Proseminar Functionalanalysis

Problems 5 18.4.2005

30. Let $X=C([0,1]), W=\left\{f \in X: f^{\prime} \in X, f^{\prime \prime} \in X, f(0)=f(1)=0\right\}$, endow X with the sup-norm and define $\|f\|=\max \left\{\|f\|_{\infty},\left\|f^{\prime}\right\|_{\infty},\left\|f^{\prime \prime}\right\|_{\infty}\right\}$ for $f \in W$. Consider the operator $T: W \rightarrow X$

$$
(T f)(t)=a_{0}(t) f^{\prime \prime}(t)+a_{1}(t) f^{\prime}(t)+a_{2}(t) f(t), \quad t \in[0,1]
$$

with $a_{i} \in X, i=0,1,2$.
Prove: T^{-1} exists and is continuous if the boundary value problem $T f=g$ has a unique solution $f \in W$ for every choice of g.
31. Let X, Y be Banach spaces and $T: X \rightarrow Y$ (not a priori linear!). If $y^{*} \circ T \in X^{*}$ for all $y^{*} \in Y^{*}$, then T is linear and continuous.
Hint: for continuity you can use the closed graph theorem
32. Let X, Y be normed spaces and choose $\tilde{x} \in X, \tilde{x} \neq 0, \tilde{y} \in Y$. Show, that there is an operator $T \in \mathcal{L}(X, Y)$ with $T \tilde{x}=\tilde{y}$.
Hint: Look for an operator of the form $T x=x^{*}(x) \tilde{y}$.
33. For each $x \in L^{2}([0,1])$ let $y=T x$ be the solution of $y^{\prime}+a y=x$ that satisfies $y(0)=0$, where a is a real constant. Determine the adjoint T^{*}.
34. For each $x \in L^{2}([0,1])$ let $y=T x$ be the solution of $y^{\prime \prime}+a y^{\prime}+b y=x$ that satisfies $y(0)=y(1)=0$, where a and b are constants. Determine the adjoint T^{*}. Is it ever true that $T=T^{*}$.
35. Let $I=[0, T]$ and $k: I \times I \rightarrow \mathbb{C}$ satisfy $\int_{I} \int_{I}|k(s, t)|^{2} d s d t<\infty$. Define $K: L^{2}(I) \rightarrow L^{2}(I)$ by

$$
(K x)(t)=\int_{0}^{t} k(t, s) x(s) d s
$$

(The operator K is an integraloperator of Volterra type). Determine the adjoint K^{*}.
36. Let $T \in \mathcal{L}(X)$ be an isomorphism, i.e. T^{-1} exists and is continuous. Show that $\left(T^{-1}\right)^{*}=$ $\left(T^{*}\right)^{-1}$.

