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Abstract. Let R be a commutative ring with identity, R• be the multiplica-

tive monoid of regular elements in R, t be the so-called t-operation on R or

R•. A Marot ring is a ring whose regular ideals are generated by their regu-

lar elements. Marot rings were introduced by J. Marot in 1969 and have been

playing a key role in the study of rings with zero divisors. The notion of Marot

rings can be extended to t-Marot rings such that Marot rings are t-Marot rings.

In this paper, we study some ideal-theoretic relationships between a t-Marot

ring R and the monoid R•. We first construct an example of a t-Marot ring

that is not Marot. This also serves as an example of a rank-one DVR of reg-

dimension ≥ 2. Let R be a t-Marot ring, t-spec(R) (resp., t-spec(R•)) be the

set of regular prime t-ideals of R (resp., the set of non-empty prime t-ideals of

R•), and Cl(A) be the class group of A for A = R or R•. Then, among other

things, we prove that the map ϕ : t-spec(R)→ t-spec(R•) given by ϕ(P ) = P •

is bijective; Cl(R) ∼= Cl(R•); and R is a factorial ring if and only if R• is a

factorial monoid.

Introduction

All rings considered in this paper are commutative rings with identity. Through-
out, we denote by R a ring, by T(R) the total quotient ring of R, and by Z(R) the
set of zero divisors in R. An element which is not a zero divisor is said to be regular.
For a subset X ⊆ T(R), we let X• = X \Z

(
T(R)

)
be the set of all regular elements

in X, and we say that X is regular if X• 6= ∅. In particular, an ideal is called a
regular ideal if it contains a regular element. Clearly, R• is a monoid under the
multiplication of R. We say that R• is the monoid of regular elements of R, and
we let q(R•) denote the quotient group of R•; so q(R•) = T(R)•. Other definitions
and notations will be reviewed in Section 1.

We say that R is Marot if each regular ideal of R is generated by its regular
elements. The notion of Marot rings was introduced by Marot [21]. The Marot
property is very useful when we study the ideal-theoretic properties of rings with
zero divisors, and many ring-theoretic properties of integral domains can be gen-
eralized to Marot rings. Furthermore, many important classes of rings with zero
divisors (e.g., Noetherian rings, polynomial rings, overrings of a Marot ring) have
the Marot property [16]. It is well known that an integral domain R is a Krull do-
main if and only if R• is a Krull monoid [20, Proposition]. Halter-Koch formulated
these equivalent conditions on Marot rings (i.e., he proved that if R is a Marot ring,
then R is a Krull ring if and only if R• is a Krull monoid [14, Theorem]). Then, in
[12, Theorem 3.5], the authors introduced the notion of v-Marot rings and showed
that a v-Marot ring R is a Krull ring if and only if R• is a Krull monoid.
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It is well known that It = Iv for every regular fractional ideal I of a Krull ring,
and the t-operation is a very useful tool for the study of ideal-theoretic characteri-
zations of integral domains. For example, by making use of the t-operation, we can
generalize Dedekind domains, principal ideal domains (PIDs), and Prüfer domains
to Krull domains, UFDs, and PvMDs, respectively, as follows: (i) D is a Krull
domain if and only if every nonzero ideal of D is t-invertible, (ii) D is a UFD if and
only if every t-ideal of D is principal, and (iii) D is a PvMD if and only if every
nonzero finitely generated ideal of D is t-invertible. Thus, it is natural to consider
the t-analog of the Marot property when we study commutative rings with zero
divisors. Recently, in [8], Elliott introduced the notion of t-Marot rings. In this
paper, we study the ideal-theoretic relationships between a t-Marot ring R and the
monoid R•.

This paper consists of five sections including the introduction. Let t-spec(R)
(resp., t-spec(R•)) be the set of regular prime t-ideals of R (resp., non-empty prime
t-ideals of R•), and R be a t-Marot ring. In Section 1, we first review some defini-
tions and preliminary results for better understanding of the paper. In Section 2,
we study some basic properties of t-Marot rings. Among them, we first construct
a t-Marot ring that is not a Marot ring. This example also serves to show that
rank-one DVRs need not be of reg-dimension one. We show that if P ∈ t-spec(R),
then P • ∈ t-spec(R•), and conversely, if I ∈ t-spec(R•), then (IR)t ∈ t-spec(R),
and hence the map ϕ : t-spec(R) → t-spec(R•) given by ϕ(P ) = P • is an order-
preserving bijection. In Section 3, we show that if I is an ideal of R•, then I is
t-invertible if and only if IR is t-invertible. Hence, R is a PvMR if and only if R• is
a PvMM. We also show that Cl(R) ∼= Cl(R•). Finally, in Section 4, we show that
R is a weakly Krull ring (resp., Krull ring, weakly factorial ring) if and only if R•

is a weakly Krull monoid (resp., Krull monoid, weakly factorial monoid).

1. Definitions and preliminary results

Let R be a commutative ring with identity and T(R) be the total quotient ring
of R. An overring of R is a subring of T(R) containing R. A fractional ideal I of
R is an R-submodule of T(R) such that dI ⊆ R for some d ∈ R•, and an (integral)
ideal I of R is a fractional ideal of R with I ⊆ R. Throughout this paper, by a
monoid, we always means a commutative cancellative monoid, so we can consider
the quotient group of a monoid. Let H be a monoid. Then a subset A of H is
an (semigroup) ideal if AH = {ah | a ∈ A, h ∈ H} = A. An ideal A is finitely
generated if A = EH for some finite subset E of A.

1.1. General definitions of rings. Let P be a regular prime ideal of R. The
regular-height of P is defined by reg-htP = sup{n | P1 ( · · · ( Pn = P and each
Pi is a regular prime ideal of R}. Then the regular-dimension of R is defined by

reg-dim(R) = sup{reg-htP | P is a regular prime ideal of R}.
Thus, reg-htP ≤ htP , reg-dim(R) ≤ dim(R), and equalities hold if R is an integral
domain. Let X1

r (R) be the set of regular height-one prime ideals of R.
Let S be a multiplicative set of R. Then there are two types of localizations of

R with respect to S;

(1) R(S) = {ab
∣∣ a ∈ R and b ∈ S•}.

(2) R[S] = {z ∈ T(R) | zs ∈ R for some s ∈ S}.
Clearly, R(S) and R[S] are overrings of R, R(S) ⊆ R[S], and if S ⊆ R•, then R(S) =
RS . If P is a prime ideal of R, then we set R(P ) = R(R\P ) and R[P ] = R[R\P ]. It is
well known that if R is a Marot ring, then R[S] = R(S) [16, Theorem 7.6]. Moreover,
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if I is an ideal of R, then [I]R[P ] = {x ∈ T(R) | xa ∈ I for some a ∈ R \ P} is an
ideal of R[P ] such that IR[P ] ⊆ [I]R[P ].

1.2. The t-operation. Let F (R) be the set of R-submodules of T(R). For I ∈
F (R), let I−1 = {x ∈ T(R) | xI ⊆ R}; then I−1 ∈ F (R). Hence, Iv := (I−1)−1

and It :=
⋃
{Jv | J is a finitely generated fractional subideal of I} are well-defined.

Let ∗ = v or t. Then, for any a ∈ T(R) and I, J ∈ F (R);

(1) aI∗ ⊆ (aI)∗, and equality holds if a is regular.
(2) I ⊆ I∗; I ⊆ J implies I∗ ⊆ J∗.
(3) (I∗)∗ = I∗.
(4) (IJ)∗ = (IJ∗)∗.

A fractional ideal I of R is said to be regular if I ∩ T(R)• 6= ∅, so I is regular if
and only if dI is a regular ideal of R for some d ∈ R•. Let Fr(R) be the set of
regular fractional ideals of R. We say that I ∈ Fr(R) is a regular fractional ∗-ideal
if I∗ = I. Moreover, an ideal I of R is called an (integral) ∗-ideal if I∗ = I. A
∗-ideal I of R is of finite type if I = J∗ for some finitely generated ideal J of R. A
maximal t-ideal of R is a t-ideal that is maximal among proper integral t-ideals of
R. It is easy to see that each maximal t-ideal is a prime ideal, each regular integral
t-ideal is contained in a maximal t-ideal, a prime ideal minimal over an integral
t-ideal is a t-ideal, each regular principal fractional ideal is a v-ideal, each v-ideal
is a t-ideal, I ⊆ It ⊆ Iv for all I ∈ Fr(R), and It = Iv if I is finitely generated.
We say that R is a Mori ring (or v-Noetherian ring) if R satisfies the ascending
chain condition on regular integral v-ideals of R, and in this case, It = Iv for all
I ∈ Fr(R).

Lemma 1.1. Let A be a regular fractional ideal of a ring R and I be a fractional
ideal of R•.

1. At =
⋃
{Jv | J ⊆ A is a finitely generated regular fractional ideal of R}.

2. (IR)t =
⋃
{(JR)v | J ⊆ I is a finitely generated fractional ideal of R•}.

Proof. 1. Let B be a finitely generated fractional subideal of A and a ∈ A•.
Then J := B + aR is a finitely generated regular fractional ideal of R such that
Bv ⊆ Jv ⊆ At. Thus,

At =
⋃
{Bv | B ⊆ A is a finitely generated fractional ideal of R}

=
⋃
{Jv | J ⊆ A is a finitely generated regular fractional ideal of R}.

2. Let x1, . . . , xn ∈ IR. Then there are some ai ∈ I and rij ∈ R such that
xj =

∑
i airij . Hence, if J is the fractional ideal of R• generated by {ai}, then J

is finitely generated and (x1, . . . , xn)R ⊆ JR; so ((x1, . . . , xn)R)v ⊆ (JR)v. Thus,
the result follows. �

Let H be a monoid and q(H) be the quotient group of H. The v- and t-operations
on H can be defined as in commutative rings with identity. The reader can refer
to [11, 15] for more on the v- and t-operation on H.

1.3. The class groups of R and R•. An I ∈ Fr(R) is said to be t-invertible if
(II−1)t = R. Let Tinv(R) be the set of t-invertible regular fractional t-ideals of
R. Then Tinv(R) is an abelian group under I ·t J = (IJ)t. Let Prin(R) be its
subgroup of regular principal fractional ideals, and

Cl(R) = Tinv(R)/Prin(R) .

We say that Cl(R) is the t-class group or the class group of R (see, for example,
[8, Definition 2.5.21]). Hence if R is a Krull ring, then Cl(R) is the divisor class
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group of R. For I ∈ Tinv(R), let [I] be the class in Cl(R) containing I. Hence, if
I, J ∈ Tinv(R), then [I] = [J ] if and only if I = qJ for some q ∈ q(R•). In a similar
way, we define Tinv(R•), Prin(R•), and the class group Cl(R•) for the monoid R•

of regular elements of R (see, [15, Chapter 12]).

1.4. Rank-one DVRs and DVMs. Let Z be the additive group of integers.
Extend Z by the symbol∞ by defining n <∞, n+∞ =∞+∞ =∞ for all n ∈ Z,
and ∞ −∞ undefined. Let T be a commutative ring with identity. A rank-one
discrete valuation on T is a mapping v from T onto Z ∪ {∞} with the following
properties for all x, y ∈ T ;

(1) v(xy) = v(x) + v(y).
(2) v(x+ y) ≥ min{v(x), v(y)}.
(3) v(1) = 0 and v(0) =∞.

If there is a rank-one discrete valuation v on T(R) such that

R = {x ∈ T(R) | v(x) ≥ 0} and P = {x ∈ T(R) | v(x) > 0},
then (R,P ) is called a rank-one discrete valuation pair of T(R), and R is called a
rank-one discrete valuation ring (rank-one DVR). Clearly, if P is regular, then reg-
htP = 1. Moreover, if R is a Marot ring such that P is regular, then P is principal
and a unique regular maximal ideal of R, and thus reg-dim(R) = 1. However, this
is not true in general (see, for example, [3, Example 5.4] and Example 2.2).

Let H be a monoid and H× be the group of units of H. Then Hred = H/H× is
a monoid. Let N be the additive monoid of nonnegative integers. We say that H
is a rank-one discrete valuation monoid (rank-one DVM) if Hred

∼= N as monoids.

1.5. Krull rings and monoids. We say that R is a Krull ring if there exists
a family {(Vα, Pα) | α ∈ Λ} of rank-one discrete valuation pairs of T(R) with
associated valuations {vα | α ∈ Λ} such that

(i) R =
⋂
{Vα | α ∈ Λ},

(ii) for each a ∈ T(R)•, vα(a) = 0 for almost all α ∈ Λ and Pα is a regular ideal
for all α ∈ Λ.

It is known that the integral closure of a ring whose regular ideals are finitely
generated is a Krull ring [6, Theorem 13], and the polynomial ring R[X] is a Krull
ring if and only if R is a finite direct sum of Krull domains [16, Theorem 8.16]. It is
also known that R is a Krull ring if and only if R is a completely integrally closed
Mori ring ([19, Proposition 2.2] and [22, Theorem 5]), if and only if every regular
ideal of R is t-invertible [18, Theorem 13].

Let H be a monoid with quotient group q(H). We say that H is a Krull monoid
if there exists a family {Vα | α ∈ I} of rank-one DVMs such that

(i) H =
⋂
{Vα | α ∈ I}.

(ii) for each z ∈ q(H), the set {Vα | α ∈ I, z /∈ V ×α } is finite.

Then H is a Krull monoid if and only if H is a completely integrally closed Mori
monoid, if and only if each non-empty ideal of H is t-invertible [15, Theorem 22.8].

It is known that if R is a Krull ring, then R• is a Krull monoid ([14, Proof of
the Theorem (Part I)] or [3, Theorem 5.1(1)]). However, R• being a Krull monoid
does not imply that R is a Krull ring (see, for example, [3, Example 5.2]).

1.6. Idealization. Let M be a unitary R-module, and consider

R(+)M = {(r,m) | r ∈ R and m ∈M}.

For all elements (r, a) and (s, b) of R(+)M , if we define

• (r, a) = (s, b) if and only if r = s and a = b,
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• (r, a) + (s, b) = (r + s, a+ b), and
• (r, a)(s, b) = (rs, rb+ sa),

then R(+)M , called the idealization of M in R, becomes a commutative ring with
identity. There exists a canonical map from R into R(+)M given by r 7→ (r, 0), and
hence R can be embedded into R(+)M . The set (0)(+)M is an ideal of R(+)M ,
giving rise to the name idealization. For more on basic properties of idealizations,
see [16, Section 25] and [4].

The reader can refer to [16] for commutative rings with zero divisors and [11, 15]
for monoids.

2. t-Marot rings

Let R be a commutative ring with identity and T = T(R) be the total quotient
ring of R. A Marot ring is a ring in which every regular ideal is generated by a set
of regular elements. Hence, R is Marot if and only if I = I•R for all regular ideals
I of R. As the v-operation analog, in [12], the authors called R a v-Marot ring if
I = (I•R)v for all regular v-ideals I of R. They also showed that a Marot ring is
v-Marot (in fact, this is clear by definition), and R is a v-Marot ring if and only if
Iv =

⋂
z∈T•

zR⊇I
zR for every regular ideal I of R [12, Lemma 3.1 and Proposition 3.3].

Anderson and Markanda first noted that there is a ring R with a regular ideal I
such that Iv (

⋂
z∈T•

zR⊇I
zR [2, Example].

Definition 2.1. We will say that R is a t-Marot ring if I = (I•R)t for all regular
t-ideals I of R.

The notion of t-Marot rings was introduced by Elliott [8, Definition 2.7.21] in a
more general setting of semistar operations. Clearly, Marot rings are t-Marot rings,
and since every v-ideal is a t-ideal, t-Marot rings are v-Marot rings, i.e.,

Marot ⇒ t-Marot ⇒ v-Marot.

We next give an example of a t-Marot ring that is not Marot. This example also
shows that rank-one DVRs need not be of reg-dimension one. However, we don’t
know an example of a v-Marot ring that is not t-Marot (cf. [8, Open Problem
2.7.24]).

Example 2.2. Let K be a field, X,Y be indeterminates over K, and D = K[X,Y ]
be the polynomial ring over K. Let {Mλ}λ∈Λ be the set of maximal ideals of D
not containing Y , M =

∑
λ∈ΛD/Mλ be the direct sum of D-modules {D/Mλ}λ∈Λ,

and R = D(+)M be the idealization of M in D. Then

1. R is a t-Marot ring that is not Marot.
2. R has a regular ideal A such that (A•R)t ( A ( At.
3. reg-dim(R) = dim(R) = 2.
4. R is a rank-one DVR.

Proof. 1. (i) Let Z(M) = {x ∈ D | xm = 0 for some 0 6= m ∈ M}. Then
Z(M) =

⋃
λ∈ΛMλ. Moreover, if p is a prime element of D with pD 6= Y D, then

p ∈
⋃
λ∈ΛMλ.

(ii) R• = {(αY n,m) | 0 6= α ∈ K,n ≥ 0 is an integer, and m ∈ M}, and hence
{(Y n, 0)R | n ≥ 0} is the set of ideals of R generated by a set of regular elements.

(iii) Note that (X,Y )(+)M is a regular ideal of R but it is not generated by
a set of regular elements. Thus, R is not a Marot ring. (For a complete proof of
(i)-(iii), see [13]).
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(iv) Let S = D \Z(M). Then T(R) = DS(+)MS [16, Corollary 25.5]. Let f ∈ S,
and assume that p is a prime divisor of f in D. If pD 6= Y D, then p ∈

⋃
λ∈ΛMλ

by (i), and hence f ∈ Z(M), a contradiction. Note that D is a UFD and Y is a
prime element of D; hence, f = αY n for some 0 6= α ∈ K and an integer n ≥ 0.
Note also that αY nM = M . Thus, MS = M and T(R) = DS(+)M .

(v) Let A = ({(a1,m1), . . . , (ak,mk)}) be a finitely generated regular ideal of R
with (a1,m1) ∈ R•, and let I be the ideal of D generated by {a1, . . . , ak}. Then
A = I(+)M [16, Theorem 25.1(1)] because a1M = M . Hence, A−1 = I−1(+)M
[16, Theorem 25.10], and thus Av = Iv(+)M . Note that D is a UFD; so Iv = gD
for some g ∈ D, whence by (ii), Av = (Y n)(+)M = (Y n, 0)R for some integer
n ≥ 0. Therefore, if B is a regular ideal of R, then by Lemma 1.1,

Bt =
⋃
{Av | A ⊆ B is a finitely generated regular ideal of R}

= (Y n, 0)R

for some integer n ≥ 0 by the previous paragraph. Thus, R is a t-Marot ring.
2. Let A = (X,Y )(+)M . Then A•R = (Y )(+)M and At = R. Thus, (A•R)t =

(Y )(+)M ( A ( At.
3. Note that (Y )(+)M ( (X,Y )(+)M is a chain of regular prime ideals of R by

1.(ii) and [16, Theorem 25.1(3)]. Hence, 2 ≤ reg-dim(R) ≤ dim(R) = dim(D) = 2
[16, Theorem 25.1(3)]. Thus, reg-dim(R) = dim(R) = 2.

4. By 1.(ii), R• is a rank-one DVM. Thus, R is a rank-one DVR by 1.(v) and
Proposition 2.11. �

Example 2.3. Let R be a v-Marot ring such that R• is a Mori monoid. Then
R is a Mori ring by [12, Theorem 3.5]. Hence, if A is a regular t-ideal of R, then
A = Av, and since R is v-Marot, A = (A•R)v = (A•R)t. Thus, R is a t-Marot ring.

Given a t-Marot ring R, we can construct two types of t-Marot overrings of R
for which we first need a lemma.

Lemma 2.4. (cf. [17, Lemma 3.4] for integral domains) Let R be a ring, S ⊆ R•
be a multiplicative set, and A be an ideal of R.

1. If A is finitely generated, then (ARS)−1 = A−1RS.
2. (ARS)t = (AtRS)t.

Proof. 1. Clearly, A−1RS ⊆ (ARS)−1. For the reverse containment, let x ∈
(ARS)−1. Then xA ⊆ xARS ⊆ RS , and since A is finitely generated, there exists
s ∈ S such that xsA ⊆ R. Hence, xs ∈ A−1, and thus x ∈ A−1RS .

2. Let x ∈ At. Then x ∈ Iv for some finitely generated subideal I of A. Hence,
xI−1 ⊆ R, and since I is finitely generated, x(IRS)−1 = xI−1RS ⊆ RS by 1. Hence
x ∈ (IRS)v ⊆ (ARS)t, and thus At ⊆ (ARS)t. Therefore, (AtRS)t = (ARS)t. �

Proposition 2.5. Let R be a t-Marot ring and D be an overring of R. Then D
is a t-Marot ring if D is one of the following rings:

1. D = RS for some multiplicative set S of R with S ⊆ R•.
2. D is a regular fractional v-ideal of R.

Proof. 1. Let A be a regular t-ideal of RS and I = A ∩ R. Then A = IRS , and
hence A = At = (IRS)t = (ItRS)t by Lemma 2.4(2). Thus I = It, and since R is
t-Marot, I = (I•R)t, whence

A = (ItRS)t =
(
(I•R)tRS

)
t

=
(
(I•R)RS

)
t

= (I•RS)t = (A•RS)t .

Therefore, RS is a t-Marot ring.
2. Let tR, vR, tD, and vD be the t- and v-operations on R and D, respectively.

Let A be a regular fractional t-ideal of D and J ⊆ A be a finitely generated regular
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fractional ideal of D. Since D is a regular fractional v-ideal of R, [12, Lemma 2.1(6)]
implies that (D : JvR) = (D : J), whence JvR ⊆ (JvR)vD = JvD . Thus,

AtR =
⋃
{JvR | J ⊆ A is a finitely generated regular fractional ideal of R}

⊆
⋃
{JvD | J ⊆ A is a finitely generated regular fractional ideal of D}

= AtD = A.

Note that D is a fractional ideal of R; so A is a regular fractional t-ideal of R.
Hence, (A•D)tD ⊆ A = (A•R)tR ⊆ (A•D)tR ⊆ (A•D)tD , and thus A = (A•D)tD .
Thus, D is a t-Marot ring. �

We next study the relationship between the regular fractional t-ideals of R and
the fractional t-ideals of R• when R is a t-Marot ring.

Lemma 2.6. Let R be a v-Marot ring, and I be a fractional ideal of R•.

1. (IR)t ∩ T(R)• = It.
2. If I ⊆ R•, then (IR)t ∩R• = It.
3. (IR)t = (ItR)t.

Proof. 1. By Lemma 1.1,

(IR)t =
⋃
{(JR)v | J is a finitely generated fractional subideal of I} .

Thus, [12, Lemma 3.4] ensures that

(IR)t ∩ T(R)• =
(⋃

(JR)v

)
∩ T(R)• =

⋃(
(JR)v ∩ T(R)•

)
=
⋃
Jv = It .

2. (IR)t ⊆ R by assumption, and so (IR)t ∩R• = (IR)t ∩ T(R)• = It by 1.
3. By 1., It ⊆ (IR)t, and hence (ItR)t ⊆ (IR)t. Thus, (IR)t = (ItR)t. �

Let t-spec(R) be the set of regular prime t-ideals of a ring R and t-spec(H) be
the set of non-empty prime t-ideals of a monoid H.

Theorem 2.7. Let R be a t-Marot ring.

1. If P ∈ t-spec(R), then P • ∈ t-spec(R•).
2. If I is a prime t-ideal of R•, then (IR)t is a prime t-ideal of R.
3. Let ϕ : t-spec(R) → t-spec(R•) be a map defined by ϕ(P ) = P •. Then ϕ is

an order-preserving bijection.

Proof. 1. Clearly, P • is a prime ideal of R•. Let I be a finitely generated non-
empty subideal of P •. Then IR is a finitely generated regular subideal of P , and
hence (IR)v ⊆ P . Thus, by Lemma 2.6, Iv = (IR)v ∩ R• ⊆ P ∩ R• = P •, whence
(P •)t = P •.

2. Let I be a prime t-ideal of R• and P = (IR)t. If P = R, then by Lemma 2.6,
R• = (IR)t ∩R• = It = I ( R•, a contradiction. Thus, it remains to show that P
is a prime ideal of R. Let x, y ∈ R be such that xy ∈ P , and choose z ∈ I. Then

(x, z)(y, z) = (xy, xz, yz, z2) ⊆ P .

Let E = (x, z)v∩R• and F = (y, z)v∩R•. Since R is t-Marot, then (ER)t = (x, z)v
and (FR)t = (y, z)v, whence

EF ⊆
(
(EF )R

)
t

=
(
(ER)t(FR)t

)
t

=
(
(x, z)v(y, z)v

)
t

=
(
(x, z)(y, z)

)
t

⊆ P.

Thus, EF ⊆ P ∩R• = I, and since I is a prime ideal of R•, either E ⊆ I or F ⊆ I.
Therefore, x ∈ P or y ∈ P .

3. This follows from 1., 2., and Lemma 2.6. �
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Let R be a ring and p ∈ R• be a nonunit. Clearly, if p is a prime element of
R, then p is a prime element of R•. However, if p = t in Example 4.2, then p is a
prime element of R• but not a prime element of R.

Corollary 2.8. Let R be a t-Marot ring and p ∈ R• be a nonunit. Then p is a
prime element of R if and only if p is a prime element of R•.

Proof. This is an immediate consequence of Theorem 2.7(2). �

Let R (resp., H) be a ring (resp., monoid). We say that R (resp., H) is of finite
t-character if each regular element of R (resp., each element of H) is contained in
only finitely many maximal t-ideals of R (resp., H). For example, if R (resp., H)
is a Krull ring (resp., Krull monoid), then R (resp., H) is of finite t-character.

Corollary 2.9. Let R be a t-Marot ring. Then R is of finite t-character if and
only if R• is of finite t-character.

Proof. Let t-max(R) (resp., t-max(R•)) be the set of regular maximal t-ideals of R
(resp., non-empty maximal t-ideals of R•). Then, by Theorem 2.7, t-max(R•) =
{P∩R• |P ∈ t-max(R)}, and for P1, P2 ∈ t-max(R), we have that P1∩R• = P2∩R•
if and only if P1 = P2. Thus, R is of finite t-character if and only if R• is of finite
t-character. �

Let R be a Marot ring and P be a prime ideal of R. Then R[P ] = R(P ) and
[P ]R[P ] = PR(P ) [16, Theorem 7.6]. The next result is a t-Marot ring analog.

Proposition 2.10. Let R be a t-Marot ring and P be a regular prime t-ideal of R.

1. R[P ] = R(P ).

2. [P ]R[P ] = PR(P ).

Proof. 1. Clearly, R(P ) ⊆ R[P ]. For the reverse containment, let x ∈ R[P ]. Then
there exists s ∈ R\P such that sx ∈ R. Hence, if A = (R :R x), then A is a regular
v-ideal of R and A * P . Thus, A• * P , because R is t-Marot, and hence there
exists a ∈ A• \ P . Therefore, x ∈ R(P ).

2. Let x ∈ [P ]R[P ]. Then there exists a ∈ R \ P such that ax ∈ P . Note that

x ∈ R[P ]; so x ∈ R(P ) by 1., whence x = c
b for some c ∈ R and b ∈ (R \ P )

•
. Hence,

ac ∈ bP ⊆ P , and since a 6∈ P , we have c ∈ P . Thus, x ∈ PR(P ). The reverse
containment is clear. �

Proposition 2.11. Let R be a t-Marot ring with T = T(R) such that R 6= T .
Then the following statements are equivalent.

(1) R is a rank-one DVR.
(2) R• is a rank-one DVM.
(3) R has a principal regular-height-one prime ideal which contains all nonunit

regular elements of R.
(4) |t-spec(R)| = 1 and (R,P ) is a rank-one discrete valuation pair of T for

P ∈ t-spec(R).

Proof. (1) ⇒ (2) Let v be a rank-one discrete valuation on T such that R = {x ∈
T | v(x) ≥ 0}, and set Q = {x ∈ T | v(x) > 0}. We first assert that 0 < v(a) <∞
for a nonunit a ∈ R•. Let a ∈ R• be a nonunit. Since 0 = v(1) = v(aa−1) =
v(a) + v(a−1), we infer that v(a) < ∞. If v(a) = 0, then v(a−1) = 0, and thus
a−1 ∈ R, whence a is a unit in R, a contradiction. Consequently, 0 < v(d) < ∞
for each nonunit regular element d ∈ R, and it follows that Q• is the set of nonunit
regular element of R. Since R 6= T , we can choose a nonunit regular element b ∈ R.
Then 0 < v(b), and hence b ∈ Q•. Thus we infer that Q is a regular prime ideal of
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R. Next we assert that reg-htQ = 1. Suppose that Q′ is a regular prime ideal of R
such that Q′ ⊆ Q. Let z ∈ Q and c ∈ Q′ be a regular element with v(c) = n > 0.
Then v(znc−1) = nv(z)−v(c) ≥ 0, so that znc−1 ∈ R. It follows that zn ∈ cR ⊆ Q′,
and since Q′ is prime, we have that z ∈ Q′. Thus Q′ = Q, and this shows that Q is
a regular-height-one prime ideal of R. Consequently, Q• is a height-one prime ideal
of R• by Theorem 2.7. Now, let x ∈ Q• be such that v(x) ≤ v(b) for all b ∈ Q•.
Then Q• = xR• which implies that R• is a rank-one DVM.

(2) ⇒ (3) Let R• be a rank-one DVM with maximal ideal I. Then I = aR•

for some a ∈ R•. Moreover, I is the set of nonunit regular elements of R and I
is a height-one prime ideal of R•. Let P = (IR)t. Then I ⊆ P = aR and P is a
regular-height-one prime ideal of R by Theorem 2.7.

(3) ⇒ (4) Let P be a principal regular-height-one prime ideal of R such that P
contains every nonunit regular element of R. Clearly, P is a regular prime t-ideal
of R. Let Q be a regular prime t-ideal of R. Then Q• is contained in the set of
nonunit regular elements of R, and hence Q• ⊆ P . Thus Q = (Q•R)t ⊆ P , and
since reg-htP = 1, we infer that Q = P . Note that (R \ P )

•
is the set of units of

R; hence R[P ] = R(P ) = R and [P ]R[P ] = P by Proposition 2.10. Thus (R,P ) is a
rank-one discrete valuation pair of T (see, [6, Theorem 1] or [7, Theorem 2.3]).

(4) ⇒ (1) This is obvious. �

Corollary 2.12. Let R be a t-Marot ring with T = T(R) and P be a regular prime
t-ideal of R. Then

1. R[P ] ∩ T • = R•P• .
2. R[P ] is a rank-one DVR if and only if R•P• is a rank-one DVM.

Proof. 1. Clearly, R•P• ⊆ R[P ]∩T •. For the reverse containment, let x ∈ R[P ]∩T •.
Note that R[P ] = R(P ) by Proposition 2.10. Hence, there exists s ∈ (R \ P )

•
such

that sx ∈ R, whence s ∈ R• \ P • and xs ∈ R•. Thus x ∈ R•P• .
2. By Propositions 2.5(1) and 2.10, R[P ] is a t-Marot ring. If b ∈ P •, then b is

a nonunit regular element of R[P ], and hence R[P ] 6= T . Thus the assertion follows
from 1. and Proposition 2.11. �

Remark 2.13. Let R be a t-Marot ring and P be a regular prime ideal of R.

1. If R is Marot, then PR[P ] is a unique regular maximal ideal of R[P ]. However,
note that if P = (Y )(+)M in Example 2.2, then reg-htP = 1, P is not
maximal, and R[P ] = R; hence PR[P ] is not a regular maximal ideal of R[P ].

2. Assume that reg-htP = 1, and every nonunit regular element of R is con-
tained in P . Then Proposition 2.11 shows that R is a rank-one DVR if and
only if P is principal.

It is known that if R is a Mori ring, then R• is a Mori monoid, and if R is
v-Marot, then the converse holds [12, Theorem 5.3(3)]. By Example 2.3, if R• is
a Mori monoid, then R is t-Marot if and only if R is v-Marot. Hence, the second
result of the next proposition recovers [12, Theorem 5.3(3)].

Proposition 2.14. Let R be a t-Marot ring and A be a regular t-ideal of R.

1. A is of finite type if and only if A• is a t-ideal of finite type.
2. R is a Mori ring if and only if R• is a Mori monoid.

Proof. 1. (⇒) Since A is of finite type, there is a finitely generated ideal J of R•

such that A = (JR)t by Lemma 1.1. Hence, by Lemma 2.6,

(A•)t = (A•R)t ∩R• = A ∩R• = (JR)t ∩R• = Jt,
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and (A•)t = A•. Thus, A• is a t-ideal of finite type. (⇐) Assume that A• = Jt for
some finitely generated ideal J of R•. Then, by Lemma 2.6,

A = (A•R)t = (JtR)t = (JR)t.

Thus, A is of finite type.
2. This is an immediate consequence of 1. �

3. The class groups of a ring R and R•

Let R be a t-Marot ring. In this section, we compare the t-invertibility of regular
ideals of R and that of ideals of R•, and we show that Cl(R) ∼= Cl(R•).

Lemma 3.1. Let R be a v-Marot ring and I be a t-invertible fractional ideal of
R•. Then

1. IR is t-invertible,
2. (IR)−1 = (I−1R)t, and
3. (IR)t = (IR)v = (IvR)t = (ItR)t.

Proof. 1. Note that It = Jv and I−1 = Lv for some finitely generated fractional
ideals J and L of R• with J ⊆ I and L ⊆ I−1 [15, Theorem 12.1]. Hence, R• =
(II−1)t = (JvLv)t = (JL)t, JL ⊆ II−1, and

(
(JL)R

)
t

=
(
(JL)R

)
v
.

Let A = JL, T = T(R), and q ∈ (AR)−1 ∩ T •. Then qA ⊆ qAR ⊆ R, and since
q is regular, it follows that qA ⊆ R•, whence q ∈ A−1 = R• ⊆ R. Note that R
is a v-Marot ring and (AR)−1 is a regular fractional v-ideal. Thus, (AR)−1 = R,
whence (AR)v = R. Therefore,

R ⊇
(
(II−1)R

)
t
⊇ (AR)t = (AR)v = R ,

and hence
(
(II−1)R

)
t

= R. Thus,
(
(IR)(I−1R)

)
t

=
(
(II−1)R

)
t

= R.

2. R =
(
(IR)(I−1R)

)
t

implies that (IR)−1 = (I−1R)t.

3. Since I is t-invertible, I−1 is also t-invertible, and thus 2. ensures that
(IR)v = ((IR)−1)−1 = ((I−1R)t)

−1 = (I−1R)−1 = (IvR)t. �

Proposition 3.2. Let R be a t-Marot ring and I be a fractional ideal of R•. Then
I is t-invertible if and only if IR is t-invertible.

Proof. (⇒) A t-Marot ring is a v-Marot ring, and thus the assertion follows from
Lemma 3.1. (⇐) Assume that IR is t-invertible. Then (IR)−1 is a t-invertible
regular fractional t-ideal of R. Hence, since R is a t-Marot ring, it follows that
(IR)−1 = (JR)t for some fractional ideal J of R•. Thus,

R =
(
(IR)(IR)−1

)
t

=
(
(IR)(JR)t

)
t

=
(
(IR)(JR)

)
t

=
(
(IJ)R

)
t
.

Therefore, (IJ)t = R• by Lemma 2.6. �

It is known that if R is a v-Marot ring, then R is a Krull ring if and only if R•

is a Krull monoid [12, Theorem 3.5(4)]. Note that if R is a v-Marot ring and R• is
a Krull monoid, then R is a t-Marot ring by Example 2.3. Hence, the next result
recovers the result of [12, Theorem 3.5(4)].

Corollary 3.3. Let R be a t-Marot ring. Then R is a Krull ring if and only if
R• is a Krull monoid.

Proof. Note that R is a Krull ring if and only if every regular ideal of R is t-invertible
[7, Theorem 3.5] and R• is Krull if and only if every non-empty ideal of R• is t-
invertible [15, Theorem 22.8]. Thus, the result follows directly from Proposition
3.2. �
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We say that R is a Prüfer v-multiplication ring (PvMR) if each finitely generated
regular ideal of R is t-invertible. Similarly, a monoid H is a Prüfer v-multiplication
monoid (PvMM) if each non-empty finitely generated ideal of H is t-invertible. It
is clear that R (resp., H) is a PvMR (resp., PvMM) if and only if each regular
t-ideal (resp., each non-empty t-ideal) of finite type is t-invertible.

Corollary 3.4. Let R be a t-Marot ring. Then R is a PvMR if and only if R• is
a PvMM.

Proof. (⇒) Let I be a non-empty finitely generated ideal of R•. Then IR is a
finitely generated regular ideal of R, and since R is a PvMR, IR is t-invertible.
Thus, I is t-invertible by Proposition 3.2.

(⇐) Let A be a finite type regular t-ideal of R, and let A ∩ R• = I. Then
A = (IR)t, and since A is of finite type, I is also of finite type by Proposition 2.14.
Hence, I is t-invertible, and thus A is t-invertible by Proposition 3.2. �

Corollary 3.5. Let R be a t-Marot ring. Then R is a PvMR of finite t-character
if and only if R• is a PvMM of finite t-character.

Proof. This follows directly from Corollaries 2.9 and 3.4. �

In general, Cl(R) � Cl(R•). For example, if R is the Krull ring of Example 4.2
with n ≥ 2, then Cl(R) ∼= Zn 6= {0} = Cl(R•).

Theorem 3.6. Let R be a v-Marot ring.

1. Cl(R•) ↪→ Cl(R).
2. If R is t-Marot, then Cl(R•) ∼= Cl(R).

Proof. 1. Let ϕ : Tinv(R•)→ Tinv(R) be a map defined by ϕ(It) = (IR)t. Then,
by Lemma 3.1, ϕ is well-defined. Moreover, if I, J are two t-invertible fractional
ideals of R•, then

ϕ(It ·t Jt) = ϕ
(
(IJ)t

)
=
(
(IJ)R

)
t

=
(
(IR)(JR)

)
t

=
(
(IR)t(JR)t

)
t

= (IR)t ·t (JR)t

= ϕ(It) ·t ϕ(Jt) ,

whence ϕ is a group homomorphism. Clearly, ϕ
(

Prin(R•)
)

= Prin(R), and thus

ϕ̃ : Cl(R•)→ Cl(R), given by ϕ̃
(
[It]
)

=
[
(IR)t

]
, is a well-defined group homomor-

phism.
Next, let I, J be two t-invertible fractional ideals of R• such that ϕ̃([It]) =

ϕ̃([Jt]). Then (IR)t = q(JR)t = (qJR)t for some q ∈ T(R)•, and hence Lemma 2.6
ensures that

It = (IR)t ∩ T(R)• = (qJR)t ∩ T(R)• = qJt .

So, [It] = [Jt], and thus ϕ̃ must be injective.
2. By 1., it suffices to show that ϕ is surjective. Let A be a t-invertible regular

fractional t-ideal of R and I = A•. Then A = (IR)t, and since A is t-invertible, I
is t-invertible by Proposition 3.2. Thus, It ∈ Tinv(R•) and ϕ(It) = A. �

We will say that R is a factorial ring if every nonunit regular element of R is a
product of finitely many regular prime elements of R. Then R is a factorial ring if
and only if R is a Krull ring with Cl(R) = {0}, if and only if every regular prime
ideal of R contains a regular prime element [2, Theorem]. Clearly, if R is a factorial
ring, then R is a t-Marot ring and R• is a factorial monoid. However, R need not
be a factorial ring nor a Krull ring even though R• is a factorial monoid (see, for
example, [3, Example 5.2]).
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Corollary 3.7. [8, Proposition 2.9.22] Let R be a t-Marot ring. Then R is a
factorial ring if and only if R• is a factorial monoid.

Proof. It is clear that if R is factorial, then R• is a factorial monoid. Conversely,
assume that R• is a factorial monoid. Then R• is a Krull monoid with Cl(R•) = {0}
by [11, Corollary 2.3.13]. Hence, R is a Krull ring with Cl(R) = {0} by Corollary
3.3 and Theorem 3.6. Thus, R is a factorial ring. �

Corollary 3.8. The following statements are equivalent for a t-Marot ring R.

(1) R is a PvMR and Cl(R) = {0}.
(2) R• is a PvMM and Cl(R•) = {0}.
(3) R• is a GCD-monoid.

Proof. (1) ⇔ (2) This follows by Theorem 3.6 and Corollary 3.4. (2) ⇔ (3) [15, p.
188]. �

Remark 3.9. Let R be a ring.

1. In [1, 2], Anderson and Markanda called R a factorial ring if R• is a factorial
monoid. In this case, a factorial ring need not be a Krull ring [3, Example
5.2]. This happens because a factorial ring R in [1, 2] is defined by R• being
factorial, while a Krull ring R is not defined by R• being a Krull monoid.
The factorial rings of this paper are just Krull rings with trivial class group
(Elliott [8, Definition 2.5.27] called R an r-UFR if it is a Krull ring with
trivial class group), and fortunately, Corollary 3.7 shows that there is no
difference between the two factorial rings in the case of a t-Marot ring.

2. In [8, Definition 2.5.27], Elliott called R an r-GCD ring if it is a PvMR
and Cl(R) = {0}. Observe that R need not be an r-GCD ring if R• is a
GCD-monoid. If R is a Krull ring such that R• is a factorial monoid but
Cl(R) ∼= Zn 6= {0} [3, Example 5.4], then R• is a GCD-monoid but R is
not an r-GCD ring. However, Corollary 3.8 (or [8, Corollary 2.8.20]) ensures
that an r-GCD ring R can be defined by R• being a GCD-monoid in the
t-Marot case.

4. Krull rings and monoids

A monoid homomorphism ϕ : H → F is said to be a divisor homomorphism if,
for a, b ∈ H, ϕ(a) |ϕ(b) implies that a | b, and a divisor theory if F is free abelian,
ϕ is a divisor homomorphism, and for all p ∈ F , there exists a finite subset X ⊆ H
such that p = gcd

(
ϕ(X)

)
.

Theorem 4.1. Let H be a monoid and X1(H) be the set of height-one prime
ideals of H. Then the following statements are equivalent.

(1) H is a Krull monoid.
(2) (i) H =

⋂
P∈X1(H)

HP , (ii) HP is a rank-one DVM for all P ∈ X1(H), and

(iii) each element of H is contained in only finitely many prime ideals in
X1(H).

(3) Every proper principal ideal aH of H is a t-product of prime ideals; i.e.,
aH = (P1 · · ·Pn)t for some prime ideals P1, . . . , Pn of H.

(4) H has a divisor theory.
(5) There exists a divisor homomorphism from H to a free abelian monoid.

Proof. (1) ⇔ (2) [9, Theorem 3.4]. (1) ⇔ (3) [15, Theorem 22.8]. (1) ⇔ (4) ⇔ (5)
[11, Theorem 2.4.8]. �
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We next give an example of Krull rings which shows that the divisor homomor-
phism of Theorem 4.1(5) is not unique.

Example 4.2. Let D be a Dedekind domain with maximal ideal P that is not
principal, but some power of P is principal. Let

A =
⊕
{D/Q | Q 6= P is a maximal ideal of D},

and set R = D(+)A be the idealization of A in D and M = P (+)A. Then R is a
Krull ring with unique regular-height-one prime ideal M such that

• M is invertible,
• there exists the least integer n > 1 such that Mn = tR for some t ∈ R for

some t ∈ R, and
• if a ∈ R•, then aR = tkR for some integer k ≥ 0.

Hence, R is a Krull ring with Cl(R) ∼= Zn and Cl(R•) = {0} [3, Example 5.4].
Moreover, R is not a t-Marot ring by Theorem 3.6, and we have two divisor homo-
morphisms from R• into free abelian monoids.

(1) Let F1 be a free abelian monoid with basis {M}, and define

ϕ1 : R• → F1 , by ϕ1(a) = Mk,

where aR = Mk for some integer k. Then ϕ1 is a divisor homomorphism, but
not a divisor theory. In this case, C(ϕ1) = q(F1)/q

(
ϕ1(R•)

) ∼= Zn ∼= Cl(R)
(see, [11, Definition 2.4.1]).

(2) Let F2 be a free abelian monoid with basis {t}, and define

ϕ2 : R• → F2 , by ϕ2(a) = tk,

where aR = tkR for some integer k ≥ 1. Then ϕ2 is a divisor theory and
C(ϕ2) = q(F2)/q

(
ϕ2(R•)

) ∼= Cl(R•) = {0} (see, [11, Theorem 2.4.7]).

A monoid H is said to be primary if H 6= H× and every q ∈ H \H× is primary,
or equivalently, for a, b ∈ H \ H×, there is an integer n ≥ 1 such that a|bn. A
Krull monoid H is called an almost factorial monoid if Cl(H) is torsion. Clearly, a
Krull monoid H is almost factorial if and only if for each a ∈ H, there is an integer
m = m(a) ≥ 1 such that am can be written as a finite product of primary elements
(cf. [15, Exercise 4 on p. 258]).

Proposition 4.3. Let ϕ : H → F be a divisor homomorphism of monoids.

1. If F is primary, then H is primary, and converse holds if ϕ is surjective.
2. If ϕ is a divisor theory, then F is a root extension of ϕ(H) if and only if H

is an almost factorial monoid.

Proof. 1. Let a, b ∈ H \ H×. Since ϕ is a divisor homomorphism, we have
ϕ−1(F×) = H×, and hence ϕ(a), ϕ(b) ∈ F \ F×. Since F is primary, there ex-
ists an integer n ≥ 1 such that ϕ(a) |ϕ(b)n = ϕ(bn), which implies that a | bn.
Thus H is primary. Suppose now that ϕ is surjective. If a, b ∈ F \ F×, then there
exist x, y ∈ H such that ϕ(x) = a and ϕ(y) = b. Since a, b /∈ F×, it follows that
x, y /∈ H×. Since H is primary, we may assume that x | yn for some n ∈ N, and it
follows that a | bn. Therefore F is primary.

2. Since ϕ is a divisor homomorphism, we have ϕ(H) = q
(
ϕ(H)

)
∩F . Since ϕ is

a divisor theory, [11, Proposition 2.4.6 and Corollary 2.4.3] ensures that F/ϕ(H) =
{aq
(
ϕ(H)

)
| a ∈ F} = q(F )/q

(
ϕ(H)

)
. Thus the assertion follows from Cl(H) ∼=

q(F )/q
(
ϕ(H)

)
. �

We say that a ring R is a weakly Krull ring if R =
⋂

P∈X1
r (R)

R[P ] and each regular

element of R is contained in only finitely many regular-height-one prime ideals of
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R. For example, every Krull ring is a weakly Krull ring. As in [15], a monoid
H is called a weakly Krull monoid if H =

⋂
Q∈X1(H)

HQ and each element of H is

contained in only finitely many height-one prime ideals of H.

Theorem 4.4. Let R be a t-Marot ring. Then R is a weakly Krull ring if and
only if R• is a weakly Krull monoid. In this case, X1

r (R) = {(PR)t | P ∈ X1(R•)}
and X1(R•) = {P • | P ∈ X1

r (R)}.

Proof. (⇒) By definition, R has the following two properties; (i) R =
⋂

P∈X1
r (R)

R[P ]

and (ii) each regular element of R is contained in only finitely many regular-height-
one prime ideals of R. Then

R• =
⋂

P∈X1
r (R)

(
R[P ] ∩ T(R)

•)
=

⋂
P∈X1

r (R)

R•P•

by Corollary 2.12(1) and X1(R•) = {P • | P ∈ X1
r (R)} by Theorem 2.7, so each

element of R• is contained in only finitely many height-one prime ideals of R•.
Thus, R• is a weakly Krull monoid.

(⇐) Assume that R• is a weakly Krull monoid, so (i) R• =
⋂

Q∈X1(R•)

R•Q and (ii)

each element of R• is contained in only finitely many height-one prime ideals of R•.
Then X1

r (R) = {(QR)t | P ∈ X1(R•)} by Theorem 2.7 and each regular element of
R is contained in only finitely many prime ideals in {(QR)t | Q ∈ X1(R•)}. Hence,
it suffices to show that

R =
⋂

Q∈X1(R•)

R[(QR)t].

Clearly, R ⊆
⋂

Q∈X1(R•)

R[(QR)t]. For the reverse containment, let x ∈
⋂

Q∈X1(R•)

R[(QR)t],

and let A = (R :R x). Then A is a regular v-ideal of R and A * (QR)t for all
Q ∈ X1(R•). Moreover, since R is t-Marot, A• * (QR)•t = Q for all Q ∈ X1(R•).
Hence, A• = R• (see, [15, Theorem 22.5]), and thus A = (A•R)t = R by Theorem
2.7. Therefore, x ∈ R. �

We next give a new proof of Corollary 3.3 that a t-Marot ring R is a Krull ring
if and only if R• is a Krull monoid. The proof shows the exact relationship of the
t-ideal structures of R and R•, which is why we prove it again.

Corollary 4.5. Let R be a t-Marot ring. Then R is a Krull ring if and only if
R• is a Krull monoid.

Proof. Let R be a Krull ring. Then, for each P ∈ X1
r (R), R[P ] is a rank-one DVR

by [7, Theorem 3.5], and hence R•P• is a rank-one DVM by Corollary 2.12(2). Thus,
by Theorems 4.1 and 4.4, R• is a Krull monoid.

Conversely, assume that R• is a Krull monoid and Q ∈ X1(R•). Then R•Q is a

rank-one DVM by Theorem 4.1, (QR)t ∈ X1
r (R) by Theorem 2.7, and (QR)t∩R• =

Q by Lemma 2.6, whence R[(QR)t] is a rank-one DVR by Corollary 2.12(2). More-
over, [(QR)t]R[(QR)t] is a regular-height-one prime ideal of R[(QR)t] (cf. Propo-
sition 2.10). Thus, by Proposition 2.11, (R[(QR)t], [(QR)t]R[(QR)t]) is a rank-one
discrete valuation pair of T(R). Therefore, R is a Krull ring by Theorem 4.4 and
[7, Theorem 3.5]. �

A nonunit regular element q ∈ R is said to be primary if qR is a primary ideal,
so q is primary in R if and only if q|ab for a, b ∈ R implies that either q|a or q|bn
for some integer n ≥ 1. Clearly, a regular prime element is primary. Moreover, if q
is primary, then

√
qR is a maximal t-ideal of R. (Proof. Let Q be a prime ideal of
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R such that
√
qR ( Q. Choose z ∈ Q \

√
qR, and let w ∈ (q, z)−1. Then qw ∈ R,

z /∈
√
qR, and (qw)z = q(wz) ∈ qR, so qw ∈ qR, and since q is regular, w ∈ R.

Hence, (q, z)−1 = R, and thus R = (q, z)v ⊆ Qt. Thus, Qt = R.)

Lemma 4.6. Let R be a t-Marot ring and q ∈ R• be a nonunit. Then q is a
primary element of R if and only if q is a primary element of R•.

Proof. (⇒) Let a, b ∈ R• be such that ab ∈ qR• and a /∈ qR•. Then ab ∈ qR and
a /∈ qR. Since q is primary, it follows that bn ∈ qR for some integer n ≥ 1. Thus
bn = qc for some c ∈ R, and since bn ∈ R•, we infer that c ∈ R•, whence bn ∈ qR•.
Therefore, q is a primary element of R•.

(⇐) Let q be a primary element of R• and a, b ∈ R be such that ab ∈ qR and
a /∈ qR. Set I = (a, q)t and J = (b, q)t. Observe that I and J are regular t-ideals
of R. Moreover, I•J• ⊆ (I•J•R)t =

(
(I•R)t(J

•R)t
)
t

= (IJ)t = (ab, aq, bq, q2)t ⊆
qR and I• * qR, for if I• ⊆ qR, then a ∈ I = (I•R)t ⊆ qR, a contradiction.
Consequently, there exists some y ∈ I• \ qR. Since yJ• ⊆ I•J• ⊆ qR ∩ R• = qR•

and q is a primary element of R•, it follows that J• ⊆ {r ∈ R• | rn ∈ qR• for some
integer n ≥ 1} ⊆

√
qR. Note that qR is a t-ideal of R, so that every minimal prime

ideal of qR is a t-ideal of R. Since
√
qR is the intersection of all minimal prime ideals

of qR, it follows that
√
qR is a t-ideal, and so b ∈ J = (J•R)t ⊆ (

√
qR)t =

√
qR.

Thus, q is a primary element of R. �

As in [5], we say that R is a weakly factorial ring if every nonunit regular element
of R is a product of finitely many regular primary elements of R. Since a regular
prime element is primary, a factorial ring is a weakly factorial ring. It is known
that a weakly factorial ring is a weakly Krull ring [5, Corollary 2.3]. A monoid H
is weakly factorial if and only if H is a weakly Krull monoid and Cl(H) = {0} [15,
Exercise 5 on p. 258].

Proposition 4.7. The following statements are equivalent for a t-Marot ring R.

(1) R is a weakly factorial ring.
(2) R• is a weakly factorial monoid.
(3) R• is a weakly Krull monoid and Cl(R•) = {0}.
(4) R is a weakly Krull ring and Cl(R) = {0}.

Proof. (1) ⇔ (2) This follows from Lemma 4.6.
(2) ⇔ (3) [15, p. 258].
(3) ⇔ (4) This follows from Theorems 4.4 and 3.6. �

Now, let q ∈ R be a nonunit regular element of R. It is easy to see that if q is
primary as an element of R, then q is also primary as an element of R• (see the
proof of Lemma 4.6). But, the next example shows that (i) q need not be primary
as an element of R even though q is a prime element of R•, and (ii) R• is a factorial
monoid but R is not a weakly factorial ring.

Example 4.8. Let A be a Dedekind domain with Pic(A) ∼= Z (see [10, Theorem
14.10] for such a Dedekind domain), {X1, X2, . . .} be a countably infinite set of
indeterminates over A, and B = A[{X1, X2, . . . }] be the polynomial ring over A.
Then B is a Krull domain, Cl(B) ∼= Z, and every divisor class of B contains
a height-one prime ideal (cf. [10, Theorem 14.3]). Let S be the multiplicative
set of B generated by all prime elements (cf. the proof of [10, Theorem 14.2]).
Then D := BS is a Dedekind domain, Pic(D) ∼= Z, and every divisor class of D
contains a maximal ideal. Then there are non-principal prime ideals P1 and P2,
so that P1P2 = qD for some q ∈ D. Let A =

⊕
{D/M | M is a maximal ideal

of D and M 6= P1, P2} and R = D(+)A be the idealization of A in D. Then
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R• = {(uqn,m) | u ∈ D is a unit, n ≥ 0 is an integer, and m ∈ A}, whence R•

is a factorial monoid with a unique prime element (q, 0) (up to associates). But,√
(q, 0)R = (P1(+)A) ∩ (P2(+)A), so

√
(q, 0)R is not a prime ideal of R. Thus,

(q, 0) is not a primary element of R. Since q is irreducible, (q, 0) cannot be written
as a finite product of primary elements. Thus, R is not a weakly factorial ring.
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