Proseminar Functionalanalysis

Problems 2 8.3.2005

7. Let X be a vector space, $f \in L(X, \mathbb{R})$ and $x_{0} \notin \operatorname{ker} f$. Show

$$
X=\operatorname{ker} f \bigoplus \operatorname{span}\left\{x_{0}\right\}
$$

i.e. any $x \in X$ has a unique representation $x=\alpha x_{0}+y, \alpha \in \mathbb{K}, y \in \operatorname{ker} f$.
8. Show that two functionals f_{1} and f_{2} which are defined on the same vector space and have the same kernel are linearly dependent.
9. Consider the vector space $C^{0, \beta}([0,1])$ of Hölder continuous functions $x:[0,1] \rightarrow \mathbb{R}$ with exponent $\beta \in(0,1]$ and define

$$
\|x\|=|x(0)|+\sup _{s \neq t} \frac{|x(s)-x(t)|}{|s-t|^{\beta}}
$$

Show that $\|\cdot\|$ defines a norm on $C^{0, \beta}([0,1])$ and verify $\|x\|_{\infty} \leq\|x\|$. Furthermore, show that $\left(C^{0, \beta}([0,1]),\|\cdot\|\right)$ is complete. What can you say about the spaces $C^{0, \beta}([0,1])$ with $\beta>1$.
Recall: a function $x:[0,1] \rightarrow \mathbb{K}$ is called Hölder continuous with exponent $\beta \in(0,1]$ if there is a constant $l>0$ such that

$$
|x(s)-x(t)| \leq l|s-t|^{\beta}
$$

holds for all $s, t \in[0,1]$. If $\beta=1$ the function is called Lipschitz continuous.
10. Let $v_{n}(x)=\frac{1}{n} \sin n x$. Show that $v_{n} \rightarrow 0$ in $C^{0, \beta}([0,1])$ for any $\beta \in(0,1)$, but $v_{n} \nrightarrow 0$ in $C^{0,1}([0,1])$.
11. Consider $v(x)=x^{\alpha}$ for some $\alpha \in(0,1)$. For which $\beta \in(0,1]$ is it true that $v \in C^{0, \beta}([0,1])$.
12. Show: $T \in \mathcal{L}(X)$ if and only if T maps bounded sets into bounded sets.
13. Let $T \in L(X, Y)$ and $\operatorname{dim} X<\infty$. Show that T is continuous.
14. A matrix $A \in \mathbb{K}^{m \times n}$ defines a linear map $\mathbb{K}^{n} \rightarrow \mathbb{K}^{m}$. Calculate the norm of this map, $\|A\|$, when in both spaces \mathbb{K}^{n} and \mathbb{K}^{m} either $\|\cdot\|_{1}$ or $\|\cdot\|_{\infty}$ is used.
15. Let $X=C([0,1])$ be endowed with the natural norm and define $T \in L(X)$ by

$$
(T x)(t)=\frac{t}{1+t^{2}} x(t)
$$

Show $T \in \mathcal{L}(X)$ and compute $\|T\|$.
16. Consider the functional $s: \ell^{1} \rightarrow \mathbb{C}$ defined by $s(x)=\sum_{i=1}^{\infty} x_{i}$. Is s continuous?
17. In a normed space $(X,\|\cdot\|)$ a series $\sum_{i=1}^{\infty} x_{i}$ converges absolutely if $\sum_{i=1}^{\infty}\left\|x_{i}\right\|$ converges. Show that absolute convergence implies convergence if and only if $(X,\|\cdot\|)$ is complete. Give an example of a sequence which converges absolutely but does not converge.
Hint: In order to show completeness given a Cauchy sequence try to construct a subsequence which satisfies $\left\|x_{n_{k}}-x_{n_{k-1}}\right\|<\frac{1}{2^{k-1}}$ and use a telescoping series.

