Proseminar Functionalanalysis Problems 2 8.3.2005

7. Let X be a vector space, $f \in L(X, \mathbb{R})$ and $x_0 \notin \ker f$. Show

$$X = \ker f \bigoplus \operatorname{span} \{x_0\},\$$

i.e. any $x \in X$ has a unique representation $x = \alpha x_0 + y, \alpha \in \mathbb{K}, y \in \ker f$.

- 8. Show that two functionals f_1 and f_2 which are defined on the same vector space and have the same kernel are linearly dependent.
- 9. Consider the vector space $C^{0,\beta}([0,1])$ of Hölder continuous functions $x: [0,1] \to \mathbb{R}$ with exponent $\beta \in (0,1]$ and define

$$||x|| = |x(0)| + \sup_{s \neq t} \frac{|x(s) - x(t)|}{|s - t|^{\beta}}$$

Show that $||\cdot||$ defines a norm on $C^{0,\beta}([0,1])$ and verify $||x||_{\infty} \leq ||x||$. Furthermore, show that $(C^{0,\beta}([0,1]), ||\cdot||)$ is complete. What can you say about the spaces $C^{0,\beta}([0,1])$ with $\beta > 1$.

Recall: a function $x \colon [0,1] \to \mathbb{K}$ is called Hölder continuous with exponent $\beta \in (0,1]$ if there is a constant l > 0 such that

$$|x(s) - x(t)| \le l|s - t|^{\beta}$$

holds for all $s, t \in [0, 1]$. If $\beta = 1$ the function is called Lipschitz continuous.

- 10. Let $v_n(x) = \frac{1}{n} \sin nx$. Show that $v_n \to 0$ in $C^{0,\beta}([0,1])$ for any $\beta \in (0,1)$, but $v_n \not\to 0$ in $C^{0,1}([0,1])$.
- 11. Consider $v(x) = x^{\alpha}$ for some $\alpha \in (0, 1)$. For which $\beta \in (0, 1]$ is it true that $v \in C^{0,\beta}([0, 1])$.
- 12. Show: $T \in \mathcal{L}(X)$ if and only if T maps bounded sets into bounded sets.
- 13. Let $T \in L(X, Y)$ and dim $X < \infty$. Show that T is continuous.
- 14. A matrix $A \in \mathbb{K}^{m \times n}$ defines a linear map $\mathbb{K}^n \to \mathbb{K}^m$. Calculate the norm of this map, ||A||, when in both spaces \mathbb{K}^n and \mathbb{K}^m either $|| \cdot ||_1$ or $|| \cdot ||_{\infty}$ is used.
- 15. Let X = C([0,1]) be endowed with the natural norm and define $T \in L(X)$ by

$$(Tx)(t) = \frac{t}{1+t^2}x(t).$$

Show $T \in \mathcal{L}(X)$ and compute ||T||.

- 16. Consider the functional $s: \ell^1 \to \mathbb{C}$ defined by $s(x) = \sum_{i=1}^{\infty} x_i$. Is s continuous?
- 17. In a normed space $(X, || \cdot ||)$ a series $\sum_{i=1}^{\infty} x_i$ converges absolutely if $\sum_{i=1}^{\infty} ||x_i||$ converges. Show that absolute convergence implies convergence if and only if $(X, || \cdot ||)$ is complete. Give an example of a sequence which converges absolutely but does not converge. Hint: In order to show completeness given a Cauchy sequence try to construct a subsequence which satisfies $||x_{n_k} - x_{n_{k-1}}|| < \frac{1}{2^{k-1}}$ and use a telescoping series.