Proseminar Functionalanalysis Problems 4 8.4.2005

- 24. Let X be a complex normed space.
 - (a) Let $l: X \to \mathbb{R}$ be \mathbb{R} -linear and define

$$\tilde{l}(x) = l(x) - il(ix), \quad x \in X.$$

Show \tilde{l} is \mathbb{C} -linear and $l = \operatorname{Re} \tilde{l}$.

- (b) Let $h: X \to \mathbb{C}$ be \mathbb{C} -linear, $l = \operatorname{Re} h$ and \tilde{l} as above, then l is \mathbb{R} -linear and $\tilde{l} = h$.
- (c) Let $l: X \to \mathbb{C}$ be \mathbb{C} -linear. Show that l is continuous if and only if $\operatorname{Re} l$ is continuous.
- (d) Let $x^* \in X^*$. Show $||x^*|| = ||\operatorname{Re} x^*||$.
- 25. Let $(X, || \cdot ||$ be a normed space over \mathbb{C} and $x', y' \in L(X, \mathbb{C})$. Show
 - (a) $\operatorname{Re} x'(x) \leq \operatorname{Re} y'(x)$ for all $x \in X$ implies x' = y'.
 - (b) $|\operatorname{Re} x'(x)| \le |\operatorname{Re} y'(x)|$ for all $x \in X$ implies $x' = \alpha y'$ for some $\alpha \in \mathbb{R}$.
- 26. Show that a closed set F is nowhere dense if and only if it contains no open set.
- 27. Prove that a set M is nowhere dense if and only if for any nonempty open set O there is a ball contained in $O \setminus M$.
- 28. Let \mathcal{P} be the space of all polynomials on \mathbb{R} and $|| \cdot ||$ any norm on \mathcal{P} . Use Baire's category theorem to show that \mathcal{P} is not complete.
- 29. Let $f: [0, \infty) \to \mathbb{R}$ be continuous and satisfy $\lim_{n\to\infty} f(nt) = 0$ for all $t \ge 0$. Show $\lim_{t\to\infty} f(t) = 0$.