Proseminar Functionalanalysis Hints to Problems 8 18.5.2005

51. Let M be a subset of a Hilbert space H, and let $v, w \in H$. Suppose that (v, x) = (w, x) for all $x \in M$ implies v = w. If this holds for all $v, w \in H$, show that M is total (complete) in H, i.e $\overline{\text{span}}M = H$.

Equivalent formulation: If $y \in M^{\perp}$ then y = 0. Show this implies $\overline{\text{span}}M = H$

52. Let $x_n(t) = t^n$, $n \in \mathbb{N}_0$. Show that $\{x_n : n \in \mathbb{N}_0\}$ is complete in $L^2(-1, 1)$. Hint: Assume $f \in L^2(-1, 1)$ satisfies $f \perp x_n$, $n \in \mathbb{N}_0$. Show $F \perp x_n$, $n \in \mathbb{N}_0$, where $F(t) = \int_{-1}^t f(s) ds$. Approximate F by a polynomial Q using the theorem of Weierstraß and use

$$\int_{-1}^{1} F(t)^2 dt = \int_{-1}^{1} F(t)(F(t) - Q(t)) dt$$

(justify) to argue F = 0, which implies f = 0.

Step1: $f \perp x_0 \Leftrightarrow \int_{-1}^{1} f(t) dt = 0$ Step2: $f \perp x_n, n \ge 1$ implies by integrating by parts

$$0 = \int_{-1}^{1} f(t) x_n(t) \, dt = \dots = -n \int_{-1}^{1} F(t) x_{n-1} \, dt.$$

Hence $F \perp x_n$, $n \in \mathbb{N}$. Note F(0) = F(1) = 0Step3: Choose $\varepsilon > 0$ and a polynomial Q (by the Weierstraß Theorem) s.th. $||F-Q|| < \varepsilon/\sqrt{2}$. By the hint already given $||F||_{L^2} < \varepsilon$ follows. Since ε is arbitrary F = 0 follows. Differentiate formally to obtain f = 0.

- 53. On \mathbb{C}^2 let the operator $T: \mathbb{C}^2 \to \mathbb{C}^2$ be defined by $Tx = (\xi_1 + i\xi_2, \xi_1 i\xi_2)$, where $x = (\xi_1, \xi_2)$. Find T'. Show that we have T'T = TT' = 2id.
- 54. Let $\{y_k \colon 1 \leq k \leq n\}$ be linearly independent elements of a Hilbert space H and define $\mathcal{K} = \{x \in H \colon (x, y_k) = c_k, 1 \leq k \leq n\}$, where $c_k \in \mathbb{R}$ are fixed constants. Show that there exists a unique element $x_0 \in \mathcal{K}$ with minimum norm. Furthermore show that x_0 is given by

$$x_0 = \sum_{i=1}^n \beta_i y_i$$

where the coefficients β_i are given by the solution of the system

$$(y_1, y_1)\beta_1 + (y_2, y_1)\beta_2 + \dots + (y_n, y_1)\beta_n = c_1$$

$$(y_1, y_2)\beta_1 + (y_2, y_2)\beta_2 + \dots + (y_n, y_2)\beta_n = c_2$$

$$\vdots$$

$$(y_1, y_n)\beta_1 + (y_2, y_n)\beta_2 + \dots + (y_n, y_n)\beta_n = c_n.$$

Observe that \mathcal{K} is the intersection of closed hyperplanes. We want to use the theorem on the

projection onto a convex set. Show that \mathcal{K} is not empty: we show more: define $\phi: H \to \mathbb{R}^n$, $\phi(x) = ((x, y_1), \dots, (x, y_n))$. Claim: ϕ is surjective. Assume ϕ is not surjective, then there exists $\alpha \notin \phi(X)$. By the strict separation theorem there exists $\beta \in \mathbb{R}^n$, $\beta \neq 0$ with

$$\beta \cdot \phi(X) < \beta \cdot \alpha,$$

Deduce from this $\sum \beta_i y_i = 0$ which by linear independence of y_i implies $\beta = 0$. Use the projection theorem to argue that the element x_0 of minimal norm is characterized by

$$(x_0, z) \ge 0,$$
 for all $z \in \mathcal{K} - x_0$

Show $\mathcal{K} - x_0 = M^{\perp}$, with $M = span\{y_1, \ldots, y_n\}$ and deduce from this that x_0 is characterized by

$$(x_0, z) = 0$$
 for all $z \in M^{\perp}$,

hence $x_0 \in M^{\perp \perp} = M$. This implies the desired representation.

55. The shaft angular velocity of an d-c motor driven from a variable current source u is governed by the following first order differential equation

$$\dot{\omega}(t) + \omega(t) = u(t).$$

The angular position θ of the motor shaft is the time integral of ω . Assume that the motor is initially at rest $\theta(0) = \omega(0) = 0$. Determine the field current u of minimum energy which rotates the shaft within one second to the new rest position $\theta = 1$, $\omega = 0$. The energy is measured by $\int_0^1 u^2(t) dt$. Hint: Use problem 54

Show $\theta(t) = \int_0^t (1 - e^{-(t-s)})u(s) \, ds$. the constraints $\theta(1) = 1$, $\omega(1) = 0$ lead to

$$\int_0^1 e^s u(s) \, ds = 0$$
$$\int_0^1 u(s) \, ds = 0$$

Use problem 54 with $y_1(t) = 1$, $y_2(t) = e^t$.