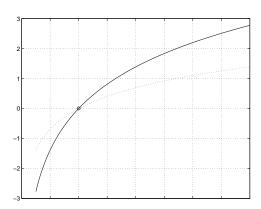
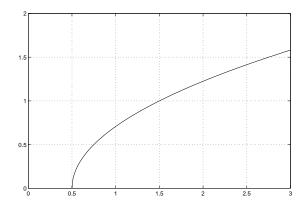

Einführung in die Angewandte Mathematik I, VO

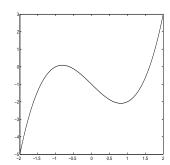

Klausur am 26.6.2003

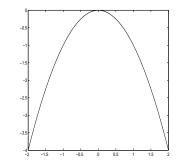
Geben Sie eine kurze Begründung Ihrer Antwort

1. Welche der folgenden Funktionen a) $f(x) = x^2$, b) $g(x) = -x^2$, c) $h(x) = -x^2 + x$, d) $i(x) = x^2 - x$ gehört zu dem Graph



2. Ordnen Sie die Funktionen $f(x) = \log(x^2)$ und $g(x) = \log(x)$ den beiden Funktionsgraphen zu. Bestimmen Sie die kartesischen Koordinaten des mit \circ markierten Punktes.




- 3. Welche der folgenden Aussagen ist richtig?
 - (a) Wenn f'(0) > 0, dann ist f monoton wachsend.
 - (b) Ist f'(0) > 0 und f'(1) > 0, dann ist f monoton wachsend auf [0, 1].
 - (c) Ist f'(x) > 0 für $x \in [0, 1]$, dann ist f monoton wachsend auf [0, 1].
- 4. Trifft folgende Behauptung zu? Ist $f'(x_0) = 0$, dann besitzt f an der Stelle x_0 ein lokales Extremum.

- 5. Welche der folgenden Aussagen trifft zu?
 - (a) $|x| \ge 0$ für alle $x \in \mathbb{R}$.
 - (b) $|x| \ge 0$ für alle $x \ge 0$ und |x| < 0 für alle x < 0.
- 6. Skizzieren Sie die Umkehrfunktion von

- 7. Ist folgender Schluß gerechtfertigt? Gilt für eine Funktion $\lim_{n\to\infty} f(x_0 \frac{1}{n}) = \lim_{n\to\infty} f(x_0 + \frac{1}{n})$, dann ist f stetig an der Stelle $x = x_0$.
- 8. Betrachten Sie die Graphen der Abbildungen f, g und h:

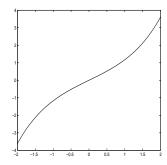


Figure 1: f Figure 2: g Figure 3: h Welche der Abbildungen $f: [-2,2] \rightarrow [-5,3], g: [-2,2] \rightarrow \mathbb{R}$ und $h: [-2,2] \rightarrow [-3.63,3.63]$ ist injektiv, surjektiv, bijektiv?