Proseminar Functionalanalysis Problems 8 18.5.2005

- 51. Let M be a subset of a Hilbert space H, and let $v, w \in H$. Suppose that (v, x) = (w, x) for all $x \in M$ implies v = w. If this holds for all $v, w \in H$, show that M is total (complete) in H, i.e $\overline{\operatorname{span}}M = H$.
- 52. Let $x_n(t) = t^n$, $n \in \mathbb{N}_0$. Show that $\{x_n : n \in \mathbb{N}_0\}$ is complete in $L^2(-1, 1)$. Hint: Assume $f \in L^2(-1,1)$ satisfies $f \perp x_n, n \in \mathbb{N}_0$. Show $F \perp x_n, n \in \mathbb{N}_0$, where F(t) = $\int_{-1}^{t} f(s) ds$. Approximate F by a polynomial Q using the theorem of Weierstraß and use

$$\int_{-1}^{1} F(t)^2 dt = \int_{-1}^{1} F(t)(F(t) - Q(t)) dt$$

(justify) to argue F = 0, which implies f = 0.

- 53. On \mathbb{C}^2 let the operator $T: \mathbb{C}^2 \to \mathbb{C}^2$ be defined by $Tx = (\xi_1 + i\xi_2, \xi_1 i\xi_2)$, where $x = (\xi_1, \xi_2)$. Find T'. Show that we have T'T = TT' = 2id.
- 54. Let $\{y_k: 1 \leq k \leq n\}$ be linearly independent elements of a Hilbert space H and define $\mathcal{K} = \{x \in H : (x, y_k) = c_k, 1 \le k \le n\}$, where $c_k \in \mathbb{R}$ are fixed constants. Show that there exists a unique element $x_0 \in \mathcal{K}$ with minimum norm. Furthermore show that x_0 is given by

$$x_0 = \sum_{i=1}^n \beta_i y_i$$

where the coefficients β_i are given by the solution of the system

$$(y_1, y_1)\beta_1 + (y_2, y_1)\beta_2 + \dots + (y_n, y_1)\beta_n = c_1$$

$$(y_1, y_2)\beta_1 + (y_2, y_2)\beta_2 + \dots + (y_n, y_2)\beta_n = c_2$$

$$\vdots$$

$$(y_1, y_n)\beta_1 + (y_2, y_n)\beta_2 + \dots + (y_n, y_n)\beta_n = c_n$$

55. The shaft angular velocity of an d-c motor driven from a variable current source u is governed by the following first order differential equation

$$\dot{\omega}(t) + \omega(t) = u(t).$$

The angular position θ of the motor shaft is the time integral of ω . Assume that the motor is initially at rest $\theta(0) = \omega(0) = 0$. Determine the field current u of minimum energy which rotates the shaft within one second to the new rest position $\theta = 1, \omega = 0$. The energy is measured by $\int_0^1 u^2(t) dt$. Hint: Use problem 54