WHEN DOES A QUOTIENT RING OF A PID HAVE THE CANCELLATION PROPERTY?

GYU WHAN CHANG AND JUN SEOK OH

Abstract

An ideal I of a commutative ring is called a cancellation ideal if $I B=I C$ implies $B=C$ for all ideals B and C. Let D be a principal ideal domain (PID), $a, b \in D$ be nonzero elements with $a \nmid b,(a, b) D=d D$ for some $d \in D, D_{a}=D / a D$ be the quotient ring of D modulo $a D$, and $b D_{a}=(a, b) D / a D$; so $b D_{a}$ is a nonzero commutative ring. In this paper, we show that the following three properties are equivalent: (i) $\frac{a}{d}$ is a prime element and $a \nmid d^{2}$, (ii) every nonzero ideal of $b D_{a}$ is a cancellation ideal, and (iii) $b D_{a}$ is a field.

1. Introduction

Let S be a commutative semigroup under multiplication. The zero element of S (if it exists) is an element $0 \in S$ such that $a \cdot 0=0 \cdot a=0$ for all $a \in S$. An element $a \in S$ is said to be cancellative if $a b=a c$ implies $b=c$ for all $b, c \in S$. Clearly if S has an identity, then every invertible element of S is cancellative, so the cancellation property is a natural generalization of invertibility. We say that S is cancellative if every nonzero element of S is cancellative. Let $S^{\bullet}=S \backslash\{0\}$. Then S^{\bullet} is not a semigroup in general, while S is cancellative if and only if S^{\bullet} is a cancellative semigroup. The cancellation property plays an important role for the study on algebra. For example, assume that S^{\bullet} is a semigroup. Then (i) S is cancellative if and only if S^{\bullet} can be embedded in a group (i.e., S^{\bullet} has a quotient group) [5, Theorem 1.2], (ii) S is torsion-free and cancellative if and only if S^{\bullet} admits a total order compatible with its semigroup operation [5, Corollary 3.4], and (iii) several kinds of factorization properties of a semigroup (e.g., atomic, factorial, half-factorial, bounded factorization) have been studied under the assumption that it is cancellative (see [3] for a survey).

Let R be a commutative ring (not necessarily having an identity), $\mathcal{I}(R)$ be the set of ideals of R, and $\mathcal{P}(R)$ be the set of principal ideals of R. Then $\mathcal{I}(R)$ becomes a commutative semigroup with zero element under the usual ideal multiplication, $\mathcal{P}(R)$ is a subsemigroup of $\mathcal{I}(R)$, and if R has an identity, then $\mathcal{I}(R)$ has an identity. We say that an ideal I of R is a cancellation ideal if I is cancellative as an element of $\mathcal{I}(R)$. It is easy to see that a principal ideal (a) of R generated by $a \in R$ is a cancellation ideal if and only if a is a regular element of R (i.e., a is not a zero-divisor). Furthermore, if R has an identity, then a nonzero ideal I of R is a cancellation ideal if and only if $I R_{M}$ is a regular principal ideal for all maximal ideals M of R [1, Theorem, p. 2853], and $\mathcal{P}(R)$ is cancellative if and only if R is an integral domain, if and only if $\mathcal{I}(R)^{\bullet}$ is a semigroup. It is well known that if R is an integral domain, then (i) $\mathcal{P}(R)$ is factorial if and only if R is a unique factorization

[^0]domain, (ii) $\mathcal{I}(R)$ is factorial if and only if R is a Dedekind domain 4, Theorem 37.8], (iii) $\mathcal{I}(R)$ is cancellative if and only if R is an almost Dedekind domain (i.e., R_{M} is a principal ideal domain (PID) for all maximal ideals M of R) 4, Theorem 36.5], and (iv) every nonzero finitely generated ideal of R is a cancellation ideal if and only if R is a Prüfer domain, (i.e., every nonzero finitely generated ideal of R is invertible) [4, Theorem 24.3].

Now let \mathbb{Z} be the ring of integers, m and n be positive integers, $\operatorname{gcd}(m, n)$ denote the greatest common divisor of m and n, \mathbb{Z}_{n} be the ring of integers modulo n, and $m \mathbb{Z}_{n}$ be the ideal of \mathbb{Z}_{n} generated by m; so $m \mathbb{Z}_{n}$ is a commutative ring. Then $\mathcal{I}\left(\mathbb{Z}_{n}\right)=\mathcal{P}\left(\mathbb{Z}_{n}\right)$, and hence $\mathcal{I}\left(\mathbb{Z}_{n}\right)$ is cancellative if and only if \mathbb{Z}_{n} is an integral domain, if and only if either $n=1$ or n is a prime number. Moreover, in [2, Theorem 2.5], the authors showed that if $n \nmid m$, then every nonzero ideal in $m \mathbb{Z}_{n}$ is a cancellation ideal, i.e., $\mathcal{I}\left(m \mathbb{Z}_{n}\right)$ is a cancellative semigroup, if and only if $\frac{n}{\operatorname{gcd}(n, m)}$ is a prime number and $n \nmid \operatorname{gcd}(n, m)^{2}$.

Let D be a PID, a and b be nonzero elements of D, and $d \in D$ be such that $(a, b) D=d D$.

1. $D_{a}=D / a D$ is the quotient ring of D modulo $a D$.
2. $[a, b]=d$ is the greatest common divisor of a and b.
3. $b D_{a}=(a, b) D / a D$.

Then $b D_{a}$ is a commutative ring, $[a, b]$ is determined only up to units, and if $[a, b]=$ d, then $[a / d, b / d]=1$ and $b D_{a}=d D_{a}$. In this paper, we show that every nonzero ideal of $b D_{a}$ is a cancellation ideal if and only if $\frac{a}{[a, b]}$ is a prime element and $a \nmid[a, b]^{2}$. This result is applied in two special cases, i.e., the ring of integers and the polynomial ring over a field, and the former case recovers the result of [2, Theorem 2.5].

2. Results

Let R be a commutative ring with identity. Then two ideals I, J of R are said to be comaximal if $I+J=R$, and we say that two elements a, b of R are comaximal if the principal ideals $a R$ and $b R$ are comaximal. Clearly, a, b are comaximal if and only if $a r+b s=1$ for some $r, s \in R$.

Lemma 1. Let D be a PID and $a, b \in D$ be nonzero elements. Then $b D_{a}$ has an identity if and only if b and $\frac{a}{[a, b]}$ are comaximal.
Proof. Let $d=[a, b], a_{1}=\frac{a}{d}$ and $b_{1}=\frac{b}{d}$.
(\Rightarrow) Let $b x+a D$ be the identity of $b D_{a}$ for some $x \in D$. Then

$$
(b x+a D)(b+a D)=b+a D
$$

whence $a \mid b(b x-1)$. Also, $\left[a_{1}, b_{1}\right]=1$ implies $a_{1} \mid b x-1$, and hence $b x+a_{1} y=1$ for some $y \in D$. Thus, b and a_{1} are comaximal.
(\Leftarrow) By assumption, $b x+a_{1} y=1$ for some $x, y \in D$, and hence $b x=1-a_{1} y$. So, for every $z \in D$, we have

$$
\begin{aligned}
(b x+a D)(b z+a D) & =\left(1-a_{1} y\right)(b z)+a D=\left(b z-a_{1} b y z\right)+a D \\
& =(b z+a D)-\left(a b_{1} y z+a D\right) \\
& =b z+a D .
\end{aligned}
$$

Thus, $b x+a D$ is the identity of $b D_{a}$.
We now give the main result of this paper.

Theorem 2. Let D be a PID and $a, b \in D$ be nonzero elements with $a \nmid b$. Then the following statements are equivalent:

1. $\frac{a}{[a, b]}$ is a prime element and $a \nmid[a, b]^{2}$.
2. $b D_{a}$ is a field.
3. Every nonzero ideal of $b D_{a}$ is a cancellation ideal.

Proof. Let $d=[a, b], a_{1}=\frac{a}{d}$, and $b_{1}=\frac{b}{d}$. Clearly, $b D_{a}=d D_{a},\left(a_{1}, b_{1}\right) D=D, a_{1}$ is a nonunit, and $b D_{a} \neq(0)$ because $a \nmid b$.
$(1) \Rightarrow(2)$ Note that $b D_{a}$ is a commutative ring; so $b D_{a}$ is a field if and only if $b D_{a}$ has an identity and $b D_{a}$ does not have a proper nonzero ideal.

We first show that $b D_{a}$ has an identity. Note that $a=d a_{1}$ and $b=d b_{1}$; so $a \nmid d^{2}$ implies $a_{1} \nmid d$. Hence, $a_{1} \nmid b$ because $\left[a_{1}, b_{1}\right]=1$ and $b=d b_{1}$. Since $a_{1}=\frac{a}{d}$ is a prime element by assumption, it follows that a_{1} and b are comaximal. Hence, by Lemma 1 $b D_{a}$ has an identity. Next, let A be an ideal of $b D_{a}$. Then $D_{a} A=D_{a}\left(b D_{a} A\right)=b D_{a} A=A$ because $b D_{a}$ has an identity. Thus, A is an ideal of D_{a}, so there exists $e \in D$ such that

$$
a D \subseteq e D \subseteq d D \text { and } A=e D / a D \subseteq b D_{a}
$$

Hence, $e=d x$ and $a=e y$ for some $x, y \in D$, and thus $a=d x y$ or $a_{1}=x y$. By assumption, $a_{1}=x y$ is a prime element of D, whence either x or y is a unit of D. If x is a unit, then $e D=d D$, and hence $A=e D / a D=d D_{a}=b D_{a}$. If y is a unit, then $e D=a D$, whence $A=e D / a D=a D / a D$ is the zero ideal of $b D_{a}$. Therefore, $b D_{a}$ does not have a proper nonzero ideal.
$(2) \Rightarrow(3)$ Clear.
$(3) \Rightarrow(1)$ If $a \mid d^{2}$, then $\left(d D_{a}\right)^{2}=d^{2} D_{a}=(0)$, and since $d D_{a}$ is a cancellation ideal in $b D_{a}, d D_{a}=(0)$, a contradiction. Thus, $a \nmid d^{2}$.

Next, assume to the contrary that $a_{1}=p q$ for some nonunit elements p, q of D. Let $I=p d D_{a}$ and $J=q d D_{a}$. Then I and J are ideals of $d D_{a}$. If $I=(0)$, then $p d+a D=a D$, and hence $a \mid p d$. Note that $a=a_{1} d$; so $a_{1} \mid p$, and thus q is a unit, a contradiction. Similarly, we have $J \neq(0)$. However,

$$
I J=p d q d D_{a}=a_{1} d^{2} D_{a}=a d D_{a}=(0) .
$$

Thus, I and J are not cancellation ideals, a contradiction.
As a corollary of Theorem 2 , we have.
Corollary 3. Let D be a PID and $a \in D$ be a nonzero element. Then every nonzero ideal in D_{a} is a cancellation ideal if and only if a is a unit or a is a prime element.

We have two applications of Theorem 2 one is to the ring of integers and the other is to the polynomial ring over a field.

Corollary 4. Let $n, m \in \mathbb{Z}$ be positive integers with $n \nmid m$.

1. (2, Theorem 2.5]) Every nonzero ideal in $m \mathbb{Z}_{n}$ is a cancellation ideal if and only if $\frac{n}{\operatorname{gcd}(n, m)}$ is a prime number and $n \nmid \operatorname{gcd}(n, m)^{2}$.
2. (2, Corollary 2.6]) Every nonzero ideal in \mathbb{Z}_{n} is a cancellation ideal if and only if either $n=1$ or n is a prime number.

Corollary 5. Let F be a field, X be an indeterminate over $F, F[X]$ be the polynomial ring over $F, f, g \in F[X]$ be nonzero polynomials with $f \nmid g$ in $F[X]$, and $(f, g) F[X]=h F[X]$ for some $h \in F[X]$.

1. Every nonzero ideal in $(f, g) F[X] / f F[X]$ is a cancellation ideal if and only if $\frac{f}{h}$ is irreducible over F and $f \nmid h^{2}$ in $F[X]$.
2. Every nonzero ideal in $F[X] / f F[X]$ is a cancellation ideal if and only if either $f \in F$ or f is irreducible over F.

Proof. This follows directly from Theorem 2 and Corollary 3, because an irreducible polynomial of $F[X]$ is a prime element.

References

[1] D. D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc. 125 (1997), 2853-2854.
[2] S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, Some cancellation ideal rings, General Mathematics 13 (2005), 39-46.
[3] A. Geroldinger and Q. Zhong, Factorization theory in commutative monoids, Semigroup Forum 100 (2020), 22-51.
[4] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker Inc., New York, 1972.
[5] R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago, 1984.
Department of Mathematics Education, Incheon National University, Incheon 22012, Republic of Korea

Email address: whan@inu.ac.kr
Department of Mathematics Education, Jeju National University, Jeju 63243, Republic of Korea

Email address: junseok.oh@jejunu.ac.kr

[^0]: Date: April 16, 2021.
 2010 Mathematics Subject Classification: 13A15.
 Key words and Phrases: principal ideal domain, cancellation ideals.

