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Abstract. An ideal I of a commutative ring is called a cancellation ideal

if IB = IC implies B = C for all ideals B and C. Let D be a principal

ideal domain (PID), a, b ∈ D be nonzero elements with a - b, (a, b)D = dD

for some d ∈ D, Da = D/aD be the quotient ring of D modulo aD, and

bDa = (a, b)D/aD; so bDa is a nonzero commutative ring. In this paper,

we show that the following three properties are equivalent: (i) a
d

is a prime

element and a - d2, (ii) every nonzero ideal of bDa is a cancellation ideal, and

(iii) bDa is a field.

1. Introduction

Let S be a commutative semigroup under multiplication. The zero element of

S (if it exists) is an element 0 ∈ S such that a · 0 = 0 · a = 0 for all a ∈ S. An

element a ∈ S is said to be cancellative if ab = ac implies b = c for all b, c ∈ S.

Clearly if S has an identity, then every invertible element of S is cancellative, so

the cancellation property is a natural generalization of invertibility. We say that

S is cancellative if every nonzero element of S is cancellative. Let S• = S \ {0}.
Then S• is not a semigroup in general, while S is cancellative if and only if S•

is a cancellative semigroup. The cancellation property plays an important role for

the study on algebra. For example, assume that S• is a semigroup. Then (i) S is

cancellative if and only if S• can be embedded in a group (i.e., S• has a quotient

group) [5, Theorem 1.2], (ii) S is torsion-free and cancellative if and only if S•

admits a total order compatible with its semigroup operation [5, Corollary 3.4], and

(iii) several kinds of factorization properties of a semigroup (e.g., atomic, factorial,

half-factorial, bounded factorization) have been studied under the assumption that

it is cancellative (see [3] for a survey).

Let R be a commutative ring (not necessarily having an identity), I(R) be the

set of ideals of R, and P(R) be the set of principal ideals of R. Then I(R) becomes

a commutative semigroup with zero element under the usual ideal multiplication,

P(R) is a subsemigroup of I(R), and if R has an identity, then I(R) has an identity.

We say that an ideal I of R is a cancellation ideal if I is cancellative as an element

of I(R). It is easy to see that a principal ideal (a) of R generated by a ∈ R

is a cancellation ideal if and only if a is a regular element of R (i.e., a is not a

zero-divisor). Furthermore, if R has an identity, then a nonzero ideal I of R is a

cancellation ideal if and only if IRM is a regular principal ideal for all maximal

ideals M of R [1, Theorem, p. 2853], and P(R) is cancellative if and only if R is an

integral domain, if and only if I(R)• is a semigroup. It is well known that if R is an

integral domain, then (i) P(R) is factorial if and only if R is a unique factorization
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domain, (ii) I(R) is factorial if and only if R is a Dedekind domain [4, Theorem

37.8], (iii) I(R) is cancellative if and only if R is an almost Dedekind domain (i.e.,

RM is a principal ideal domain (PID) for all maximal ideals M of R) [4, Theorem

36.5], and (iv) every nonzero finitely generated ideal of R is a cancellation ideal if

and only if R is a Prüfer domain, (i.e., every nonzero finitely generated ideal of R

is invertible) [4, Theorem 24.3].

Now let Z be the ring of integers, m and n be positive integers, gcd(m,n) denote

the greatest common divisor of m and n, Zn be the ring of integers modulo n, and

mZn be the ideal of Zn generated by m; so mZn is a commutative ring. Then

I(Zn) = P(Zn), and hence I(Zn) is cancellative if and only if Zn is an integral

domain, if and only if either n = 1 or n is a prime number. Moreover, in [2,

Theorem 2.5], the authors showed that if n - m, then every nonzero ideal in mZn is

a cancellation ideal, i.e., I(mZn) is a cancellative semigroup, if and only if n
gcd(n,m)

is a prime number and n - gcd(n,m)2.

Let D be a PID, a and b be nonzero elements of D, and d ∈ D be such that

(a, b)D = dD.

1. Da = D/aD is the quotient ring of D modulo aD.

2. [a, b] = d is the greatest common divisor of a and b.

3. bDa = (a, b)D/aD.

Then bDa is a commutative ring, [a, b] is determined only up to units, and if [a, b] =

d, then [a/d, b/d] = 1 and bDa = dDa. In this paper, we show that every nonzero

ideal of bDa is a cancellation ideal if and only if a
[a,b] is a prime element and

a - [a, b]2. This result is applied in two special cases, i.e., the ring of integers

and the polynomial ring over a field, and the former case recovers the result of [2,

Theorem 2.5].

2. Results

Let R be a commutative ring with identity. Then two ideals I, J of R are said to

be comaximal if I + J = R, and we say that two elements a, b of R are comaximal

if the principal ideals aR and bR are comaximal. Clearly, a, b are comaximal if and

only if ar + bs = 1 for some r, s ∈ R.

Lemma 1. Let D be a PID and a, b ∈ D be nonzero elements. Then bDa has an

identity if and only if b and a
[a,b] are comaximal.

Proof. Let d = [a, b], a1 = a
d and b1 = b

d .

(⇒) Let bx + aD be the identity of bDa for some x ∈ D. Then

(bx + aD)(b + aD) = b + aD,

whence a | b(bx − 1). Also, [a1, b1] = 1 implies a1|bx − 1, and hence bx + a1y = 1

for some y ∈ D. Thus, b and a1 are comaximal.

(⇐) By assumption, bx + a1y = 1 for some x, y ∈ D, and hence bx = 1 − a1y.

So, for every z ∈ D, we have

(bx + aD)(bz + aD) = (1− a1y)(bz) + aD = (bz − a1byz) + aD

= (bz + aD)− (ab1yz + aD)

= bz + aD.

Thus, bx + aD is the identity of bDa. �

We now give the main result of this paper.
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Theorem 2. Let D be a PID and a, b ∈ D be nonzero elements with a - b. Then

the following statements are equivalent:

1. a
[a,b] is a prime element and a - [a, b]2.

2. bDa is a field.

3. Every nonzero ideal of bDa is a cancellation ideal.

Proof. Let d = [a, b], a1 = a
d , and b1 = b

d . Clearly, bDa = dDa, (a1, b1)D = D, a1
is a nonunit, and bDa 6= (0) because a - b.

(1) ⇒ (2) Note that bDa is a commutative ring; so bDa is a field if and only if

bDa has an identity and bDa does not have a proper nonzero ideal.

We first show that bDa has an identity. Note that a = da1 and b = db1; so

a - d2 implies a1 - d. Hence, a1 - b because [a1, b1] = 1 and b = db1. Since

a1 = a
d is a prime element by assumption, it follows that a1 and b are comaximal.

Hence, by Lemma 1, bDa has an identity. Next, let A be an ideal of bDa. Then

DaA = Da(bDaA) = bDaA = A because bDa has an identity. Thus, A is an ideal

of Da, so there exists e ∈ D such that

aD ⊆ eD ⊆ dD and A = eD/aD ⊆ bDa.

Hence, e = dx and a = ey for some x, y ∈ D, and thus a = dxy or a1 = xy. By

assumption, a1 = xy is a prime element of D, whence either x or y is a unit of D.

If x is a unit, then eD = dD, and hence A = eD/aD = dDa = bDa. If y is a unit,

then eD = aD, whence A = eD/aD = aD/aD is the zero ideal of bDa. Therefore,

bDa does not have a proper nonzero ideal.

(2) ⇒ (3) Clear.

(3) ⇒ (1) If a | d2, then
(
dDa

)2
= d2Da = (0), and since dDa is a cancellation

ideal in bDa, dDa = (0), a contradiction. Thus, a - d2.

Next, assume to the contrary that a1 = pq for some nonunit elements p, q of D.

Let I = pdDa and J = qdDa. Then I and J are ideals of dDa. If I = (0), then

pd+ aD = aD, and hence a | pd. Note that a = a1d; so a1 | p, and thus q is a unit,

a contradiction. Similarly, we have J 6= (0). However,

IJ = pdqdDa = a1d
2Da = adDa = (0).

Thus, I and J are not cancellation ideals, a contradiction. �

As a corollary of Theorem 2, we have.

Corollary 3. Let D be a PID and a ∈ D be a nonzero element. Then every

nonzero ideal in Da is a cancellation ideal if and only if a is a unit or a is a prime

element.

We have two applications of Theorem 2: one is to the ring of integers and the

other is to the polynomial ring over a field.

Corollary 4. Let n,m ∈ Z be positive integers with n - m.

1. ([2, Theorem 2.5]) Every nonzero ideal in mZn is a cancellation ideal if and

only if n
gcd(n,m) is a prime number and n - gcd(n,m)2.

2. ([2, Corollary 2.6]) Every nonzero ideal in Zn is a cancellation ideal if and

only if either n = 1 or n is a prime number.

Corollary 5. Let F be a field, X be an indeterminate over F , F [X] be the poly-

nomial ring over F , f, g ∈ F [X] be nonzero polynomials with f - g in F [X], and

(f, g)F [X] = hF [X] for some h ∈ F [X].
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1. Every nonzero ideal in (f, g)F [X]/fF [X] is a cancellation ideal if and only

if f
h is irreducible over F and f - h2 in F [X].

2. Every nonzero ideal in F [X]/fF [X] is a cancellation ideal if and only if

either f ∈ F or f is irreducible over F .

Proof. This follows directly from Theorem 2 and Corollary 3, because an irreducible

polynomial of F [X] is a prime element. �
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