Proseminar Functionalanalysis Problems 6 26.4.2005

- 37. Let X be a finite dimensional normed space. Show dim $X = \dim X^*$.
- 38. Let X be a finite dimensional normed space. Show that a sequence converges strongly if and only if it converges weakly.
- 39. (a) Let X be a separable metric space and $A \subset X$. Then A is separable.
 - (b) In a normed space X the following statements are equivalent.
 - i. X is separable.
 - ii. B(0,1) is separable.
 - iii. $S(0,1) = \{x \in X : ||x|| = 1\}$ is separable.
- 40. Let (x_n) be a sequence in a normed space X. Show
 - (a) If (x_n) converges strongly to $x \in X$, then $x_n \rightharpoonup x$.
 - (b) If (x_n) converges weakly to $x \in X$, then (x_n) is bounded and

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

(c) If (x_n) converges weakly to $x \in X$ and (z_n^*) converges strongly to $z^* \in X^*$, then

$$\lim_{n \to \infty} z_n^*(x_n) = z^*(x).$$

- 41. A sequence (x_n) in a normed space X is called a weak Cauchy sequence, if for all $x^* \in X^*$ the sequence $(x^*(x_n))$ of scalars is a Cauchy sequence.
 - (a) Construct in c_0 , respectively C([0, 1]) an example of a weak Cauchy sequence, which does not converge weakly.
 - (b) A weak Cauchy sequence is bounded.
 - (c) In a reflexive space every weak Cauchy sequence converge weakly.
- 42. Endow X = C([0,1]) with a complete norm such that (f_n) converges to $f \in X$ pointwise whenever $||f_n f|| \to 0$. Show that such a norm is equivalent to the usual supremum norm.