## Proseminar Functionalanalysis

## Hints to Problems 8 18.5.2005

51. Let $M$ be a subset of a Hilbert space $H$, and let $v, w \in H$. Suppose that $(v, x)=(w, x)$ for all $x \in M$ implies $v=w$. If this holds for all $v, w \in H$, show that $M$ is total (complete) in $H$, i.e $\overline{\operatorname{span}} M=H$.

Equivalent formulation: If $y \in M^{\perp}$ then $y=0$. Show this implies $\overline{\text { span }} M=H$
52. Let $x_{n}(t)=t^{n}, n \in \mathbb{N}_{0}$. Show that $\left\{x_{n}: n \in \mathbb{N}_{0}\right\}$ is complete in $L^{2}(-1,1)$.

Hint: Assume $f \in L^{2}(-1,1)$ satisfies $f \perp x_{n}, n \in \mathbb{N}_{0}$. Show $F \perp x_{n}, n \in \mathbb{N}_{0}$, where $F(t)=$ $\int_{-1}^{t} f(s) d s$. Approximate $F$ by a polynomial $Q$ using the theorem of Weierstraß and use

$$
\int_{-1}^{1} F(t)^{2} d t=\int_{-1}^{1} F(t)(F(t)-Q(t)) d t
$$

(justify) to argue $F=0$, which implies $f=0$.

Step 1: $f \perp x_{0} \Leftrightarrow \int_{-1}^{1} f(t) d t=0$
Step2: $f \perp x_{n}, n \geq 1$ implies by integrating by parts

$$
0=\int_{-1}^{1} f(t) x_{n}(t) d t=\cdots=-n \int_{-1}^{1} F(t) x_{n-1} d t
$$

Hence $F \perp x_{n}, n \in \mathbb{N}$. Note $F(0)=F(1)=0$
Step3: Choose $\varepsilon>0$ and a polynomial $Q$ (by the Weierstraß Theorem) s.th. $\|F-Q\|<\varepsilon / \sqrt{2}$. By the hint already given $\|F\|_{L^{2}}<\varepsilon$ follows. Since $\varepsilon$ is arbitrary $F=0$ follows. Differentiate formally to obtain $f=0$.
53. On $\mathbb{C}^{2}$ let the operator $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be defined by $T x=\left(\xi_{1}+i \xi_{2}, \xi_{1}-i \xi_{2}\right)$, where $x=\left(\xi_{1}, \xi_{2}\right)$. Find $T^{\prime}$. Show that we have $T^{\prime} T=T T^{\prime}=2 \mathrm{id}$.
54. Let $\left\{y_{k}: 1 \leq k \leq n\right\}$ be linearly independent elements of a Hilbert space $H$ and define $\mathcal{K}=\left\{x \in H:\left(x, y_{k}\right)=c_{k}, 1 \leq k \leq n\right\}$, where $c_{k} \in \mathbb{R}$ are fixed constants. Show that there exists a unique element $x_{0} \in \mathcal{K}$ with minimum norm. Furthermore show that $x_{0}$ is given by

$$
x_{0}=\sum_{i=1}^{n} \beta_{i} y_{i}
$$

where the coefficients $\beta_{i}$ are given by the solution of the system

$$
\begin{gathered}
\left(y_{1}, y_{1}\right) \beta_{1}+\left(y_{2}, y_{1}\right) \beta_{2}+\cdots+\left(y_{n}, y_{1}\right) \beta_{n}=c_{1} \\
\left(y_{1}, y_{2}\right) \beta_{1}+\left(y_{2}, y_{2}\right) \beta_{2}+\cdots+\left(y_{n}, y_{2}\right) \beta_{n}=c_{2} \\
\vdots \\
\left(y_{1}, y_{n}\right) \beta_{1}+\left(y_{2}, y_{n}\right) \beta_{2}+\cdots+\left(y_{n}, y_{n}\right) \beta_{n}=c_{n}
\end{gathered}
$$

Observe that $\mathcal{K}$ is the intersection of closed hyperplanes. We want to use the theorem on the
projection onto a convex set. Show that $\mathcal{K}$ is not empty: we show more: define $\phi: H \rightarrow \mathbb{R}^{n}$, $\phi(x)=\left(\left(x, y_{1}\right), \ldots,\left(x, y_{n}\right)\right)$. Claim: $\phi$ is surjective. Assume $\phi$ is not surjective, then there exists $\alpha \notin \phi(X)$. By the strict separation theorem there exists $\beta \in \mathbb{R}^{n}, \beta \neq 0$ with

$$
\beta \cdot \phi(X)<\beta \cdot \alpha
$$

Deduce from this $\sum \beta_{i} y_{i}=0$ which by linear independence of $y_{i}$ implies $\beta=0$.
Use the projection theorem to argue that the element $x_{0}$ of minimal norm is characterized by

$$
\left(x_{0}, z\right) \geq 0, \quad \text { for all } z \in \mathcal{K}-x_{0}
$$

Show $\mathcal{K}-x_{0}=M^{\perp}$, with $M=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}$ and deduce from this that $x_{0}$ is characterized by

$$
\left(x_{0}, z\right)=0 \quad \text { for all } z \in M^{\perp}
$$

hence $x_{0} \in M^{\perp \perp}=M$. This implies the desired representation.
55. The shaft angular velocity of an $\mathrm{d}-\mathrm{c}$ motor driven from a variable current source $u$ is governed by the following first order differential equation

$$
\dot{\omega}(t)+\omega(t)=u(t) .
$$

The angular position $\theta$ of the motor shaft is the time integral of $\omega$. Assume that the motor is initially at rest $\theta(0)=\omega(0)=0$. Determine the field current $u$ of minimum energy which rotates the shaft within one second to the new rest position $\theta=1, \omega=0$. The energy is measured by $\int_{0}^{1} u^{2}(t) d t$.
Hint: Use problem 54
Show $\theta(t)=\int_{0}^{t}\left(1-e^{-(t-s)}\right) u(s) d s$. the constraints $\theta(1)=1, \omega(1)=0$ lead to

$$
\begin{aligned}
\int_{0}^{1} e^{s} u(s) d s & =0 \\
\int_{0}^{1} u(s) d s & =0
\end{aligned}
$$

Use problem 54 with $y_{1}(t)=1, y_{2}(t)=e^{t}$.

