Proseminar Functionalanalysis

Problems $7 \quad$ 4.5.2005

43. Show that in a Hilbert space the orthogonal projection onto a nonempty, closed and convex subset is a contraction.
44. Let $\left(x_{n}\right)$ be a sequence in a Hilbert space H which converges weakly to $x \in H$. If $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=$ $\|x\|$ then $\left(x_{n}\right)$ converges strongly to x.
45. Let $H_{i}, i=1,2$, be Hilbert spaces and $H=H_{1} \times H_{2}$. Endow H with the norm $\|(x, y)\|=$ $\max \left(\|x\|_{1},\|x\|_{2}\right), x \in H_{1}, y \in H_{2}$ where $\|\cdot\|_{i}$ denote the norms induced by the inner products on $H_{i}, i=1,2$. Is H a Hilbert space?
46. Let X be a real inner product space. Verify the polarization identity

$$
4(x, y)=\|x+y\|^{2}-\|x-y\|^{2}, \quad x, y \in X
$$

47. Let $H=L^{2}(-a, a), 0<a \leq \infty$ and define $P x(t)=\frac{1}{2}(x(t)+x(-t))$. Find the domain, range and kernel of P. Show that P is an orthogonal projection.
48. The norm in a Banach space X is induced by an inner product if and only if it satisfies the parallelogram law

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}, \quad x, y \in X
$$

49. Let M, N be closed subspaces of a Hilbert space H.
(a) If $M \perp N$ then $M+N$ is a closed subspace of H.
(b) If only $M \cap N=\emptyset$ holds the sum $M+N$ need not be closed. Hint: $M=\overline{\operatorname{span}}\left\{e_{1}, e_{3}, e_{5} \ldots\right\}$, $N=\overline{\operatorname{span}}\left\{z_{1}, z_{2}, z_{3}, \ldots\right\}, z_{n}=\alpha_{n} e_{2 n-1}+\frac{1}{n} e_{2 n}$ with $\alpha_{n}=\sqrt{1-\frac{1}{n^{2}}}$.
i. Show $\left(z_{n}, z_{m}\right)=\delta_{n m}, M \cap N=\{0\}$.
ii. Show $y=\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n}$ does not belong to $M+N$, however is the limit of elements in $M+N$.
