms are the empty set

@, opening and closing curly brackets { and }, and commas ,- For
example, the number 4 is

{2,{9},{2,{2}} {2, {2}, {2, {2}}}}

with eight occurrences of @, eight of each sort of bracket, and
seven commas. How many occurrences of each symbol are there
in the expression for the number n?

2.4 Prove the properties of addition and multiplication of nat-
ural numbers used in Section 1.8.

2.5 Prove that the two definitions of ordinal addition and mul-
tiplication agree.

2.6 Prove the following properties of ordinal arithmetic:
@) (@+B)+rv=a+(B+7).
() (@+p) - y=c-v+8-7.

(c) af+Y = of . o7,

2.7 (a) Show that, if y + o =y + f, then o = 3.
. [Hint: The identity map from v + o to vy + 8 maps ¥ to ¥ and
induces an isomorphism from a to 4]

(b) Show that, if y-a = v - and ¥ # 0, then o = 8.

N.m Let (X;)ier be a family of non-empty sets. Prove that, under
either of the following conditions, the cartesian product [Ler Xi
1s non-empty: -

(a) Xi=X forallieI;
(b) X; is well-ordered for all i € I.

2.9 Let X be a subset of the set of real numbers, which is well-
ordered by the natural order on R. Prove that X is finite or count-
able.

[Hint: bm.a X = {zp : B < a} for some ordinal a, and assume
that § < 5 implies 23 < z,. Choose a real number gs in the in-

terval (zg,z4(g)) for all § < a. Prove that these rational numbers
are all distinct.]
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Case 2: I C R(P). By Theorem 6.2 (which uses the Axiom of Choice), there is
a maximal ideal J of B(P) containing I. Since B(P) is a commutative ring with
identity, B(P)/J is a field, all of whose elements satisfy the polynomial z2 — z
of degree 2. So [B(P)/J| = 2, and B(P)/J = Rs. So there is a homomorphism
v : B(P) — Ry whose kernel is J. Thus, there is a valuation v such that
v(1 +s) = 0 (in other words, v(s) = 1) for all s € I; that is, X is satisfiable,
as required. O

Remark We have seen that various mathematical facts (such as the infinite
Four-Colour Theorem, and the fact that every set can be totally ordered) can
be proved using the Propositional Compactness Theorem. So these are also
consequences of the Axiom of Choice. It is known, however, that Propositional
Compactness is a ‘weaker’ principle than AC: there is no proof of AC using
Propositional Compactness, and indeed models of set theory have been con-
structed in which Propositional Compactness is true but AC fails. See the
chapter by John Truss in Kaye and Macpherson [29] for a survey of this.

6.3 Cardinals

We now develop a theory of cardinal numbers. As in the case of the ordinals, we
can state at the start the theorem that we want to prove from our definition.
Since cardinal numbers should measure the size of arbitrary sets, we require a
theorem which says:

Theorem 6.6

Every set has a bijection to a unique cardinal number.

It has to be said that no really adequate theory of cardinal numbers exists in
ZF. Bertrand Russell attempted a definition in which, for example, the number
2 is the class of all 2-element sets. With this definition, however, 2 is not even
a set, and certainly not a 2-element set! However, with the Axiom of Choice,
things are much simpler. We work in ZFC for the rest of this section. (In ZF,
this theory applies to those sets which can be well-ordered.)

Definition 6.1

A cardinal is an ordinal « with the property that there is no bijection between
a and any section of a.
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Note that, according to this definition, all finite ordinals (that is, all natural
numbers) are cardinals; and w is a cardinal, since it is infinite but all its sections
are finite. However, w + 1 is not a cardinal, since it is countable (that is, has a
bijection to its section w).

Proof of Theorem 6.6 (in ZFC)

Let X be a set. By WO, X can be well-ordered; that is, there is a bijection
from X to some ordinal. Now there is a smallest ordinal « in the set of ordinals
bijective with X. And « is a cardinal; for, if there was a bijection from o to a
section f, then there would be a bijection from X to 3, contrary to the choice
of a.

Now, if X has a bijection to two cardinal numbers o and B, then there is a
bijection between a and f, contradicting the fact that the smaller is a section
of the larger. O

We denote the cardinal of the set X (the unique cardinal bijective with X )
by |X|. Note that, if a is a cardinal, then |a| = a.

Cantor introduced the aleph notation for infinite cardinals. (The letter N,
‘aleph’, is the first letter of the Hebrew alphabet.) This ig a function from
ordinals to cardinals, defined by transfinite recursion as follows:

[ J ZO = Ew
® R,(qa) 1s the smallest cardinal greater than R,;

o if A is a limit ordinal then
Ry = CuA» Ng.

It 1s not obvious that R is a cardinal. It is certainly an ordinal, since it is a
union of ordinals. Suppose that it were bijective with a section of itself. This
section could not contain all Rg; but if some Rg does not lie in the section, then
the restriction of the bijection takes Ns into a section of itself, a contradiction.

So we have two notations for the ordinal describing the infinite sequence of
natural numbers, namely w and Rq. We use the first if we are thinking of it as
an ordinal, and the second when we regard it as a cardinal. Note that N, is the
first uncountable ordinal.

There is an order relation defined on cardinals, since they are special kinds
of ordinals. In fact, we have:

|X] < |Y] if and only if there is an injective function from X to Y.
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For certainly |X| < |Y| implies that | X| (as an ordinal) is a subset of [Y|. Sup-
pose that an injective function f : o — 3 exists, where o and 8 are cardinals.
Then there is a bijective function from «a to an ordinal not exceeding 3 (since
the image of f is well-ordered and contained in f); so the cardinal « is not
greater than g.

The Schréder—Bernstein Theorem can be written in terms of cardinals as
follows.

Theorem 6.7
For any two sets X and Y, if |X| < |Y| and |Y| < |X] then |X| = |Y].

Now we will define arithmetic operations (addition, multiplication and expo-
nentiation) of cardinals. The simplest way to do this is to mirror the operations
of disjoint union, cartesian product, and set of functions: that is, for cardinals
a and (3, we define

o+ 8= |ax{0})U(gx{1});
QQ.QH_QXE_W
oQuH_Qm_w

where in the third (confusing) equation, on the right-hand side A® means the
set of all functions from B to A, and not the ordinal exponentiation defined in
Chapter 2. We can write these definitions as statements about the cardinalities
of arbitrary sets, as follows:

o |[AUB| = |A|+ |B| if A and B are disjoint;
* |[Ax B|=|Al-|B];
o |AB| = |4l

It turns out that cardinal addition and multiplication tables are very easy
to learn!

Theorem 6.8
Let & and @ be non-zero cardinals, at least one of which is infinite. Then

a+f=ca-f=max{e, [}

Proof

We claim that it is enough to prove that

o - =uw
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for any infinite cardinal a. For, if § < «, then there is an obvious injection
from a x § to a x «; and there is an injection from (a x {0}) U (3 x {1}) to

(ax{0HU(ax {1} =ax2,

-where 2= {0,1}.Soa-# < a-aand e+ < a-a. On the other hand, clearly

a<oa+pand a <a-f (the latter if 2 # 0).

We have already proved in Chapter 1 that Rg - Xy = 8. The general proof
follows similar lines but is rather more complicated. We suppose that the theo-
rem is false. In that case, there will be a smallest cardinal o such that a-a > .
We let P = a x a. Now recall that « is an ordinal, which means that it is a set
of ordinals. In the following argument, we use ordinal addition! We define, for
ordinals 8 < a, the subset Ps of P by the rule

Ps={(z,y) EP:z+y=p}.

These sets correspond to the north-east to south-west arrows in Figure 1.3.
We claim that the sets Py for § < « form a partition of P. Clearly they are
pairwise disjoint. To show that every point lies in one of them, we need to
show that, if ¢,y < a, then z + y < «: but this follows from the fact that the
theorem is true for cardinals less than a. (The ordinal z 4 y has cardinality
lz| + |yl = max{|z|, [y]}.) .

Now we well-order each ‘diagonal strip’ Ps by the ‘lexicographic’ rule

(z,y) < (z',y) ifeitherz < 2/, orz=2', y< ¥/.

This is easily seen to be a well-ordering - it is the ordering induced on Pj as a
subset of a X a. So now we can well-order all of P by putting (z,y) < (2',y') if
either (z,y) € P, (2',y') € Py with 8 <, or (z,y) < (',y') within Ps under
the ordering already defined. This gives a well-ordering of P.

Let 8 be the unique ordinal isomorphic to P. We have 6 > «, since |P| > «
by assumption. So there is a point (u,v) in P such that the section (u,v) is
isomorphic to a. Suppose that (u,v) € Pg: that is, u + v = §. Then all points
(z,y) € P with (z,y) < (u,v) satisfy ¢ + y < 8, whence z,y < §; so this entire
section of P is contained in s(#) x s(8). We conclude that

|s(8) x s(B)| = & > |s(P)1,

a contradiction since s(8) < «. (An infinite successor ordinal cannot be a
cardinal, and certainly |3| < a.)
The theorem is proved. m|

The theorem implies, in particular, that the union of at most « sets, each
of cardinality at most «, has cardinality at most «, for any infinite cardinal «.
So, using sums and products, we cannot build ever larger sets.
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Exponentiation is much less trivial, however, and certainly has the ability
to construct larger sets. We give a brief introduction. First, we have

Theorem 6.9

(a) For any set X, [P X| = 2IX!,
(b) [ = 2%,

Proof

(a) We have to produce a bijection between the set of subsets of X and the set
of functions from X to 2 = {0,1}. We do this by representing a subset Y of X
by its characteristic function yy, defined as follows:

ﬁ ifrey,

(@ =10 i, ¢y.

Then distinct sets have distinct characteristic functions; and any function F :
X — 2 is the characteristic function of some set, namely the set {z € X :
f(z) = 1}. So we have a bijection as required.

(b) First, note that the cardinality of R is the same as that of the unit
interval (0,1): the map f(z) = tanw(z — ) is a bijection from (0,1) to R.
Moreover, we can regard an element of 2V as an infinite sequence of zeros
and ones. Now we have an injection from 2% to (0, 1) by regarding the infinite
sequence as an infinite decimal expansion (which happens to use only zeros and
ones); and an injection from (0, 1) to 2N by taking the base 2 expansion of a
number in the unit interval (resolving ambiguities by assuming that the base 2
expansion of a rational whose denominator is a power of 2 ends with infinitely
many zeros rather than with infinitely many ones). By the Schroder—Bernstein
Theorem, the cardinalities are equal. O

Thus, Cantor’s Theorem (Theorem 1.10) can be translated into the form

Theorem 6.10

For any cardinal «, 2% > a. O

Cardinal arithmetic satisfies some (but of course not all) of the laws of the
arithmetic of the natural numbers. In particular, it is true that (o?)Y = o7,
as is shown by producing a bijection between these sets (see Exercise 6.1). This
simple observation has the following consequence:

T T w Ty e T

Theorem 6.11
Let a and @ be cardinals, with « infinite and 2 < 8 < 2%, Then g% = 2%,

Proof

This follows from
MQ M QQ m AMQVQ — MQ.Q — MQg

on using the Schroder-Bernstein Theorem. O

So much of the mystery of cardinal arithmetic lies in the function o — 2¢.
By Cantor’s Theorem, we have 2%« > R;(a) for any ordinal a. Do we have
equality or not? The famous Continuum Hypothesis asserts that 2% = R;.
This was one of the problems posed in 1900 to the mathematical community
by David Hilbert, to guide the development of mathematics in the twentieth
century. In Hilbert’s words (as translated by Dr Mary Winston Newson in the
Bulletin of the American Mathematical Society), quoted in [8],

Two assemblages, 1.e. two assemblages of ordinary real numbers
or points, are said to be (according to Cantor) equivalent or of egqual
cardinal number, if they can be brought into a relation to ong another
such that to every number of the one assemblage corresponds one and
only one definite number of the other. The investigations of Cantor
on such assemblages of points suggest a very plausible theorem, which
nevertheless, in spite of the most strenuous efforts, no one has succeeded
in proving. This is the theorem:

Every system of infinitely many real numbers, i.e. every assemblage
of numbers (or points), is either equivalent to the assemblage of nat-
ural integers, 1,2,3, ..., or to the assemblage of all real numbers and
therefore to the continuum, that is, to the points on a line: as regards
equivalence there are, therefore, only two assemblages of numbers, the
countable assemblage and the continuum.

Here Hilbert is using the term ‘assemblage’ for our ‘infinite set’, and con-
sidering subsets of R. Since |R| = 2%¢, he asks whether it is true that there is
no infinite cardinal strictly between X, and 2%, that is, whether 2% = R;. Its
plausibility was reinforced when Godel proved that it cannot be disproved in
ZFC. Thirty years later, however, Hilbert was answered in a way he would not
have expected by Cohen, who showed that i1t cannot be proved in ZFC either.
By a new technique known as forcing, he constructed a model of ZFC in which
9Ro — Ns.



