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Preface

Firstly, we explain the concept of an inverse problem. It begins with the notion
that there is a direct problem, i.e., a well-posed problem. In other words, we have a
sufficient knowledge of an object and of how it evolves in a mathematical model of
a physical process. If the object is unknown, instead, some additional information of
the direct problem is supplemented, we are in a position of dealing with an inverse
problem. Mathematically, the inverse problem is stated as

Determinine x from given data y: F (x) = y.

Many inverse problems involving time-dependent partial differential equations nat-
urally arise and have essential applications, ranging from engineering via physics,
geophysics, biology, ecology to economics. Applications include reconstruction of the
interior of the human body from exterior electrical voltages, ultrasound, X-ray, mag-
netic measurements; recovery of geologic Earth structure from sea surface acquisition
recording the arrival time of seismic waves; locating an unknown moving or navi-
gated obstacles from acoustic or electromagnetic fields, etc. There exists an immense
amount of literature on several aspects of inverse problem varying from abstract reg-
ularization theory to concrete applications. We selectively mention [31, 69, 62, 104,
56, 108, 41] for the abstract theory and [70, 97, 85, 73, 39, 90, 72, 30, 14, 24, 65] for
investigations in real applications.

The mathematical model for those problems can be formulated as a state-space
system in which the parameter is supposed to be identified from additional obser-
vations. Parameter identification problems deal with the reconstruction of unknown
functions appearing as parameters (coefficients, sources, boundary values...) in sys-
tems of differential equations. Recently, parameter identification attracts much in-
terest due to its vast applications in modern medicine. These problems are relatively
new and challenging for two reasons: they are nonlinear, and they are improperly
posed (ill-posed). A number of theoretical researches and numerical approaches are
on the way to investigate these problems in various applied fields.

The principle theme of this thesis is coefficient identification in time-dependent
PDEs. Although this subject has been studied extensively, many relevant questions
are yet to be addressed, particularly in the context of nonlinear parameter identifica-
tion:
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Preface

Question 1. For the inverse problem of finding parameter x described by

F (x) := F (x, u(x)) = y where u depends on x via a PDE,

the classical approach works with the operation equation F (x) = y thus
requires to construct the so-called parameter-to-state map S : x 7→ u.
We ask: Is there an alternative formulation that avoids the need of
such conditional nonlinear map?

Question 2. As inverse problems are usually ill-posed, regularization methods are
demanded to compute a good approximation to the true solution. These
methods necessitate some structural conditions to be successfully imple-
mented. The question arising here is: whether or not these conditions
are fulfilled in real world physics problems?

Question 3. Lastly, can our work make a tangible contribution to the innovative
applied science, especially in medical imaging?

In this spirit, we expose in the upcoming content our answer for each question,
namely,

G Chapter 2 refers to Question 1.

G Chapter 3 refers to Question 2.

G Chapters 5, 6 refer to Question 3.

We begin the thesis with Chapter 1, a review on theoretical preliminaries that
are needed in the treatment of the whole thesis. Chapter 4 introduces some basic
concepts of Magnetic Particle Imaging in order to make the latter chapters more ac-
cessible.

The thesis reflects our work in:

• T. T. N. Nguyen, Landweber-Kaczmarz for parameter identification in time-
dependent inverse problems: All-at-once versus reduced version, Inverse Prob-
lems, 35 (2019). Art. ID. 035009.

• B. Kaltenbacher, T. T. N. Nguyen, and O. Scherzer, The tangential cone con-
dition for some coefficient identification model problems in parabolic PDEs,
Springer volume on “Time-dependent Problems in Imaging and Parameter Iden-
tification”, (to appear).

• B. Kaltenbacher, T. T. N. Nguyen, A. Wald, and T. Schuster, Parameter iden-
tification for the Landau-Lifshitz-Gilbert equation in magnetic particle imaging,
Springer volume on “Time-dependent Problems in Imaging and Parameter Iden-
tification”, (to appear).
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• T. T. N. Nguyen, and A. Wald, Numerical study of MPI: Parameter identifica-
tion for the Landau-Lifshitz-Gilbert equation, (on going).
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Chapter 1

Theoretical preliminaries

In this chapter, we present some basic concepts of inverse problems leading to the
theory of regularization methods in Section 1.1. Since the reconstruction in this
thesis is mainly developed in Sobolev spaces, we collect in Section 1.2 some material
facilitating the choice of appropriate function spaces: the Sobolev embeddings. In
Section 1.3, we focus on existence of weak solutions to nonlinear parabolic PDEs, the
essential equations studied in this research. Eventually, some well-known theorems
from functional analysis will be recalled in Section 1.4 as they are prerequisite for the
next chapters.

1.1 Inverse problems

1.1.1 Ill-posed problems

The terminology “inverse problem” indicates a problem that is inverse to a “forward
problem” or “direct problem”. The direct problem is formulated as the evaluation of
a forward operator F acting on a known x in a space X. In the inverse problem, one
tries to find the solution x from the equation F (x) = y for given data y

• Direct problem: given x and F , evaluate F (x)

• Inverse problem: given y and F , solve F (x) = y for x.

The formulation as an operator equation allows us to distinguish among finite, infinite-
dimensional, linear or nonlinear problems.

A mathematical model is called “well-posed” in the sense of Hadamard if it satisfies
the three following properties:

1. There exists a solution of the problem (existence).

2. There is at most one solution of the problem (uniqueness).
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1.1. Inverse problems

3. The solution depends continuously on the data (stability).

These requirements are not independent of each other. If a problem lacks of one of
these three properties, we call it “ill-posed”. While the direct problem is well-posed
in most of the cases, the inverse problem is ill-posed due to its nature. The prototype
of an inverse problem is an equation of the form

F (x) = y.

The ill-posed property challenges us in determining x from the above formulated
equation since the solution may not exist (existence) or even if existing, information
is missing if the problem has more than one solution (uniqueness). Moreover, if
the stability criterion is violated, it is practically impossible to recover x because in
reality, the data y always contains error from measurement and computation. Then,
a decrease of the noise level does not ensure convergence of the computed solution to
the true solution.

Therefore, special techniques, which are so-called regularization, and possibly ad-
ditional priori information about the solution (e.g., source conditions) are required to
successfully reconstruct a stable approximation of the solution.

1.1.2 Regularization theory

We consider the general model

F : X → Y F (x) = y, (1.1)

where F is a nonlinear operator acting between the Hilbert spaces (or Banach spaces)
X and Y . If F is not surjective, it is reasonable to search for x such that F (x) has
minimal distance to y. Also we do not assume F to be injective; hence among the
solutions, selecting the one with the minimal norm makes sense to the idea of a unique
solution. We thus introduce the notions:

Definition 1.1.1. An element x ∈ X is called

• least-squares solution of if (1.1)

‖F (x)− y‖ = min{‖F (z)− y‖ : z ∈ X}

• minimal-norm solution of (1.1) if

‖x‖ = inf{‖z‖ : z is a least-squares solution of (1.1)}.

In general, existence of a least-squares solution is not guaranteed as the range of F
might not be closed. This leads to the definition of the Moore-Penrose generalized
inverse F † in case of a linear operator F :

2



1.1. Inverse problems

Definition 1.1.2. The Moore-Penrose generalized inverse is defined as

F † : D(F †) := R(F ) +R(F )⊥ → R(F †) := N (F )⊥

with N (F †) := R(F )⊥.

Note that the Moore-Penrose generalized inverse is well-defined, thus it allows us to
specify the unique minimal-norm solution

x† := F †y

for each y ∈ D(F †) in the linear case.
Once the concept of the best-approximate solution has been clarified, we shall

construct regularization methods :

Definition 1.1.3. Let Rα : Y → X be a family of continuous operators and α :
R+× Y → I for some index set I. The pair (Rα, α) is called a regularization method
for (1.1) if

lim
δ→0

(
sup{‖Rα(δ,yδ)y

δ − x†‖ : yδ ∈ Y, ‖yδ − F (x†)‖ ≤ δ}
)

= 0

and

lim
δ→0

(
sup{α(δ, yδ) : yδ ∈ Y, ‖yδ − F (x†)‖ ≤ δ}

)
= 0

for all x† ∈ D(F ) and noisy data yδ.

In the following, we list out some regularization methods, each of these methods
relies on different theory:

Tikhonov regularization bases on minimization

Iterative Landweber regularization as a steepest decent method

Iterative Newton-type methods work on linearized problems

Conjugate gradient method builds a Krylov subspace.

Remark 1.1.4. In the context of this thesis, formulation of the iterative Landweber
and Landweber-Kaczmarz will be investigated on general nonlinear parabolic models.

Bibiliographical remark 1.1.5. For an insight into regularization theory for inverse
problems, we refer to, e.g., [31, 69, 62, 108, 41].

3



1.1. Inverse problems

1.1.3 Landweber-Kaczmarz iteration

Most of the iterative methods for regularizing the ill-posed inverse problem (1.1) base
on the transformed fixed-point equation

x = x− F ′(x)∗(F (x)− yδ),

which results from minimizing the least square misfit functional

‖F (x)− yδ‖2 → min !

by taking steps in the direction of the negative of the gradient of the function.
This motivates a fixed-point iteration known as the Landweber iteration [49]

xk+1 = xk − µkF ′(xk)∗(F (xk)− yδ) k ∈ N0 (1.2)

starting from an initial guess x0, and the iterative process is driven toward the steepest
descent.

In case of having a collection of operators F = (F0, . . . , Fn−1) :
n−1⋂
i=0

D(Fi) ⊂ X →

Y n as well as data yδ = (yδ0, . . . , y
δ
n−1), the Landweber-Kaczmarz method reads as

xk+1 = xk − µkF ′j(k)(xk)
?(Fj(k)(xk)− yδj(k)) k ∈ N0 (1.3)

with j(k) = k − nbk/nc, where bkc is the largest integer lower or equal to k. It is
recognizable that the Landweber-Kaczmarz method applies the Landweber iteration
cyclically.

In (1.2) and (1.3), F ′(x) is the derivative of F at x and F ′(x)∗ is its adjoint. F ′

does not necessarily need to be the Fréchet or Gâteaux derivative of F , it is just
required to be some linear operator that is uniformly bounded in a neighborhood of
the initial guess (see (1.9)).

Discrepancy principle

[62] suggests to terminate the Landweber iteration according to a discrepancy prin-
ciple:

Definition 1.1.6.

‖F (xk∗)− yδ‖ ≤ τδ < ‖F (xk)− yδ‖ 0 ≤ k < k∗ (1.4)

for an appropriately chosen positive constant τ .

For the Landweber-Kaczmarz method, we define:

4



1.1. Inverse problems

Definition 1.1.7. Let

xk+1 = xk − wkhk, where hk = µkF
′
j(k)(xk)

∗(Fj(k)(xk)− yδj(k)) (1.5)

and

wk =

{
1 if ‖Fj(k)(xk)− yδj(k)‖ ≥ τδj(k)

0 otherwise
(1.6)

then the iterations stop at the first index k∗, when wk = 0 is reached in a full cycle

wk∗−i = 0, i = 0, . . . , n− 1 and wk∗−n = 1. (1.7)

Here the discrepancy principle is combined with a loping strategy.

Since data yδ is always contaminated by noise, this is a reasonable stopping rule
as we require the residual ‖Fj(k)(xk)− yδj(k)‖ to be of the order of the data error via
some sufficiently large τ > 2 rather than hoping for residual smaller than δk, the noise
level in the j(k)-th equation.

In (1.4) and (1.6), the constant τ in is chosen subject to the tangential cone condi-
tion (1.8). Additionally, the step size µ in (1.5) is derived from uniform boundedness
of the derivative of the forward operator specified by (1.9).

Basic assumptions

Assumption 1.1.8.

1. The tangential cone condition

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖Y ≤ ctc‖F (x̃)− F (x)‖Y (1.8)

∀x, x̃ ∈ Bρ(x0)

holds for some small ctc <
1
2
.

2. F ′(x) is uniformly bounded

‖F ′(x)‖L(X,Y ) ≤ C ∀x ∈ Bρ(x0)) (1.9)

for some constant C.

These conditions [49] are imposed locally in Bρ(x0) ⊆ X, the ball of center x0 and
radius ρ, to ensure convergence of the iterative regularization methods. They also
guarantee that the iterates xk, 0 ≤ k ≤ k∗ remain in D(F ), which makes the iterative
methods well-defined.

5



1.1. Inverse problems

𝟏

𝟏 − 𝒄𝒕𝒄

𝟏

𝟏 + 𝒄𝒕𝒄

𝑭

Figure 1.1: Tangential cone condition.

From (1.8), it follows immediately with the triangle inequality that

1

1 + ctc
‖F ′(x)(x̃− x)‖ ≤ ‖F (x̃)− F (x)‖ ≤ 1

1− ctc
‖F ′(x)(x̃− x)‖

for all x, x̃ ∈ Bρ(x0). Graphically, the graph of F (x̃) for all x̃ in a neighborhood of
point x should lie within the double cone, whose two generatrix lines are made of
the tangent at x with slopes being scaled by the factor 1

1+ctc
and 1

1−ctc , respectively
(Figure 1.1).

Note that (1.8) even implies unique existence of the minimal-norm solution:

Proposition 1.1.9. Let (1.8) be fulfilled and (1.1) be solvable in Bρ(x0). Then a
unique minimal-norm solution exists. It is characterized as the solution x† of F (x) =
y in Bρ(x0) satisfying the condition

x† − x0 ∈ N (F ′(x†))⊥.

Proof. [62, Proposition 2.1].

Remark 1.1.10. The tangential cone condition (1.8) will be examined for a series
of time dependent benchmark inverse problems in Chapter 3.

Convergence analysis

Theorem 1.1.11. Let the assumptions (1.8), (1.9) hold and let k∗ = k∗(δ, y
δ) be

chosen according to the stopping rule (1.4). Moreover, we assume that F (x) = y
is solvable in in Bρ(x0). Then the Landweber iterates xk∗ converge to a solution of
F (x) = y. If N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ Bρ(x†), then xk∗ converges to x† as
δ → 0.

Proof. [49], [62, Theorem 2.6]

6



1.2. Sobolev embeddings

Theorem 1.1.12. Let the assumptions (1.8), (1.9) hold and let k∗ = k∗(δ, y
δ) be

chosen according to the stopping rule (1.6), (1.7). Moreover, we assume that F (x) = y
is solvable in in Bρ(x0). Then the Landweber-Kaczmarz iterates xk∗ converge to a
solution of F (x) = y. If N (F ′j(x

†)) ⊂ N (F ′j(x)) for all x ∈ Bρ(x†), j = 1 . . . , n − 1,
then xk∗ converges to x† as δ → 0.

Proof. [75], [62, Theorem 3.26].

Bibiliographical remark 1.1.13. For a more comprehensive look at this method
(also other iterative methods) inlcluding convergence rates, we refer to [62, 45, 46, 75].

1.2 Sobolev embeddings

Definition 1.2.1. (Sobolev space) [32, Section 5.2.2]
The Sobolev space

W k,p(Ω)

consists of all locally integral functions u : Ω → R such that for each multiindex α
with |α| ≤ k,Dαu exists in the weak sense and belongs to Lp(Ω).
The standard norm on W k,p(Ω) is defined by

‖u‖Wk,p(Ω) :=

∑
|α|≤k

∫
Ω

|Dαu|p dx

 1
p

1 ≤ p <∞

‖u‖Wk,∞(Ω) := ess sup
Ω

∑
|α|≤k

|Dαu|p.

Remark 1.2.2.
For 1 ≤ p ≤ ∞: W k,p(Ω) are Banach spaces.

For 1 < p <∞: W k,p(Ω) are reflexive spaces.

For p = 2: Hk(Ω) := W k,p(Ω) are Hilbert spaces.

Theorem 1.2.3. (Sobolev embedding)
Let Ω ⊂ Rd be a bounded Lipschitz domain. Moreover, let 1 ≤ p <∞, and let k be a
nonnegative integer. Then the following embeddings exist and are continuous:

• for kp < d : W k,p(Ω) ↪→ Lq(Ω) if 1 ≤ q ≤ dp
d−kp

• for kp = d : W k,p(Ω) ↪→ Lq(Ω) if 1 ≤ q <∞

• for kp > d : W k,p(Ω) ↪→ C(Ω).

Proof. [32, Sections 5.6, 5.7 ]

Remark 1.2.4. The following embeddings will be frequently used

7



1.2. Sobolev embeddings

• for d = 1: H1(Ω) ↪→ C(Ω)

• for d = 2: H1(Ω) ↪→ Lq(Ω) if 1 ≤ q <∞

• for d = 3: H1(Ω) ↪→ L6(Ω), H2(Ω) ↪→ C(Ω).

The evolution problems in the next chapters, besides the space variable, involve
also the time variable t, which takes a special role in reflecting the mathematical
analysis. We here present a few useful assertions about abstract function spaces in a
finite time interval I := [0, T ], whose values are in Banach spaces.

Definition 1.2.5. [32, Section 9.3.2]

(i) Given Banach space V , the space

Lp(I;V )

consists of all strongly measurable functions u : I → V with

‖u‖Lp(I;V ) :=

(∫
I

‖u(t)‖pV dt
) 1

p

1 ≤ p <∞

‖u‖L∞(I;V ) := ess sup
t∈I
‖u(t)‖V .

(ii) Given Banach space V , the space

C(I;V )

comprises all continuous functions u : I → V with

‖u‖C(I;V ) := max
t∈I
‖u(t)‖V .

Definition 1.2.6. (Sobolev-Bochner space) [100, Section 7.1]
For V1 a Banach space and V2 a locally convex Banach space, V1 ⊆ V2, let us define
the Sobolev-Bochner space

W 1,p,q(I;V1, V2) := {u ∈ Lp(I;V1);
du

dt
∈ Lq(I;V2)} 1 ≤ p, q ≤ ∞,

which is equipped with the norm

‖u‖W 1,p,q(I;V1,V2) := ‖u‖Lp(I;V1) +

∥∥∥∥dudt
∥∥∥∥
Lq(I;V2)

.

Remark 1.2.7. For p = q = 2, if V1, V2 are Hilbert spaces then so is W 1,2,2(I;V1, V2).
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1.3. Evolution problems: Existence and uniqueness of solutions

A basic abstract setting for evolution problems relies on a Gelfand triple con-
struction. It means that H is a Hilbert space identified with its dual: H ∼= H∗; the
embedding V ↪→ H is continuous and dense; consequently, H ↪→ V ∗ continuously.

Theorem 1.2.8. (Embedding with Gelfand triple)
Let V ⊆ H ∼= H∗ ⊆ V ∗ be a Gelfand triple, and let p∗ = p/(p − 1) be the conjugate
exponent to p. Then W 1,p,p∗(I;V, V ∗) ↪→ C(I;H) continuously.
Moreover, the following by-parts integration formula holds for any u, v ∈ W 1,p,p∗(I;V, V ∗)
and any t1, t2 ∈ I

(u(t2), v(t2))− (u(t1), v(t1)) =

∫ t2

t1

〈
du(t)

dt
, v(t)

〉
V ∗,V

+

〈
u(t),

dv(t)

dt

〉
V,V ∗

dt.

Proof. [100, Lemma 7.2].

Remark 1.2.9. We will often employ the embedding W 1,2,2(I;V, V ∗) ↪→ C(I,H).

Bibiliographical remark 1.2.10. For this section, we make reference to [32, 100,
109].

1.3 Evolution problems: Existence and uniqueness

of solutions

In this section, we focus on the evolution governed by the abstract initial-value prob-
lem on a finite time interval

du

dt
+ F (t, u(t)) = f(t) for a.e. t ∈ [0, T ], u(0) = u0, (1.10)

where f ∈ L2(0, T ;V ∗), u0 ∈ H,F : (0, T ) × V → V ∗ is a nonlinear Carathéodory
mapping (see below), and V ⊆ H ∼= H∗ ⊆ V ∗ is a Gelfand triple with separable
reflexive Banach space V .

Definition 1.3.1. (Carathéodory mapping) [109, Section 4.3], [100, Section 1.3]

A mapping ϕ : I × Rj → Rk is a Carathéodory mapping if ϕ(·, u) : I → Rk is
measurable for all u ∈ Rj and ϕ(t, ·) : Rj → Rk is continuous for a.e. t ∈ I.

Definition 1.3.2. (Nemytskii operator) [109, Section 4.3], [100, Section 1.3]
Let I ⊂ Rd be a bounded and measurable set, and let ϕ := ϕ(t, u) : I × Rj → Rk.
The mapping given by

Φ(u) = ϕ(·, u(·)),

which assigns to a function u : I → Rj the function z : I → Rk, z(t) = Φ(t, u(t)), is
called a Nemytskii operator or superposition operator.

9



1.3. Evolution problems: Existence and uniqueness of solutions

Remark 1.3.3. Matching to (1.10), we have I := (0, T ), V and V ∗ are respectively
in place of Rj and Rk, thus ϕ := F : (0, T ) × V → V ∗. This means F in (1.10)
induces the Nemytkii operator (for which without causing any confusion, we use the
same notation)

[F (·, u)](t) = F (t, u(t)).

Example 1.3.4. The following mapping u(·)→ F (u)(·) defines the Nemytskii oper-
ator

[F (u)](t) = (u(t))3,

that occurs in Chapter 2, Section 2.7.

Our plan is to build a weak solution to (1.10) using a Galerkin approximation and
introducing essential conditions that are necessary for the method.

Abstract Galerkin approximation

As V is separable, from the sequence of finite-dimensional subspaces

∀k ∈ N : Vk ⊂ Vk+1 ⊂ V and
⋃
k∈N

Vk is dense in V,

we define the Galerkin approximation uk ∈ W 1,2,2(0, T ;Vk, V
∗
k ) (Construct approxi-

mate solution) by

∀v ∈ Vk,∀a.e.t ∈ [0, T ] :

〈
du(t)

dt
, v

〉
V ∗k ,Vk

+ 〈F (t, uk(t)), v〉V ∗k ,Vk = 〈f(t), v〉V ∗k ,Vk

uk(0) = 〈u0, v〉V ∗k ,Vk .

If {uk}k∈N exist (Existence of approximate solutions) and are uniformly bounded (A-
priori estimate), then passing to limits (Limit passage) we have uk ⇀ u, a solution
to the initial-value problem (1.10).

We shall not give a comprehensive explanation of constructing the Galerkin ap-
proximation for weak solutions to (1.10), which is referred to [100]. Instead, we
confine ourselves to summarizing some unique existence results of such solutions.

Theorem 1.3.5. (Unique existence)
Assume that

1. for almost all t ∈ (0, T ), the mapping F (t, .) is pseudomonotone, i.e., F (t, .) is
bounded and

lim sup
k→∞

〈F (t, uk), uk − u〉V ∗,V ≤ 0

uk ⇀ u

}
⇒

{
∀v ∈ V : 〈F (t, u), u− v〉V ∗,V
≤ lim inf

k→∞
〈F (t, uk), uk − v〉V ∗,V

10



1.3. Evolution problems: Existence and uniqueness of solutions

2. F is semi-coercive, i.e.,

∀v ∈ V, ∀a.e.t ∈ (0, T ) : 〈F (t, v), v〉V ∗,V ≥ c0|v|2V − c1(t)|v|V − c2(t)‖v‖2
H

for some c0 > 0, c1 ∈ L2(0, T ), c2 ∈ L1(0, T ) and some seminorm |.|V satisfying
∀v ∈ V : ‖v‖V ≤ c|.|(|v|V + ‖v‖H) for some c|.| > 0

3. the growth condition holds

∃γ ∈ L2(0, T ), ~ : R→ R increasing : ‖F (t, v)‖V ∗ ≤ ~(‖v‖H)(γ(t) + ‖v‖V )

4. F satisfies a condition for uniqueness of the solution, e.g.,

∀u, v ∈ V, ∀a.e.t ∈ (0, T ) : 〈F (t, u)− F (t, v), u− v〉V ∗,V ≥ −ρ(t)‖u− v‖2
H

for some ρ ∈ L1(0, T ).

Then (1.10) has a unique solution u ∈ W 1,2,2(0, T ;V, V ∗).

Proof. [100, Theorems 8.27, 8.31].

Remark 1.3.6. These conditions will be verified for a class of inverse source problems
in Chapter 2, Section 2.8.2.

Remark 1.3.7. [100, Chapters 8.1-8.5] analyzes the existence theory for nonlinear
evolution equations in the more abstract framework W 1,p,p∗(0, T ;V, V ∗) meaning gen-
eral Lebesgue spaces instead of L2 with respect to time as we are considering here.

Observation 1.3.8. In case F is linear, its boundedness implies the growth condition
with ~ = ‖F (t, ·)‖, and semi-coercivity implies uniqueness condition with ρ = c2

for c1 ≤ 0. The assumption on pseudomonotonicity to ensure week convergence of
F (·, uk) to F (·, u) when the approximation solution sequence uk converges weakly to
u, can be replaced by weak continuity of F which holds for F being linear bounded .

Alternatively, there are possibilities to obtain pseudomonotonicity from coercivity
straightforwardly, also from monotonicity and continuity, or from strong continuity
[36, Lemma 6.7], which fit very well for the linear case .

Theorem 1.3.9. (Regularity in the autonomous case)
Let F : V → V ∗ be pseudomonotone, semi-coercive, and let

u0 ∈ V
f ∈ L2(0, T ;H)

F = F1 + F2 with F1 = ϕ′, ϕ : V → R convex

ϕ(v) ≥ c0‖v‖2
V − c1‖v‖2

H , ‖F2(v)‖H ≤ C(1 + ‖v‖V )

for some c0 > 0. Then there exists a solution u ∈ W 1,∞,2(0, T ;V,H) to (1.10) in the
autonomous case, i.e., F is independent of t.

11



1.4. Fundamental theorems

Proof. [100, Theorems 8.16].

Remark 1.3.10. An extension to regularity in the non-autonomous case will be
discussed in Chapter 2, Section 2.8.1.

Bibiliographical remark 1.3.11. In addition to [100], existence and uniqueness
theory for concrete linear and quasilinear parabolic problems can be found, e.g., in
the books [32, 81, 95].

Remark 1.3.12. An alternative approach to study the existence theory for evolution
problems on Banach spaces is through the framework of semigroups. Several parabolic
PDEs can be realized within this framework by combing the semigroup theory, e.g,
from [32, 96] with elliptic results in [82]. Chapter 3 gives some existence proofs relying
on this method.

1.4 Fundamental theorems

Theorem 1.4.1. (Riesz Representation Theorem) [69, Theorem A.22]
Let X be a Hilbert space. For every x ∈ X, the functional fx(y) := (y, x), y ∈ X
defines a linear bounded mapping from X to K, i.e., fx ∈ X∗. Furthermore, for every
f ∈ X∗ there exists exactly one x ∈ X with f(y) = (y, x), ∀y ∈ X and

‖f‖X∗ := sup
y 6=0

|f(y)|
‖y‖X

= ‖x‖X .

Theorem 1.4.2. (Dominated convergence theorem) [32, Appendix E, Theorem 4]
Assume that the functions {fm}∞m=1 are integrable and fm → f a.e. Suppose also that
|fm| ≤ g a.e. for some integrable function g. Then∫

Rd
fm dx→

∫
Rd
f dx.

Theorem 1.4.3. (Contraction Mapping Principle) [69, Theorem A.59]
Let K ⊂ X be a closed subset of the Banach space X and T : K → K be a contraction,
i.e.,

∃c < 1 : ‖T (x)− T (y)‖ ≤ c‖x− y‖ ∀x, y ∈ K.

Then T has a unique fixed-point x̃, i.e., T (x̃) = x̃.

Now, let U, V denote real Banach spaces and U be an open subset of U. We define:

Definition 1.4.4. (Gâteaux derivative) [109, Section 2.6 ]
Let F : U ⊂ U → V , u ∈ U and h ∈ U be given. Suppose there exists an operator
A ∈ L(U, V ) such that

lim
t→0

F (u+ th)− F (u)

t
= Ah ∀h ∈ U.
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1.4. Fundamental theorems

Then F is said to be Gâteaux differentiable at u, and A is referred to the Gâteaux
derivative of F at u.

Moreover:

Definition 1.4.5. (Fréchet derivative) [109, Section 2.6 ]
F is said to be Fréchet differentiable at u if

‖(F (u+ h)− F (u)− Ah‖V
‖h‖U

→ 0 as ‖h‖U → 0.

The operator A is then called the Fréchet derivative of F at u.

Theorem 1.4.6. (Chain rule) [109, Section 2.6 ]
Let F : U ⊂ U → V and G : V → Z be Fréchet differentiable at u ∈ U and at
F (u) ∈ V , respectively. Then the composition G◦F : U → Z is Fréchet differentiable
at u, and

(G ◦ F )′(u) = G′(F (u))F ′(u).

Remark 1.4.7. (Chain rule 1)
The chain rule is attainable for Gâteaux differentiability if additionally, we have F
continuous, the derivative u 7→ G′(u)v continuous and u 7→ G′(u) locally uniformly
bounded.

Proof. From

(G◦F )′(u)h−G′(F (u))F ′(u)h

= lim
ε→0

1

ε
[G(F (u+ εh)−G(F (u))]−G′(F (u))F ′(u)h

= lim
ε→0

1

ε

[
G(F (u+ εh)−G(F (u))−G′(F (u))(F (u+ εh)− F (u))

]
+ lim

ε→0

[
G′(F (u))

(F (u+ εh)− F (u)

ε
− F ′(u)h

)]
= Aε +Bε,

we see, as ε→ 0,

Bε = 0 if

{
G′(F (u)) is linear bouned

F is Gâteaux differentiable
,
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1.4. Fundamental theorems

and

Aε = lim
ε→0

1

ε

∫ λ

0

G′
(
F (u) + λ(F (u+ εh)− F (u)))−G′(F (u)

)
dλ
(
F (u+ εh)− F (u)

)
= lim

ε→0

∫ λ

0

G′
(
F (u) + λ(F (u+ εh)− F (u)))−G′(F (u)

)
dλ

(
F (u+ εh)− F (u)

ε

)
= lim

ε→0

∫ λ

0

G′
(
F (u) + λ(F (u+ εh)− F (u)))−G′(F (u)

)
dλF ′(u)h

+ lim
ε→0

∫ λ

0

G′
(
F (u) + λ(F (u+ εh)− F (u)))−G′(F (u)

)
dλ

(
F (u+ εh)− F (u)

ε
− F ′(u)h

)

= 0 if


F is Gâteaux differentiable and continuous

G is Gâteaux differentiable

u 7→ G′(u)v is continuous

u 7→ G′(u) is locally uniformly bounded

.

Here we apply Lebesgue’s Dominated Convergence Theorem.

Remark 1.4.8. (Chain rule 2)
If G is Fréchet differentiable, F is Gâteaux differentiable and continuous then the
chain rule holds.
In this case, one can write

Aε = lim
ε→0

1

ε
o
(
‖F (u+ εh)− F (u)‖

)
= lim

ε→0

‖F (u+ εh)− F (u)‖
ε

lim
ε→0

O
(
‖F (u+ εh)− F (u)‖α

)
= 0

for some α > 0.

A helpful inequality will be used in some energy estimates:

Theorem 1.4.9. (Grönwall’s inequality) [28, Theorem 1, Corollary 3]
Let x,Φ, χ be real continuous functions defined on [a, b], and χ(t) ≥ 0,∀t ∈ [a, b].
Assume that

x(t) ≤ Φ(t) +

∫ t

a

χ(s)x(s) ds ∀t ∈ [a, b].

Then

x(t) ≤ Φ(t) +

∫ t

a

Φ(s)χ(s) exp

(∫ t

s

χ(ξ) dξ

)
ds ∀t ∈ [a, b].

Moreover, if Φ is constant, we have

x(t) ≤ Φ exp

(∫ t

a

χ(ξ) dξ

)
∀t ∈ [a, b].
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Part I

ALL-AT-ONCE AND REDUCED
SETTINGS





Chapter 2

Parameter identification in
time-dependent inverse problems

In this chapter, we consider a general time-space system, whose model operator and
observation operator are locally Lipschitz continuous, over a finite time horizon and
parameter identification by using Landweber-Kaczmarz regularization. The problem
is investigated in two different modeling settings: An all-at-once and a reduced ver-
sion, together with two observation scenarios: continuous and discrete observations.
Segmenting the time line into several subintervals leads to the idea of applying the
Kaczmarz method. A loping strategy is incorporated into the method to yield the
loping Landweber-Kaczmarz iteration.

The chapter is outlined as follows: Section 2.1 states the motivation. Section 2.2
introduces the general model for the state-space problem. In the next two sections,
we present the all-at-once and reduced formulations. Section 2.5 compares the two
modeling settings and discusses time-dependent parameter identification. Section 2.6
is dedicated to deriving the algorithm and its convergence. Section 2.7 examines a
class of inverse source problems. Finally, we conclude the work and sketch some ideas
for potential research.

2.1 Challenge with cubic nonlinearity

As a motivating prototype example, we consider parameter identification from the
following system

u̇ = ∆u− u3 + θ (t, x) ∈ (0, T )× Ω (2.1)

u(0) = u0 x ∈ Ω (2.2)

y = Cu (t, x) ∈ (0, T )× Ω (2.3)

with Ω ⊂ Rd. u̇ denotes the first order time derivative of u and the right hand
side includes the nonlinearity Φ(u) := u3. This equation is equipped with the initial
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2.1. Challenge with cubic nonlinearity

condition (2.2) and possibly further Dirichlet or Neumann boundary conditions on
(0, T )× ∂Ω. In (2.3), the measured data y is obtained from a linear observation, this
means C is a linear operator. In this evolution system, u and θ are two unknowns.

Parabolic PDEs with cubic power nonlinearity arise in many applications, and we
selectively mention some falling into this category

• Φ(u) = u(1−u2): Ginzburg-Landau equations of superconductivity [15], Allen-
Cahn equation for phase separation process in a binary metallic alloy [1, 92],
Newell-Whitehead equation for convection of fluid heated from below [38].

• Φ(u) = u2(1− u): Zel’dovich equation in combustion theory [38].

• Φ(u) = u(1− u)(u−α), 0 < α < 1: Fisher’s model for population genetics [95],
Nagumo equation for bistable transmission lines in electric circuit theory [89].

To the best of our knowledge, the state-of-the-art research on this type of problem
in Sobolev space framework is limited to the power γ ≤ 1 + 4

d
, d ≥ 3, where d is the

space dimension [58]. The reason for this constraint is that, the growth conditions
used in proving well-definedness and differentiability of the forward operators prevent
higher nonlinearity. Inspired by [58], in this study, staying in the Sobolev space
framework, we aim at increasing the nonlinearity to the power of 3, or even higher,
in order to be compatible with those applications. For this purpose, we plan to
construct appropriate function spaces for the forward operators and impose on them
relevant assumptions. The main assumption we rely on is basically the local Lipschitz
continuity condition. Recently, some authors [110, 50] also employ local Lipschitz
continuity as the key ingredient for the research on backward parabolic problems,
but rather in a semigroup framework than in the Sobolev space framework, e.g., of
[100], which we rely on to get even somewhat weaker conditions.

The parabolic equation occurring in problem (2.1)-(2.3) is semilinear. In the book
by Tröltzsch [109], well-posedness and differentiability of the control-to-state map are
investigated for optimal control of semilinear parabolic equations. In this context, we
wish to point to the series of papers [20, 21, 22] by Casas, Ryll and Tröltzsch, where
they consider optimal control problems for semilinear parabolic PDEs with cubic non-
linearities. In particular, an issue addressed also there was the fact that the solution
spaces have to be chosen appropriately for proving differentiability of the control-to
-state map; it was (a subset of) L∞((0, T )× Ω) there, which was probably also cho-
sen in view of the fact that state constraints were taken into account. Motivated by
this work, we discuss here these relevant questions for the parameter-to-state map
of semilinear diffusion systems in the context of inverse source problems. Beyond
increasing nonlinearity as compared to [58], this study provides explicit formulas for
Hilbert space adjoints that makes our method more computationally efficient, and
Gâteaux as well as Fréchet derivatives obtained in this work yield more knowledge on
the properties of the nonlinear model and on the convergence performance of iterative
methods.
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2.2. Abstract nonlinear parameter identification problems

Being more realistic than the model (2.1)-(2.3) with observation on all of (0, T ),
in practice the unknown parameter is recovered from experimental techniques that
in some cases, limit the measurement only to some particular time points, see, e.g.,
[97, 13] for just two out of many examples from material science and system biology,
respectively. Therefore, beside the continuous observation, we also desire to cover the
discrete observation case in this study.

2.2 Abstract nonlinear parameter identification prob-

lems

We consider the following state-space system

u̇(t) = f(t, u(t), θ) t ∈ (0, T ) (2.4)

u(0) = u0(θ) (2.5)

y(t) = g(t, u(t), θ) t ∈ (0, T ) (2.6)

or

yi = gi(u(ti), θ) i = 1 . . . n (2.7)

on Ω ⊂ Rd, where f is a nonlinear function and additional observation data y or yi are
obtained from continuous or discrete measurement as in (2.6) or (2.7), respectively.
In the general case, g, gi may be linear or nonlinear. In particular, observations may
be partial only, such as boundary traces on ∂Ω or a part of it.

The model operator and observation operators map between the function spaces

f : (0, T )× V ×X → V ∗ (2.8)

g : (0, T )× V ×X → Y or gi : V ×X → Y, (2.9)

where X , Y,H and V are separable Hilbert spaces and V ⊆ H ⊆ V ∗ form a Gelfand
triple. Moreover, we assume that f, g meet the Caratheodory mapping condition (see
Chapter 1, Definition 1.3.1).

The initial condition is supposed to map to the sufficiently smooth image space

u0 : X → V (2.10)

as a condition to attain some regularity results for the solution to the problem (2.4)-
(2.5).

Between V and V ∗, the Riesz isomorphism

I : V ∗ → V, 〈u∗, Iv∗〉V ∗,V = (u∗, v∗)V ∗

and

Ĩ : V ∗ → V, (Ĩu∗, v)V = 〈u∗, v〉V ∗,V
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are used to derive the adjoints. Ĩ as defined above exists as one can choose, for
example, Ĩ = D−1, where D is the Riesz isomorphism

D : V → V ∗, 〈Du, v〉V ∗,V = (u, v)V .

Here, (., .) and 〈., .〉 with the subscripts indicate the inner products and the dual
parings, respectively . The notations D and I refer to the spatial differential and
integration operators in the context of elliptic differential equations. We also distin-
guish the superscript ∗, the Banach space adjoint, and ?, the Hilbert space adjoint,
which is an ingredient for the iterative methods considered here.

For fixed θ, f and g as defined above induce Nemytskii operators (see Chapter
1, Definition 1.3.2) on the function space U . This function space will be according
to which problem setting is being dealt with, i.e., all-at-once or reduced setting.
However, they map into the same image space W and observation space Y

W = L2(0, T ;V ∗), Y = L2(0, T ;Y ), (2.11)

which are Hilbert spaces. Therefore, we can investigate the problem in the Hilbert
space framework, provided that the corresponding argument spaces of the forward
operators in the two settings are Hilbert spaces as well.

We now discuss the state space U . The function space proposed in [58] U =
W 1,2,2(0, T ;V, V ∗) := {u ∈ L2(0, T ;V ) : u̇ ∈ L2(0, T ;V ∗)} with V = H1

0 (Ω) is not
suitable for the cubic nonlinearity in (2.1) Also later on, for differentiablity of the
forward operator relying on local Lipschitz continuity (see Propositions 2.3.1 and
2.4.2), we need functions in U , whose values are in V , to be essentially bounded in
(0, T ). For this reason, L∞(0, T ;V ) appears to be an appropriate choice for the state
space.

In this work, we restrict ourselves to the Hilbert space framework to avoid addi-
tional technicalities in general Banach spaces. The convergence analysis for regular-
ization theory in Banach space, e.g., in [104, 67, 103] requires the preimage space to
be reflexive and thus would not be applicable with the choice U = L∞(0, T ;V ). These
facts together with the observation H1(0, T ) ↪→ L∞(0, T ) render U = H1(0, T ;V ) as
in (2.18) a suitable candidate. This state space will be used for the all-at-once setting
in Section 2.3.

Independently, in the reduced setting in Section 2.4, the state space just plays
the role of an intermediate space since the forward operator is formulated to map
directly between the parameter space and the observation space: F : X → Y , F (θ) =
y. Hence, as long as X and Y are Hilbert spaces, we can stay with Hilbert space
regularization theory even though Ũ = W 1,2,2(0, T ;V, V ∗) ∩ L∞(0, T ;V ) defined in
(2.31) is a non-Hilbert state space.

In the context of optimal control for reaction-diffusion equations, the group of
Casas, Ryll and Tröltzsch published several results focusing on the Schlögl and
FitzHugh-Nagumo system [20, 21, 22], where they prove differentiablity of the control-
to-state map also basing on local Lipschitz continuity and a prerequisite L∞-approach
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for the cubic nonlinear reaction term. In this concrete inverse source problem (2.1)-
(2.3), the parameter-to-state map appears to be relevant with the control-to-state
map in the distributed control problem. These authors establish energy estimates in
W 1,2,2(0, T ;V, V ∗)∩L∞((0, T )×Ω) [109, Theorem 5.9], [20, Lemma 2.4]. We, however
in this chapter, evaluate them in W 1,2,2(0, T ;V, V ∗)∩L∞(0, T ;V ), as we consider here
the model operator, which later induces the Nemytskii operator, f(θ) : (0, T ) × V
rather than there f = ∆ − (·)3 : (0, T ) × Ω. Besides, techniques to prove well-
definedness of the parameter- (control)-to-state map are different.

In reality, we do not have access to the exact data. The experimental data always
contains some noise of which we assume to know just the noise level. The noise
perturbing the system is present both on the right hand side of the model equation and
in the observation, and is denoted respectively by wδ and zδ. When the measurement
is a collection of data at discrete observation time points, the corresponding noise
added to each observation is zδi . Altogether, we can formulate the noisy system

u̇(t) = f(t, u(t), θ) + wδ(t) t ∈ (0, T ) (2.12)

u(0) = u0(θ) (2.13)

yδ(t) = g(t, u(t), θ) + zδ(t) t ∈ (0, T ) (2.14)

or

yδi = gi(u(ti), θ) + zδi i = 1 . . . n. (2.15)

Correspondingly, those additive noise terms live in the function spaces

wδ ∈ W , zδ ∈ Y , zδi ∈ Y i = 1 . . . n (2.16)

and are supposed to satisfy

‖wδ‖W ≤ δw, ‖zδ‖Y ≤ δz, ‖zδi ‖Y ≤ δi i = 1 . . . n

with the noise levels δw, δz, δi > 0.
In this chapter, we investigate both Landweber and Landweber-Kaczmarz meth-

ods. The key difference between these two regularization methods is that in the
Landweber method, we use one fixed forward operator; while in the Landweber-
Kaczmarz method, different forward operators are applied in a cyclic manner (Chap-
ter 1, Section 1.1.3). This feature makes Kaczmarz methods especially attractive
for problems with large datasets or high dimensional model operator. In particular,
Kaczmarz method does not need to finish operating the whole system to update one
iteration like in the Landweber, instead, it just successively sweeps through each of
the equations in the system; and that all the equations build a so-called a collection
of the forward operators. Motivated by the Kaczmarz scheme, in order to construct
a collection of forward operators, we either segment the time line into several subin-
tervals or use the discrete observations. The Landweber-Kaczmarz method relying
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2.3. All-at-once formulation

those strategies are particularly studied in Remarks 2.3.5, 2.3.6, 2.3.7 for the all-
at-once setting and in Remark 2.38 for the reduced setting; visualization for these
methods is shown in the numerical section.

This study does not attempt to research uniqueness of the exact solution (u†, θ†).
Nevertheless, we refer to the book [62], which exposes some general results for this
important question based on the tangential cone condition together with the assump-
tion of a trivial null space of F ′(x†) in some neighborhood of x†. To verify the later
condition in some concrete time-space problems, one can find detailed discussions,
e.g., in the book by Isakov [56].

2.3 All-at-once formulation

In this section, we recast the system into a form which allows solving both state u
and parameter θ simultaneously. This formulation shows practical benefits, that will
be discussed in detail in Section 2.5.1. We define the forward operator

F : U × X → W × V × Y , F(u, θ) =

u̇− f(., u, θ)
u(0)− u0(θ)
g(., u, θ)

 , (2.17)

then the system can be written as the nonlinear operator equation

F(u, θ) = Y = (0, 0, y).

This fits into the Hilbert space framework by setting the function space for the state
u to

U = H1(0, T ;V ) (2.18)

and W ,Y are as in (2.11). On the space U , we employ

(u, v)U =

∫ T

0

(u̇(t), v̇(t))V dt+ (u(0), v(0))V (2.19)

as an inner product, which induces a norm being equivalent to the standard norm√∫ T
0
‖u(t)‖2

V + ‖u̇(t)‖2
V dt. This is the result of well-posedness in U of the first order

ODE u̇(t) = f(t), t ∈ (0, T ), u(0) = u0 for f ∈ L2(0, T ;V ), u0 ∈ V .
The operator F is well-defined by additionally imposing boundedness and local

Lipschitz continuity on the functions inducing the Nemytskii operators. Differentia-
bility of F also follows from the latter condition.

Proposition 2.3.1. Let the Caratheodory mappings f, g be:

(A1) Gâteaux differentiable with respect to their second and third arguments for al-
most all t ∈ (0, T ) with linear and continuous derivatives
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2.3. All-at-once formulation

(A2) locally Lipschitz continuous in the sense

∀M ≥ 0,∃L(M) ≥ 0,∀a.e.t ∈ (0, T ) :

‖f(t, v1, θ1)− f(t, v2, θ2)‖V ∗ ≤ L(M)(‖v1 − v2‖V + ‖θ1 − θ2‖X ),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤M, i = 1, 2

and satisfy the boundedness condition, i.e., f(., 0, 0) ∈ W.
The same is assumed to hold for g. Moreover, let u0 also be Gâteaux differen-
tiable.

Then F defined by (2.17) is Gâteaux differentiable on U × X and its derivative is
given by

F′(u, θ) =

( d
dt
− f ′u(., u, θ)) −f ′θ(., u, θ)

δ0 −u′0(θ)
g′u(., u, θ) g′θ(., u, θ)

 . (2.20)

Proof. We show Gâteaux differentiability of f at an arbitrary point (u, θ) ∈ U ×
X . Since f is Gâteaux differentiable and its derivative (u, θ) 7→ f ′(t, u, θ)[v, ξ] is
continuous by (A1), without loss of generality we consider the direction (v, ξ) lying
in a unit ball, ε ∈ (0, 1] and have

1

ε
‖f(., u+ εv, θ + εξ)− f(., u, θ)− εf ′u(., u, θ)v − εf ′θ(., u, θ)ξ‖W =

(∫ T

0

rε(t)
2dt

) 1
2

,

where

rε(t) =

∥∥∥∥∫ 1

0

(
(f ′u(t, u(t) + λεv(t), θ + λεξ)− f ′u(t, u(t), θ))v(t)

+(f ′θ(t, u(t) + λεv(t), θ + λεξ)− f ′θ(t, u(t), θ))ξ

)
dλ

∥∥∥∥
V ∗
. (2.21)

From local Lipschitz continuity and Gâteaux differentiability of f , we deduce, by
choosing M = max{

√
2T ,
√

2}(‖u‖U + 1) + ‖θ‖X + 1,

‖f ′u(t, u(t), θ)w‖V ∗ = lim
ε→0

∥∥∥∥f(t, u(t) + εw, θ)− f(t, u(t), θ)

ε

∥∥∥∥
V ∗

≤ L(M)‖w‖V .

Continuity of the embedding U ↪→ C(0, T ;V ) is invoked above. Indeed, for any
t ∈ (0, T )

‖u(t)‖V ≤
∫ T

0

‖u̇(s)‖V ds+ ‖u(0)‖V ≤ max{
√

2T ,
√

2}‖u‖U .
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2.3. All-at-once formulation

As an immediate consequence

‖f ′u(t, u(t) + λεv(t), θ + λεξ)‖V→V ∗ ≤ L(M)

‖f ′θ(t, u(t) + λεv(t), θ + λεξ)‖X→V ∗ ≤ L(M)

for any λ ≤ 1, ε ≤ 1. Substituting all the operator norm estimates into rε(t), we
obtain

rε(t) ≤ 2L(M) (‖v(t)‖V + ‖ξ‖X ) := r̄(t), (2.22)

which is a square integrable function. Since f is continuously differentiable, rε → 0
as ε→ 0 for almost all every t ∈ (0, T ), applying Lebesgue’s Dominated Convergence
Theorem yields Gâteaux differentiability of f . Differentiability of g is analogous.

Obviously, continuity of the derivative (u, θ) 7→ f ′(u, θ)[v, ξ] inherits from the
operator inducing it

εn := ‖f ′(un, θn)[v, ξ]− f ′(u, θ)[v, ξ]‖W∗

=

(∫ T

0

‖
(
f ′u(t, un, θn)− f ′u(t, u, θ)

)
v(t) +

(
f ′θ(t, un, θn)− f ′θ(t, u, θ)

)
θ‖2

V ∗ dt

)1/2

≤ sup
0≤t≤T

‖f ′(t, un, θn)− f ′(t, u, θ)‖V×X→V ∗×V ∗
[(∫ T

0

‖v(t)‖2
V dt

)1/2

+
√
T‖ξ‖X

]
.

Then εn → 0 as n → ∞. Also, local uniform boundedness of f ′(·, ·) is obvious. The
same holds for g.

Also, well-definedness of f, g can be deduced from local Lipschitz continuity and
the boundedness condition.

Remark 2.3.2. If f, g and u0 are Fréchet differentiable then so is F.
This assertion follows from the observation

F is Fréchet differentiable if sup
‖v‖U≤1
‖ξ‖X≤1

∫ T

0

r2
ε (t)dt→ 0 as ε→ 0

for rε as in (2.21) (and likewise with g in place of f), or

sup
‖v‖U≤1
‖ξ‖X≤1

∫ T

0

r2
ε (t)dt ≤

∫ T

0

sup
‖v‖U≤1
‖ξ‖X≤1

r2
ε (t)dt

≤
∫ T

0

sup
‖v(t)‖V ≤c
‖ξ‖X≤1

r2
ε (t)dt→ 0 as ε→ 0
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2.3. All-at-once formulation

with c := max{
√

2T ,
√

2}.
If f, g are Fréchet differentiable, this convergence is attainable due to

sup
‖v(t)‖V ≤c
‖ξ‖X≤1

r2
ε (t) ≤ sup

‖w‖V ≤c
‖ξ‖X≤1

r2
ε (t)→ 0 as ε→ 0

sup
‖v(t)‖V ≤c
‖ξ‖X≤1

r2
ε (t) ≤ sup

‖v(t)‖V ≤c
‖ξ‖X≤1

2L(M) (‖v(t)‖V + ‖ξ‖X ) ≤ 2L(M)(1 + c).

Remark 2.3.3.

• The local Lipschitz condition (A2) is weaker than the one used in [50], as we
only have the V ∗-norm on the left hand side of the Lipschitz condition.

• Note that differentiablity of F can be interpreted on the stronger image space
C(0, T ;V ∗) since r(.) is not only square integrable but also uniformly bounded
with respect to time (provided that local Lipschitz continuity is fulfilled for all
t ∈ (0, T ) instead of for almost all t ∈ (0, T )).

• Another idea could be a weakening of the Lipschitz continuity condition to

∀M ≥ 0,∃L(M) ≥ 0, γ ∈ L2(0, T ),∀a.e.t ∈ (0, T ) :

‖f(t, v1, θ1)− f(t, v2, θ2)‖V ∗ ≤ L(M)γ(t)(‖v1 − v2‖V + ‖θ1 − θ2‖X ),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤M, i = 1, 2,

then square integrability in time can be transferred from ‖v(.)‖V to γ(.).

We now derive the Hilbert space adjoint for F′(u, θ).

Proposition 2.3.4. The Hilbert space adjoint of F′(u, θ) is given by

F′(u, θ)? :W × V × Y → U × X

F′(u, θ)? =

(
( d
dt
− f ′u(., u, θ))? δ?0 g′u(., u, θ)

?

−f ′θ(., u, θ)? −u′0(θ)? g′θ(., u, θ)
?

)
, (2.23)

25



2.3. All-at-once formulation

where

g′u(., u, θ)
?z = uz

g′θ(., u, θ)
?z =

∫ T

0

g′θ(t, u(t), θ)∗z(t)dt

δ?0h = uh

u′0(θ)? = u′0(θ)∗Ĩ−1( d
dt
− f ′u(., u, θ)

)?
w = uw +

∫ t

0

Ĩ∗Iw(s)ds

f ′θ(., u, θ)
?w =

∫ T

0

f ′θ(t, u(t), θ)∗Iw(t)dt,

uz, uw, uh solve{
üz(t) = −Ĩg′u(t, u(t), θ)∗z(t) t ∈ (0, T )

u̇z(T ) = 0, u̇z(0)− uz(0) = 0{
üw(t) = Ĩf ′u(t, u(t), θ)∗Iw(t) t ∈ (0, T )

u̇w(T ) = 0, u̇w(0)− uw(0) = 0{
üh(t) = 0 t ∈ (0, T )

u̇h(T ) = 0, u̇h(0)− uh(0) = −h,

and

f ′u(t, u(t), θ)∗ : V ∗∗ = V → V ∗, f ′θ(t, u(t), θ)∗ : V ∗∗ = V → X ∗ = X
g′u(t, u(t), θ)∗ : Y ∗ = Y → V ∗, g′θ(t, u(t), θ)∗ : Y ∗ = Y → X ∗ = X
u′0(θ)∗ : V ∗ → X ∗ = X

are the respective Banach and Hilbert space adjoints.

Proof. The adjoints of the derivatives with respect to u can be established as follows.
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2.3. All-at-once formulation

For any z ∈ Y and v ∈ U

(z, g′u(., u, θ)v)Y

=

∫ T

0

(z(t), g′u(t, u(t), θ)v(t))Y dt

=

∫ T

0

〈g′u(t, u(t), θ)∗z(t), v(t)〉V ∗,V dt

=

∫ T

0

(
Ĩg′u(t, u(t), θ)∗z(t), v(t)

)
V
dt

=

∫ T

0

(−üz(t), v(t))V dt

=

∫ T

0

(u̇z(t), v̇(t))V dt+ (uz(0), v(0))V − (u̇z(T ), v(T ))V + (u̇z(0)− uz(0), v(0))V

= (uz, v)U .

For any w ∈ W and v ∈ U(
w,
( d
dt
− f ′u(., u, θ)

)
v

)
W

=

∫ T

0

(w(t),−f ′u(t, u(t), θ)v(t))V ∗ dt+

∫ T

0

(
w(t),

d

dt
v(t)

)
V ∗
dt

=

∫ T

0

〈−f ′u(t, u(t), θ)∗Iw(t), v(t)〉V ∗,V dt+

∫ T

0

(
Iw(t), Ĩ

d

dt
v(t)

)
V

dt

=

∫ T

0

(
−Ĩf ′u(t, u(t), θ)∗Iw(t), v(t)

)
V
dt+

∫ T

0

(
Ĩ∗Iw(t),

d

dt
v(t)

)
V

dt

=

∫ T

0

(−üw(t), v(t))V dt+

∫ T

0

(
d

dt

∫ t

0

Ĩ∗Iw(s)ds,
d

dt
v(t)

)
V

dt

=

∫ T

0

(u̇w(t), v̇(t))V dt+ (uw(0), v(0))V

+

∫ T

0

(
d

dt

∫ t

0

Ĩ∗Iw(s)ds,
d

dt
v(t)

)
V

dt+

(∫ 0

0

Ĩ∗Iw(s)ds, v(0)

)
V

=

(
uw +

∫ t

0

Ĩ∗Iw(s)ds, v

)
U
.
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2.3. All-at-once formulation

For any h ∈ V and v ∈ U

(h, δ0v)V =

∫ T

0

(
−üh(t), v(t)

)
V
dt+ (h, v(0))V

=

∫ T

0

(
u̇h(t), v̇(t)

)
V
dt+

(
uh(0), v(0)

)
V

+
(
h+ u̇h(0)− uh(0), v(0)

)
V

=
(
uh, v

)
U .

The three remaining adjoints are straightforward. For any ξ ∈ X , z ∈ Y

(g′θ(·, u, θ)ξ, z)Y =

∫ T

0

(g′θ(t, u(t), θ)ξ, z(t))Y dt =

∫ T

0

(ξ, g′θ(t, u(t), θ)∗z(t))X dt

=

(
ξ,

∫ T

0

g′θ(t, u(t), θ)∗z(t) dt

)
X

= (ξ, g′θ(·, u, θ)?z)X .

For any ξ ∈ X , w ∈ W

(f ′θ(·, u, θ)ξ, w)W =

∫ T

0

(f ′θ(t, u(t), θ)ξ, w(t))V ∗ dt =

∫ T

0

〈f ′θ(t, u(t), θ)ξ, Iw(t)〉V ∗,V dt

=

∫ T

0

(ξ, f ′θ(t, u(t), θ)∗Iw(t))X dt =

(
ξ,

∫ T

0

f ′θ(t, u(t), θ)∗Iw(t) dt

)
X

= (ξ, f ′θ(·, u, θ)?w)X .

For any ξ ∈ X, v ∈ V

(u′0(θ)ξ, v)V = 〈u′0(θ)ξ, Ĩ−1v〉V,V ∗ = (ξ, u′0(θ)∗Ĩ−1v)X .

Remark 2.3.5. For the Kaczmarz approach relying on time segmentation, the idea
is dividing the time line (0, T ) into several subintervals, making up a collection of
model operators as well as observation data. The system is therefore constructed in
the following way

F0(u, θ) =

(u̇− f(., u, θ)) |(0,τ1)

u(0)− u0(θ)
g(., u, θ)|(0,τ1)

 (2.24)

Fj(u, θ) =

(
(u̇− f(., u, θ)) |(τj ,τj+1)

g(., u, θ)|(τj ,τj+1)

)
j = 1 . . . n− 1 (2.25)

for 0 = τ0 < τ1 < . . . τn−1 < τn = T . The function space setting for the Landweber-
Kaczmarz method is

F0 : U × X → W0 × V × Y0, Fj : U × X → Wj × Yj j = 1 . . . n− 1
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2.3. All-at-once formulation

with
Wj = L2(τj, τj+1;V ∗), Yj = L2(τj, τj+1;Y ) (2.26)

thus

F′(u, θ)?j =

(((
d
dt
− f ′u(., u, θ)

)
|(τj ,τj+1)

)?
δ?0 (g′u(., u, θ)|(τj ,τj+1))

?

−(f ′θ(., u, θ)|(τj ,τj+1))
? −u′0(θ)? (g′θ(., u, θ)|(τj ,τj+1))

?

)
, (2.27)

where the terms in the middle column δ?0,−u′0(θ)? are present only in F′(u, θ)?0.

Remark 2.3.6. In (2.23), since the adjoints of the derivatives with respect to u solve
the linear conventional ODEs of second order, we can write them in their explicit
forms

uz(t) =

∫ T

0

(t+ 1)Ĩg′u(s, u(s), θ)∗z(s)ds−
∫ t

0

(t− s)Ĩg′u(s, u(s), θ)∗z(s)ds

ũw(t) := uw(t) +

∫ t

0

Ĩ∗Iw(s)ds

= −
∫ T

0

(t+ 1)Ĩf ′u(s, u(s), θ)∗Iw(s)ds+

∫ t

0

(t− s)Ĩf ′u(s, u(s), θ)∗Iw(s)ds

+

∫ t

0

Ĩ∗Iw(s)ds

uh(t) = h

for t ∈ (0, T ).
Incorporating the Kaczmarz scheme in Remark 2.3.5, we modify the adjoints

accordingly

uz(t) =

∫ τj(k+1)

τj(k)

(t+ 1)Ĩg′u(s, u(s), θ)∗z(s)ds

−
∫ min{t,τj(k+1)}

min{t,τj(k)}
(t− s)Ĩg′u(s, u(s), θ)∗z(s)ds

ũw(t) = −
∫ τj(k+1)

τj(k)

(t+ 1)Ĩf ′u(s, u(s), θ)∗Iw(s)ds

+

∫ min{t,τj(k+1)}

min{t,τj(k)}
(t− s)Ĩf ′u(s, u(s), θ)∗Iw(s)ds+

∫ min{t,τj(k+1)}

min{t,τj(k)}
Ĩ∗Iw(s)ds

uh(t) = h
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2.3. All-at-once formulation

for t ∈ (0, T ) with j(k) = k − nbk/nc, and also

g′θ(., u, θ)
?z =

∫ τj(k+1)

τj

g′θ(t, u(t), θ)∗z(t)dt

u′0(θ)? = u′0(θ)∗I−1

f ′θ(., u, θ)
?w =

∫ τj(k+1)

τj

f ′θ(t, u(t), θ)∗Iw(t)dt.

Remark 2.3.7. We now analyze the case of discrete measurement. Let {ti}i=1...n be
the discrete observation time points, the system is now defined by

F : U × X → W × V × Y n, (u, θ) 7→


(u̇− f(., u, θ))
u(0)− u0(θ)
g1(u, θ)

...
gn(u, θ)

 (2.28)

with gi(u, θ) = g(u, θ)(ti) = g(ti, u(ti), θ), i = 1 . . . n, according to the definition of the
Nemytskii operator. Differentiability of the Nemytskii operator gi could be inferred
from differentiablity of the operator inducing it without the need of a local Lipschitz
continuity condition.

The Hilbert space adjoint of F′(u, θ) then takes the following form

F′(u, θ)? =

(
( d
dt
− f ′u(., u, θ))? δ?0 g′iu(u, θ)

?

−f ′θ(., u, θ)? −u′0(θ)? g′iθ(u, θ)
?

)
(2.29)

in which the adjoint of g′u(u, θ) mapping from the observation space Y n to U is

(z, g′u(u, θ)v)Y n =
n∑
i=1

(zi, g
′
iu(u, θ)v(ti))Y =

n∑
i=1

(
Ĩg′iu(u, θ)

∗zi, v(ti)
)
V

= (uz, v)U ,

where {
üz(t) = 0 t ∈ (0, T )

u̇z(0)− uz(0) = 0, u̇z(ti) = Ĩg′iu(u, θ)
∗zi i = 1 . . . n

hence

uz =
n∑
i=1

uzi with uzi =

{
Ĩg′iu(u, θ)

∗zi(t+ 1) t ≤ ti

Ĩg′iu(u, θ)
∗zi(ti + 1) t > ti.

If integrating into the Kaczmarz scheme, on every subinterval of index i we get uz =
uzi , so each equation in the system corresponds to one measurement.
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Remark 2.3.8. Remarks 2.3.6 and 2.3.7 show that the choice of the state space U
here provides an explicit formula for the Hilbert space adjoint F′(u, θ)?. This enables
us to speed up the computations in Landweber, Landweber-Kaczmarz and possibly
in Newton-type methods.

2.4 Reduced formulation

In this section, we formulate the system into one operator mapping directly from the
parameter space to the observation space. To this end, we introduce the parameter-
to-state map

S : X → Ũ , where u = S(θ) solves (2.4)− (2.5),

then the forward operator for the reduced setting can be expressed as

F : X → Y , θ 7→ g(·, S(θ), θ) (2.30)

and the inverse problem of recovering θ from y is

F (θ) = y.

In order to apply the Hilbert space analysis of Landweber and Landweber-Kazcmarz
schemes in this reduced setting, it suffices to choose X and Y as Hilbert spaces, while
the state space Ũ may be a Banach space, an option that we actually make use of
here

Ũ = W 1,2,2(0, T ;V, V ∗) ∩ L∞(0, T ;V ). (2.31)

On the other hand, Ũ is only required for the observation operator g to be well-
defined, thus when proving differentiablity of F , we just need to evaluate the image
of S ′(θ)ξ in D(g) = L2(0, T ;V ) (although the actual state space Ũ is much stronger).
With the same reason, derivation for the Banach space adjoints can be carried out
between spaces L2(0, T ;V ), L2(0, T ;V ∗), L2(0, T ;Y ) and X .

To ensure existence of the parameter-to-state map, we assume that the operator
f meets the conditions in the following Assumption 2.4.1 (see Chapter 1, Theorem
1.3.5 for expression) and the conditions (R1) from Proposition 2.4.2. Moreover, we
wish to emphasize that, comparing to assumptions in Theorem 1.3.5, the restrictive
growth condition on F does not need to be assumed here.

Assumption 2.4.1. Let θ ∈ X . Assume that

(S1) for almost all t ∈ (0, T ), the mapping −f(t, ., θ) is pseudomonotone

(S2) −f(., ., θ) is semi-coercive
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(S3) f satisfies a condition for uniqueness of the solution.

Proposition 2.4.2. Assume the model operator f can be decomposed into the form

−f = f1 + f2 + f3

with

f3 : (0, T )×X → H

f2 : (0, T )× V ×X → H

f1 : (0, T )× V ×X → V ∗.

Additionally, let the following conditions be fulfilled

(R1) the mappings f1, f2, f3 satisfy

f3 ∈ L2(0, T ;H) and continuous w.r.t. θ

‖f2(t, v, θε)‖H ≤ cθ2(γ(t) + ‖v‖V ) for some γ ∈ L2(0, T )

f1 = ϕ′v
ϕ : [0, T )× V ×X → R convex w.r.t. v and continuous

ϕ(t, v, θε) ≥ cθ0‖v‖2
V − cθ1‖v‖2

H

‖ϕ′t(t, v, θε)‖H ≤ c̃θ2(γ̃(t) + ‖v‖2
V ) for some γ̃ ∈ L1(0, T )

for all θε in some neighborhood of θ in X , with some cθ0 > 0, 2cθ1T < 1/2.
If ϕ : D(ϕ)→ R+, cθ1 does not need to be sufficiently small.

(R2) f is Gâteaux differentiable with respect to its second and third arguments for
almost all t ∈ (0, T ) with linear and continuous derivative.
The derivative −f ′u(., u, θε) moreover satisfies semi-coercivity in the sense

∀u, v ∈ V, ∀a.e.t ∈ (0, T ) : 〈−f ′u(t, u, θε)v, v〉V ∗,V ≥ aθ0|v|2V −aθ1(t)|v|V −aθ2(t)‖v‖2
H

for all θε in some neighborhood of θ in X , with some aθ0 > 0, aθ1 ∈ L2(0, T ), aθ2 ∈
L1(0, T ) and some seminorm |.|V satisfying ∀v ∈ V : ‖v‖V ≤ c|.|(|v|V + ‖v‖H)
for some c|.| > 0.

(R3) f is locally Lipschitz continuous in the sense

∀M ≥ 0,∃L(M) ≥ 0,∀a.e.t ∈ (0, T ) :

‖f(t, v1, θ1)− f(t, v2, θ2)‖V ∗ ≤ L(M)(‖v1 − v2‖V + ‖θ1 − θ2‖X ),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤M, i = 1, 2.
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2.4. Reduced formulation

Moreover, let also u0 be Gâteaux differentiable. Then F , as defined by (2.30), is
Gâteaux differentiable on X and its derivative is given by

F ′(θ) : X → Y
(F ′(θ)ξ)(t) = g′u(t, S(θ)(t), θ)uξ(t) + g′θ(t, S(θ)(t), θ)ξ, (2.32)

where uξ = S(θ)′ξ solves the sensitivity equation{
u̇ξ(t) = f ′u(t, S(θ)(t), θ)uξ(t) + f ′θ(t, S(θ)(t), θ)ξ t ∈ (0, T )

uξ(0) = u′0(θ)ξ.
(2.33)

Before proving the result, we notice some facts.
Firstly, Assumption 2.4.1 just guarantees that S is a well-defined map from X to
W 1,2,2(0, T ;V, V ∗) [100, Theorems 8.27, 8.31]. In order to ensure that S maps to Ũ =
W 1,2,2(0, T ;V, V ∗) ∩ L∞(0, T ;V ), condition (R1) of Proposition 2.4.2 is additionally
required. With condition (R1), we strengthen S(θ) to lie in L∞(0, T ;V ). The proof is
basically based on the regularity result in Roub́ıček’s book [100] with extending the
operator to be time-dependent (see Section 2.8.1). Secondly, due to the formulation,
differentiability of the forward operator in the reduced setting, in principle, is a
question of differentiablity of S (and g).

Proof of Proposition 2.4.2. We show Gâteaux differentiability of S. Fixing θ and
without loss of generality, we consider ξ lying in a unit ball and ε ∈ (0, 1].

First, (R1) allows us to apply the regularity result (A.53) to obtain

‖S(θ + εξ)‖L∞(0,T ;V )

≤ N θ

(
2cθ2‖γ‖L2(0,T ) + 2c̃θ2‖γ̃‖

1
2

L1(0,T ) + 2(cθ2 + c̃θ2)

√
cθ1
cθ0
‖u0(θ + εξ)‖H

+ ‖f3(., θ + εξ)‖L2(0,T ;H) +
√
|ϕ(0, u0(θ + εξ), θ + εξ)|

)
≤ N θ

(
2cθ2‖γ‖L2(0,T ) + 2c̃θ2‖γ̃‖

1
2

L1(0,T ) + 2CV→H(cθ2 + c̃θ2)

√
cθ1
cθ0
‖u0(θ)‖V

+ ‖f3(., θ)‖L2(0,T ;H) +
√
|ϕ(0, u0(θ), θ)|+ 1

)
(2.34)

:= M θ

for any ε ∈ [0, ε̄], where the constant N θ depends only on cθ0, c
θ
1, c

θ
2, c̃

θ
2, T . Here we

make use of continuity of the embedding V ↪→ H through the constant CV→H .
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2.4. Reduced formulation

Let denote vε := 1
ε

(S(θ + εξ)− S(θ)). The function vε solves

v̇ε(t) =
1

ε
(f(t, S(θ + εξ)(t), θ + εξ)− f(t, S(θ)(t), θ))

=

∫ 1

0

(f ′u(t, S(θ)(t) + λεvε(t), θ + λεξ)vε(t) + f ′θ(t, S(θ)(t) + λεvε(t), θ + λεξ)ξ) dλ

=: Aε(t)vε(t) +Bε(t)ξ

vε(0) =
1

ε
(u0(θ + εξ)− u0(θ)),

where by local Lipschitz continuity of f and (2.34) we have, for all most all t ∈ (0, T ),

‖Bε(t)‖X→V ∗ ≤ L(‖S(θ)‖L∞(0,T ;V ) + ‖S(θ + εξ)‖L∞(0,T ;V ) + ‖θ‖X + 1)

≤ L(2M θ + ‖θ‖X + 1)

‖Aε(t)‖V→V ∗ ≤ L(2M θ + ‖θ‖X + 1)

for any ε ∈ (0, ε̄].
The fact that −Aε is linear bounded and semi-coercive by (R2) enables the following
estimate (Chapter 1, Theorem 1.3.5, Observation 1.3.8)

‖vε‖W 1,2,2(0,T ;V,V ∗) ≤ Cθ
(
‖vε(0)‖H + ‖Bε(.)ξ‖L2(0,T ;V ∗)

)
≤ Cθ

(
CV→H‖u′0(θ)‖X→V + 1 +

√
TL(2M θ + ‖θ‖X + 1)

)
(2.35)

for any ε ∈ (0, ε̄].
Also by boundedness and semi-coercivity of −fu, the solution to the sensitivity

equation uξ uniquely exists according to the existence theory for linear parabolic
PDEs (see Chapter 1, Observation 1.3.8).

Let ṽε := 1
ε

(
S(θ + εξ)− S(θ)− εuξ

)
, then ṽε solves

˙̃vε(t) = f ′u(t, S(θ)(t), θ)ṽε +
1

ε

(
− εf ′u(t, S(θ)(t), θ)vε(t)− εf ′θ(t, S(θ)(t), θ)ξ

+ f(t, S(θ)(t) + εvε(t), θ + εξ)− f(t, S(θ)(t), θ)

)
=: f ′u(t, S(θ)(t), θ)ṽε + bε(t)

ṽε(0) =
1

ε
(u0(θ + εξ)− u0(θ)− εu′0(θ)ξ),

as a result
‖ṽε‖W 1,2,2(0,T ;V,V ∗) ≤ Cθ

(
‖ṽε(0)‖H + ‖rε‖L2(0,T )

)
. (2.36)

The fact that vε is bounded for any ε ∈ (0, ε̄] allows us to proceed analogously to the
proof of Proposition 2.3.1 to get eventually

‖ṽε‖W 1,2,2(0,T ;V,V ∗) → 0 as ε→ 0,
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2.4. Reduced formulation

which proves Gâteaux differentiability of S.
Linearity of S ′(θ) is obvious from (2.33). Its boundedness follows similarly to

(2.36) with uε in place of ṽε and f ′θ(t, S(θ)(t), θ)ξ in place of bε. Continuity of S is the
result from unique existence theory for nonlinear PDE (Chapter 1, Theorem 1.3.5)
and Caratheodory condition on f .

Using the chain rule (Chapter 1, Remark 1.4.7), we obtain the derivative of F as
in (2.32) and the proof is complete.

Remark 2.4.3. If f, g and u0 are Fréchet differentiable then so is F .
This assertion follows from the observations:

• ‖S(θ + εξ)‖L∞(0,T ;V ) is uniformly bounded for all ξ ∈ B(0, 1), ε ∈ [0, ε̄],

• ‖vε‖W 1,2,2(0,T ;V,V ∗) is uniformly bounded with respect to ξ as a consequence of
the uniform boundedness of ‖S(θ+ εξ)‖L∞(0,T ;V ) and 1

ε

(
‖u0(θ+ εξ)− u0(θ)‖V

)
,

• Uniform convergence of ṽε(0) to the zero function by Fréchet differentiability of
u0,

• Remark 2.3.2.

Concluding differentiability of F , we now derive the adjoint for F ′(θ).

Proposition 2.4.4. The Hilbert space adjoint of F ′(θ) is given by

F ′(θ)? : Y → X

F ′(θ)?z =

∫ T

0

g′θ(t, S(θ)(t), θ)∗z(t) + f ′θ(t, S(θ)(t), θ)∗pz(t)dt+ u′0(θ)∗pz(0), (2.37)

where pz solves{
−ṗz(t) = f ′u(t, S(θ)(t), θ)∗pz(t) + g′u(t, S(θ)(t), θ)∗z(t) t ∈ (0, T )

pz(T ) = 0.
(2.38)

Proof. [58, Proposition 2.7].

Remark 2.4.5. For the Kaczmarz approach and discrete measurement, we refer to
[58, Section 2.4, Remark 2.8] respectively.

Remark 2.4.6. With Propositions 2.3.1 and 2.4.2 as well as Remarks 2.3.2 and 2.4.3,
we obtain Gâteaux and Fréchet differentiability of the forward operators in both all-
at-once and reduced setting. Beyond the use of these derivatives in iterative methods
(Landweber here, Gauss-Newton type methods in future work), knowledge of this
differentiability yields more information on the topology of the function spaces. By
utilizing Fréchet differentiability, other properties of the nonlinear operator can be
understood.
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2.5 Discussion

Remark 2.5.1. In this work, by introducing the new state spaces U , Ũ and imposing
relevant structural conditions on the nonlinear forward operators, which mainly rely
on local Lipschitz continuity, the restrictive growth conditions [58, Conditions (2.2)-
(2.5), (2.29)-(2.30)] in the all-at-once and reduced formulations are eliminated.

2.5.1 All-at-once versus reduced version

Comparing the all-at-once and reduced formulations of dynamic inverse problems, we
observe the followings:

On function spaces and necessary assumptions

• In the all-at-once formulation, well-definedness of F directly follows from well-
definedness of f and g. On the contrary, the reduced formulation involves the
need of well-definedness of the parameter-to-state map S : X → Ũ , which
requires additional conditions on f and u0. Therefore, the all-at-once setting
gives more flexibility in choosing the function spaces and can deal with more
general classes of problems than the reduced setting.

• In the all-at-once setting, the choice of U depends onW ,X ,Y . The state space
U must be strong enough for the problem to be well-defined and for the adjoint
computation to be feasible.
In the reduced one, Ũ just needs to be sufficient for the observation C : Ũ → Y to
be well-defined. In the usual case where X = L2(Ω),Y = L2(0, T ;L2(Ω)), C =
id, although the true state space is much stronger, Ũ is just required to be
L2(0, T ;L2(Ω)), which might lead to a simplification of the adjoint (c.f, Chapter
5).

• In the general case, when f : (0, T )× V × X → W ∗ with the Hilbert space W
being possibly different from V , the local Lipschitz condition can be written as

∀M ≥ 0,∃L(M) ≥ 0,∀a.e.t ∈ (0, T ) : (2.39)

‖f(t, v1, θ1)− f(t, v2, θ2)‖W ∗ ≤ L(M)(‖v1 − v2‖V + ‖θ1 − θ2‖X ),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤M, i = 1, 2

and is applicable for both settings. With this condition, all the proofs proven
in the all-at-once setting are unchanged, while in the reduced setting, the proof
for well-definedness of S on the new function spaces might be altered.

On Landweber stepsize
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2.5. Discussion

• The stepsizes in the two approaches are not correlated since they are constrained
by boundedness of the derivative of the forward operators (Assumption 2.6.2),
which are formulated differently

‖F ′(θ)ξ‖Y = ‖g′u(θ)S ′(θ)ξ + g′θ(θ)ξ‖Y

=

∥∥∥∥∥g′u(θ)
[
d

dt
− f ′u(θ); δ0

]−1

[f ′θ(θ)ξ;u
′
0(θ)ξ] + g′θ(θ)ξ

∥∥∥∥∥
Y

‖F′(u, θ)(v, ξ)‖W×V×Y =
(
‖v̇ − f ′u(u, θ)v + ‖f ′θ(u, θ)ξ‖

2
W

+ ‖δ0(v) + u′0(θ)ξ‖2
V + ‖g′u(u, θ)v + g′θ(u, θ)ξ‖2

Y
)1/2

.

In case of source identification problem with C = id and g, u0 being independent
of θ, we have

‖F ′(θ)ξ‖Y =

∥∥∥∥∥
[
d

dt
− f ′u(θ); δ0

]−1

[ξ; 0]

∥∥∥∥∥
Y

≤ CŨ ↪→Y

∥∥∥∥∥
[
d

dt
− f ′u(θ); δ0

]−1

[ξ; 0]

∥∥∥∥∥
Ũ

‖F′(u, θ)(v, ξ)‖W×V×Y =
(
‖v̇ − f ′u(u, θ)v + ξ‖2

W + ‖δ0(v)‖2
V + ‖v‖2

Y
)1/2

.

On tangential cone condition

• If having full observation, i.e., R(C) = Y , the tangential cone condition of the
reduced setting could be computed via the one of the all-at-once setting (c.f.,
Section 2.8.3 or a detailed explanation in Chapter 3).

On feasibility

• Due to well-definedness of S, usually monotonicity of F must be taken into
account (c.f. Section 2.7), which turns out to be a restriction on the sign of the
nonlinearity in the reduced version. On the contrary, the all-at-once one allows
arbitrary signs.

• Also by this reason, we mostly have D(F ) ⊂ D(F2) (where F2 is the second
component of F). Obvious examples are shown in Chapter 3 and Chapter 5.

• Unlike the reduced one, the all-at-once formulation approximates also the state
u. Avoiding solving nonlinear equations is the key advantage of the all-at-once
approach, which facilitates very much the practical implementation.

• The all-at-once formulation naturally carries over to the wave equation (or also
fractional sub- or superdiffusion) context by just replacing the first time deriva-
tive by a second (or fractional) time derivative. The reduced version, how-
ever, requires additional conditions for well-definedness of the parameter-to-
state map.
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2.6. Algorithm and convergence

2.5.2 Time-dependent parameter identification

The parameter considered in the previous sections is time-independent. However, the
theory developed in this thesis, in principle, allows the case of time-dependent θ by
introducing a time-dependent parameter space, for instance, X = L2(0, T ;X),X =
W 1,2,2(0, T ;X,X∗)×X0,X = H1(0, T ;X)×X0.

Relying on this function space, the local Lipschitz condition holding for all-at-once
and reduced setting reads as follows

∀M ≥ 0,∃L(M) ≥ 0,∀a.e.t ∈ (0, T ) : (2.40)

‖f(t, v1, θ1)− f(t, v2, θ2)‖V ∗ ≤ L(M)(‖v1 − v2‖V + ‖θ1 − θ2‖X),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤M, i = 1, 2.

The proof for differentiability in both settings needs adapting to the new parameter
function space. When working with concrete examples, if time point evaluation θ(t)
is needed, the feasible choices are X = H1(0, T ;X) × X0 since H1(0, T ) ↪→ C(0, T )
or X = W 1,2,2(0, T ;X,X∗) × X0 since W 1,2,2(0, T ;X,X∗) ↪→ C(0, T ;H) with X ↪→
H ↪→ X∗. If the parameter plays the role of a source term, the time point evaluation
will not be required.

In case X = L2(0, T ;X) with Hilbert space X and u0 independent of θ (to avoid
problems from existence of θ(0, .) for θ only in L2(0, T ;X)), the adjoint F′(u, θ)? in
the all-at-once setting is derived with the changes as follows

f ′θ(., u, θ)
?w = f ′θ(., u, θ)

∗Iw, g′θ(., u, θ)
?z = g′θ(., u, θ)

∗z (2.41)

with

f ′θ(., u, θ)
∗(t) : V ∗∗ = V → X∗ = X, g′θ(., u, θ)

∗(t) : Y ∗ = Y → X∗ = X.

And for the the reduced setting, one has

F ′(θ)?z = g′θ(., S(θ), θ)∗z + f ′θ(., S(θ), θ)∗pz, (2.42)

where pz solves (2.38).
The Kaczmarz approach relying on the idea of time segmenting does not directly

carry over to this case and will be a subject for future research.

2.6 Algorithm and convergence

Loping Landweber-Kaczmarz

In this part, we make explicit the steps required in both settings in case of contin-
uous observation. Starting from an initial guess (u0, θ0), the Landweber-Kaczmarz
iterations run
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All-at-once version

S.1: Set argument to adjoint equations

wk(t) = (u̇k(t)− f(t, uk(t), θk)) |(τj ,τj+1)

hk = uk(0)− u0(θk)

zk(t) =
(
g(t, uk(t), θk)− yδ(t)

)
|(τj ,τj+1)

so that

(wk, hk, zk) = Fj(k)(uk, θk)−Yδ
j(k)

S.2: Evaluate adjoint states

ũwk , f
′
θ(., uk, θk)

?wk ←− wk

uhk, u
′
k(0)?hk ←− hk

uzk, g
′
θ(., uk, θk)

?zk ←− zk

S.3: Update (u, θ) by

(uk+1, θk+1) = (uk, θk)

− µkF′j(k)(uk, θk)
?(Fj(k)(uk, θk)− Yδ

j(k))

Reduced version

S.1: Solve nonlinear state equation{
u̇k(t) = f(t, uk(t), θk) t ∈ (0, T )

uk(0) = u0(θk)

S.2: Set argument to adjoint equation

zk(t) =
(
g(t, uk(t), θk)− yδ(t)

)
|(τj ,τj+1)

so that

zk = Fj(k)(uk, θk)−yδj(k)

S.3: Evaluate the adjoint state

pzk ←− zk

S.4: Update θ by

θk+1

= θk − µkF ′j(k)(θk)
?(Fj(k)(θk)− yδj(k))

with j(k) := (k mod n) for n sub-intervals. The stopping rule for the Landweber-
Kaczmarz method is chosen according to the discrepancy principle stated in Chapter
1, Definition 1.1.3.

Remark 2.6.1. We have some observations on the algorithm

• For each iteration, the all-at-once algorithm works only with linear models in
all steps, while the reduced algorithm requires one step solving a nonlinear
equation to evaluate the parameter-to-state map.

• Together with the fact that the adjoint states in the all-at-once setting can be
analytically represented (see Remarks 2.3.6 and 2.3.7), one step of the all-at-
once algorithm is expected to run much faster than one of the reduced algorithm.

• The residual in the all-at-once case comprises both the errors generated from
θ and u in the model and in the observations, while in the reduced case, the
exact u = S(θ) is supposed to be computed. Being inserted into the discrepancy
principle, the stopping index k∗ in the reduced algorithm is therefore possibly
smaller than the one in the all-at-once case.
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• For the Kaczmarz approach, the all-at-once setting restricts both model and
observation operators to the subinterval [τj, τj+1]. the reduced setting, however,
applies the time restriction only for the observation operator, the model needs
to be solved on the full time line to construct the parameter-to-state map.

• One can also incorporate the Kaczmarz strategy into the discrete observation
case for both settings.

Convergence analysis

We now provide convergence results under certain conditions. These conditions are
derived in the context of iterative regularization methods for nonlinear ill-posed prob-
lems [62], which are recalled in the Chapter 1, Assumptions (1.8)-(1.9).

Assumption 2.6.2.

• Tangential cone condition in the all-at-once version

‖f(., ũ, θ̃)− f(., u, θ)− f ′u(., u, θ)(ũ− u)− f ′θ(., u, θ)(θ̃ − θ)‖W
+ ‖u0(θ̃)− u0(θ)− u′0(θ)(θ̃ − θ)‖V
+ ‖g(., ũ, θ̃)− g(., u, θ)− g′u(., u, θ)(ũ− u)− g′θ(., u, θ)(θ̃ − θ)‖Y

≤ ctc
(
‖ ˙̃u− u̇− f(., ũ, θ̃) (2.43)

+ f(., u, θ)‖W + ‖u0(θ̃)− u0(θ)‖V + ‖g(., ũ, θ̃)− g(., u, θ)‖Y
)

∀(u, θ), (ũ, θ̃) ∈ Bρ((u0, θ0)),

and in the reduced version

‖g(., S(θ̃), θ̃)− g(., S(θ), θ)− g′u(., S(θ), θ)v − g′θ(., S(θ), θ)(θ̃ − θ)‖Y
≤ c̃tc‖g(., S(θ̃), θ̃)− g(., S(θ), θ)‖Y (2.44)

∀θ, θ̃ ∈ Bρ(θ0)

for some ctc, c̃tc <
1
2
, where v solves{

v̇(t) = f ′u(t, S(θ)(t), θ)v(t) + f ′θ(t, S(θ)(t), θ)(θ̃ − θ) t ∈ (0, T )

v(0) = u′0(θ)(θ̃ − θ)
. (2.45)

• The constant in the discrepancy principle is sufficiently large, i.e.,

τ > 2
1 + ctc
1− 2ctc

.

• The stepsize parameter satisfies µk ∈
(

0,
1

‖F′(uk, θk)‖2

]
.

Since our methods are considered in Hilbert spaces, we can employ existing con-
vergence results for Landweber-Kaczmarz method collected in Chapter 1, Section
1.1.3.
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2.7 Application to inverse source problems

In this section, the first part is dedicated to examining the conditions proposed in
the abstract theory for a class of problems. This work will expose the maximum
nonlinearity allowed in our setting, which indicates the improvement comparing to
the current result [58]. The section is subsequently continued by some numerical
experiments running on both continuous and discrete observations.

Inverse source problems

Let us consider the semilinear diffusion system

u̇ = ∆u− Φ(u) + θ (t, x) ∈ (0, T )× Ω (2.46)

u|∂Ω = 0 t ∈ (0, T ) (2.47)

u(0) = u0 x ∈ Ω (2.48)

y = Cu (t, x) ∈ (0, T )× Ω, (2.49)

where Ω ⊂ Rd is a bounded Lipschitz domain.
We investigate this problem in the function spaces

X = L2(Ω), V = H1
0 (Ω), H = L2(Ω), Y = L2(Ω)

with linear observation (i.e., C is a linear operator). For the reduced setting, we
assume that the nonlinear operator Φ is monotone and Φ(0) = 0. By this way, one
typical example could be given, for instance, Φ(u) = |u|γ−1u, γ ≥ 1.

We now verify the imposed conditions in the all-at-once and reduced versions. To
begin, we decompose the model operator into

−f = −∆u+ Φ(u)− θ := f1 + f3.

It is obvious that f3 = −θ ∈ L2(0, T ;H), and g is Lipschitz continuous with the Lip-
schitz constant L(M) = ‖C‖V→Y and satisfies the boundedness condition g(t, 0, 0) =
0 ∈ Y .

The next part focuses on analyzing the properties of the model operator f .

(R1) Regularity conditions for f1

The regularity condition (R1) holds by the following argument

f1(v) = −∆v + Φ(v) = φ′(v)

φ(v) =

∫
Ω

1

2
|∇v|2 +

1

γ + 1
Φ(v)vdx

≥ 1

2
‖v‖2

V and continuous.

φ′′(v)[w,w] =

∫
Ω

|∇w|2 + Φ′(v)wwdx ≥ 0, ∀v, w ∈ V
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concludes convexity of φ. Here, we invoke monotonicity and differentiability of
Φ.
Analogously, −f ′u(., u, θε) = −∆ + Φ′(u) is semi-coercive in the sence of (R2).

(R3) Local Lipschitz continuity of f

First, we observe that

‖f(t, v1, θ1)− f(t, v2, θ2)‖V ∗ = ‖Φ(v2)− Φ(v1)−∆(v2 − v1)− (θ2 − θ1)‖H−1

= sup
‖∇w‖L2(Ω)≤1

∫
Ω

(Φ(v2)− Φ(v1))w +∇(v2 − v1)∇w − (θ2 − θ1)wdx

≤ sup
‖∇w‖L2(Ω)≤1

∫
Ω

(Φ(v2)− Φ(v1))wdx+ ‖v1 − v2‖V + ‖θ1 − θ2‖X .cPF ,

where cPF is the constant in the Poincaré-Friedrichs inequality: ‖v‖L2(Ω) ≤
cPF‖∇v‖L2(Ω),∀v ∈ H1

0 (Ω). Developing the first term on the right hand side by
applying Hölder’s inequality, we have

sup
‖∇w‖L2(Ω)≤1

∫
Ω

(Φ(v2)− Φ(v1))wdx

= sup
‖∇w‖L2(Ω)≤1

(∫
Ω

wp̄dx

) 1
p̄
(∫

Ω

(Φ(v2)− Φ(v1))
p̄
p̄−1dx

) p̄−1
p̄

≤ cH1→Lp̄

√
1 + c2

PF

[∫
Ω

(v1 − v2)p̄dx

] 1
p̄

.

[∫
Ω

(∫ 1

0

Φ′(v1 + λ(v2 − v1))dλ

) p̄
p̄−2

dx

] p̄−2
p̄

≤ γcγc
2
H1→Lp̄(1 + c2

PF )‖v1 − v2‖V
[∫ 1

0

∫
Ω

(λv2 + (1− λ)v1)(γ−1) p̄
p̄−2 dxdλ

] p̄−2
p̄

≤ 2γ−1γcγc
2
H1→Lp̄(1 + c2

PF )‖v1 − v2‖V
(
‖vγ−1

1 ‖
L

p̄
p̄−2 (Ω)

+ ‖vγ−1
2 ‖

L
p̄
p̄−2 (Ω)

)
,

provided additionally that Φ′ is the Nemytskii operator (that as always, we
use the same notation) induced by the real function Φ′ with |Φ′(v)| ≤ cγ|v|γ−1.
Altogether, we arrive at

‖f(t, v1, θ1)− f(t, v2, θ2)‖V ∗ ≤ L(‖v1‖γ−1
V + ‖v2‖γ−1

V )(‖v1 − v2‖V + ‖θ1 − θ2‖X )

if

(γ − 1)
p̄

p̄− 2
≤ p̄ ⇔ γ ≤ p̄− 1,
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where cH1→Lp̄ is the constant and p̄ is the maximum power such that the em-
bedding H1(Ω) ↪→ Lp̄(Ω) is continuous

p̄


=∞ if d = 1

<∞ if d = 2

= 2d
d−2

if d ≥ 3

⇔ γ


=∞ if d = 1

<∞ if d = 2

≤ 5 if d = 3

≤ d+2
d−2

if d ≥ 4.

(2.50)

Remark 2.7.1. Condition (2.50) on γ reveals that in two dimensional space, our
proposed setting works out well with all finite powers of the nonlinearity and in one
dimensional space, the accepted power is unconstrained. Noticeably, in the practical
case, i.e., three dimensions, the largest power we attain is up to 5 which enhances
the limit in the nonlinearity of the current work and enables us to include important
applications that had been ruled out in [58] due to the growth conditions there.

The remaining task is to examine well-definedness of the parameter-to-state
map S : X → W 1,2,2(0, T ;V, V ∗), which will be respectively presented in Sections
2.8.2 and 2.8.3. For verifying the tangential cone condition, we additionally impose
the growth condition |Φ′′(v)| ≤ cγ|v|γ−2.

Remark 2.7.2. At this point, we can briefly discuss the uniqueness question. Since
θ is time-independent, if having observation at any single time instance t ∈ (0, T )
and observation on all of Ω, we are able to determine θ uniquely by

θ = (u̇−∆u+ Φ(u)) (t). (2.51)

The point evaluation at t only works for sufficiently smooth observation, e.g., u ∈
C1(I;L2(Ω)) ∩ C(I;H2(Ω)) for some neighborhood I of t, so that θ ∈ L2(Ω). In
principle, this also induces a reconstruction scheme, namely, after filtering the given
noisy data, applying formula (2.51). However, in contrast to the scheme we propose
here, this would not apply to the practically relevant case of partial (e.g. boundary)
and time discrete observations.
Alternatively, we can approach this issue by using Theorem 2.4 [62] (or Chapter 1,
Theorem 1.1.11), which concludes uniqueness of the solution from the tangential cone
condition as in Section 2.6 and the null space condition

N (F ′(θ†)) ⊂ N (F ′(θ)) for all θ ∈ Bρ(θ†),

where Bρ(θ†) is a closed ball of radius ρ, center θ†. Since the tangential cone condition
has been verified, it remains to examine the null space of F ′(θ†). This could be done
by linearizing the equation then utilizing some results from Isakov’s book [56].
The null space of F ′(θ†) consists all θ such that the solution v of

v̇ −∆v + Φ′(u†)v = θ (t, x) ∈ (0, T )× Ω

v|∂Ω = 0 t ∈ (0, T )

v(0) = 0 x ∈ Ω
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leads to vanishing observations.
Theorem 9.1.2 [56] states that the solution to this inverse source problem is unique if a
final observation is available and θ has compact support. As a result, the observation
operator just needs to convey the information of u, e.g., at the final time g(u) =
u(T ). In case of discrete measurement and non-compact support θ , uniqueness is
still attainable by using Theorem 9.2.6 [56], where one need to additionally measure
one intermediate time data, i.e., u(ti, x) for some ti ∈ (0, T ). In this situation, also
observation of Neumann data on an arbitrary part of the boundary is demanded.

Numerical results

In the following numerical experiments, we select the nonlinear term Φ(u) = u3

motivated by the superconductivity example. We assume to observe u fully in time
and space, i.e., Cu = u on (0, T ) × Ω and that at initial time u(0) = u0 = 0. The
method in use is loping Landweber-Kaczmarz.

The parameters for implementation are as follows: the time line (0,0.1) (101 time
steps) is segmented into 5 time subintervals, the space domain is Ω = (0, 1) (101 grid
points) and the system is perturbed by 5% data noise.

Figure 2.1 displays the results of reconstructed parameter and state comparing
to the exact ones. Apparently, two settings yield very similar results, except at
t = 0 where the reduced setting approximates the exact initial state better. This
is explained by the fact that the model equations (2.4)-(2.5) in the reduced setting
is fully preserved to construct the parameter-to-state map, while in the all-at-once
(AAO) setting, u0 only appears in the forward operator with the index zero. However,
the reconstructed parameters in both settings are definitely comparable.

In Figure 2.2, the left and the middle figures show the scalar wk in the discrepancy
principle in Chapter 1, Definition 1.7 for each iteration (horizontal axis). Five oper-
ators represent five time subintervals correspondingly. The right figure sums all wk
over five subintervals and plots both settings together. The all-at-once setting stops
the iterations after a factor of 1.5 times those in the reduced setting. This means
the all-at-once setting requires much more iterations than the reduced one to obtain
an accepted error level. Nevertheless, it runs much faster than the reduced case, in
particular the cpu times are: 2989s (Reduced method), 1175s (AAO method). The
reasons for this effect have been discussed in Remark 2.6.1.

To demonstrate the discrete observation case, we ran tests at several numbers of
discrete observation time points. The parameters for implementation stay the same as
in the continuous observation case. Here we also use the loping Landweber-Kaczmarz
method.
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Figure 2.1: Top: exact parameter θ† (solid) and reconstruction (dashed). Middle:
reconstructed state u. Bottom: difference u−u†. Left: Reduced, right: AAO setting.
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Figure 2.2: On/off iterations on each sub-interval per cycle for Reduced (top left),
AAO (top right) methods. Bottom: Number of inner steps per cycle for reduced
(solid blue), AAO (dashed red) settings.

Table 2.1: Numerical experiment with different numbers of discrete observation points
(np) at 5% noise. Observation points are uniformly distributed on (0, T ].

np Reduced AAO

#iter #updates cpu(s)
‖θδk∗−θ

†‖
‖θ†‖ #iter #updates cpu(s)

‖θδk∗−θ
†‖

‖θ†‖
3 6191 3854 38 0.113 9722 6215 17 0.158
11 6214 4506 39 0.113 9921 7142 18 0.140
21 6215 4539 39 0.113 10793 7253 19 0.137
51 6278 4556 42 0.112 11831 7303 20 0.135
101 9896 4626 62 0.108 16865 7389 28 0.132
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Figure 2.3: Exact parameter θ† (solid red), reconstruction by Landweber-Kaczmarz
(dashed blue) and reconstruction by Landweber (dashed dotted green). Left: Re-
duced, right: AAO setting.
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Figure 2.4: Exact parameter θ† (solid red), reconstruction by Landweber-Kaczmarz
(dashed blue) and reconstruction by Landweber (dashed dotted green). Left: zoom
of right, right: AAO setting.

Table 2.1 compares the reduced version with the all-at-once one at different num-
bers of observation time points np, where each of the time points corresponds to a sub
equation, i.e., np = n in the Kaczmarz method (formula (1.3) in Chapter 1). Those
numbers vary largely from 3 to the maximum discretization time step 101. Despite
the largely varying np, the errors in both settings are quite stable. It gets plausible
when looking at the “#updates” columns reporting the “real” iterations, which are
the iterations making the update, i.e., iterations with wk = 1. This reveals that
significantly increasing the number of discrete observation time points does not bring
any improvement. We reason this phenomenon by the above argument (cf. Remark
2.7.2) of uniqueness of the solution according to which, one additional intermediate
time data is sufficient to uniquely recover θ.
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We turn to a comparison between the Landweber method on the full time horizon
and the proposed Landweber-Kaczmarz method. Figure 2.3 shows that in the reduced
setting the reconstruction by the Landweber-Kaczmarz method is more accurate, but
the performance seems to be reversed in the all-at-once setting. The reason for this
is that, in the Landweber-Kaczmarz method the initial data appears only in F0,
while the Landweber method, as working with a fixed operator F on the whole time
line [0, T ], employs the initial condition always. This leads to the next test in the
all-at-once setting displayed in Figure 2.4. In this test, we design the collection of
operators {Fj}j=0...n−1 for Landweber-Kaczmarz method in a slightly different way
with the formulation in Remark 2.3.5, namely, we include the initial data in all
Fj, j = 0 . . . n − 1. Figure 2.4 indicates an enhancement in the computed output
from the Landweber-Kaczmarz method, and it now performs slightly better than the
Landweber method. Besides, we see the all-at-once result in Figure 2.4 is more similar
to the reduced result than that in the original Landweber-Kaczmarz method (Figure
2.1). This confirms the advantage of the presence of initial data in the all-at-once
formulation of the Landweber-Kaczmarz method in this example.

From this, we observe the followings

• Landweber-Kaczmarz performs slightly better than Landweber in both settings.

• The all-at-once result is more comparable to the reduced one if the initial data
is present in all Fj of the all-at-once formulation.

• Relying on the idea of time line segmenting, there would be flexible strategies
to generate the collection of Fj for Landweber-Kaczmarz method, e.g.:

◦ Method suggested in Remark 2.3.5

◦ Method suggested in Remark 2.3.5 with Fj defined on {0} ∪ [τj, τj+1], j =
0 . . . n− 1

◦ Evolution of time subinterval, i.e., Fj is defined on [0, τj+1], j = 0 . . . n− 1

and those strategies affect the runtime accordingly.

In all tests, we used the finite difference method to compute the exact state. More
precisely, an implicit Euler scheme was employed for time discretization and a central
difference quotient was used for space discretization. The numerical integration ran
with the trapezoid rule. Gaussian noise was generated to be added to the exact data
y.

We also point out that in case of having sufficiently smooth data yδ = uδ ∈
L2(0, T ;H1

0 (Ω)), we are able to recover the parameter directly from

θδ =
(
u̇δ −∆uδ + uδ

3
)

(t)

if we compute the terms u̇δ and ∆uδ, e.g., by filtering (cf. Remark 2.7.2). Getting
the output from those in L2(0, T ;L2(Ω)) and the fact (uδ)3 ∈ L2(0, T ;L2(Ω)) since
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H1
0 (Ω) ↪→ L6(Ω), it yields the output θδ ∈ L2(Ω). Nevertheless, if applying the

method developed in the thesis, one can deal with much higher nonlinearity, namely,
Φ(u) = u5 as claimed in Remark 2.8.2. Moreover, as apposed to this direct inversion,
our approach also works for partial (e.g. boundary) or time discrete observations.

The source identification problem (2.46)-(2.49) examined here can be extended
into time-dependent θ ∈ L2(0, T ;X) and implemented in the all-at-once as well as
the reduced setting using the Landweber method as discussed in Remark 2.5.2.

Conclusion and outlook

In this study, we consider a general evolution system over a finite time line and investi-
gate parameter identification in it by using Landweber-Kaczmarz regularization. We
formulate this problem in two different settings: an all-at-once version and a reduced
version. In each version, both cases of full and discrete observations are taken into
account. The main ingredients for the regularization method are: differentiability
and adjoint of the derivative of the forward operators. Differentiability was proved
by mainly basing on the choice of appropriate function spaces and a local Lipschitz
continuity condition. Segmenting the time line into several subintervals gives the
idea to the application of a Kaczmarz method. A loping strategy is incorporated
into the method forming the loping Landweber-Kaczmarz iteration. The shown ex-
ample proves that the method is efficient in the practically relevant situation of high
nonlinearity.

Several questions arise for future research:
We plan to extend the theory to time-dependent parameters. For this purpose, we

need to build an appropriate function space for θ which, for instance, could allow the
local Lipschitz continuity condition. In addition, the assumptions for well-posedness
of the parameter-to-state map S need to be carefully considered.

Concerning the model, we intend to also study second order in time equations
modeling wave phenomena. Rewriting them as first order in time system by intro-
ducing another state ũ = u̇, in principle, allows us to use the present formulation.
However, an appropriate function space setting for wave type equations requires dif-
ferent tools for showing, e.g., well-definedness of the parameter-to-state map.

In our test problem (2.46)-(2.49), we consider full space observations in order
to establish the tangential cone condition. Practically, relevant partial or boundary
observations are yet to be tested numerically.

Regarding numerical implementation of other iterative regularization methods,
the difficulty of Newton type methods, which are supposed to give rapid convergence,
is the requirement of solving a linear system per iteration step, while this is avoided in
the Landweber-Kaczmarz method by the direct use of the Hilbert space adjoints. In
the context of this thesis, only numerical experiments for Landweber and Landweber-
Kaczmarz methods are provided. Numerical implementation and computational tests
for other iterative methods will be a subject of future work.
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Considering the all-at-once formulation on a infinite time horizon, by setting θ̇ = 0
and U := (θ, u), the problem can be written as a dynamical system U̇(t) = (0, f)(t) =:
F(.,U)(t), t > 0,U(0) = (θ∗, u0), where the exact parameter θ∗, being a time con-
stant function, is supposed to be estimated simultaneously to the time evolution of
the system and the data collecting process y(t) = g(., u, θ)(t) =: G(U)(t). This ap-
pears to be a link to online parameter identification methods (see, e.g., [77, 78]). The
relation between the proposed all-at-once formulation and online parameter identifi-
cation for time-independent parameters as well as their analysis (possibly by means
of a Lopatinskii condition) will be subject of future research.

2.8 Auxiliary results

2.8.1 Regularity in non-autonomous case

We refer the reader to Regularity Theorem 8.16 in [100], which we are using with
exactly the same notations. All the equations referred to “((.))” indicate the ones in
the book [100].

Remark 2.8.1. Observations on the Theorem 8.16 in [100]

• This proof still holds for the case A2 is time-dependent. The condition ((8.59d))

on A2 could stay fixed or be weakened to ‖A2(t, v)‖H ≤ C(γ(t) + ‖v‖q/2V ), γ ∈
L2(0, T ), then

‖u(t)‖V ≤ N

(
2C‖γ‖L2(0,T ) + 2C

√
c1

c0

‖u0‖H + ‖f‖L2(0,T ;H) +
√
|Φ(u0)|

)
.

(A.52)

• We can slightly relax the constraint on c1 by applying Cauchy’s inequality with
ε for the first estimate in the original proof. In this way, we get 2c1T < 1/2
which can be traded off by the scaling 1

ε
on the right hand side of ((8.63)).

If Φ : V → R+, the assumption on the smallness of c1 can be omitted.

Proof. The first expression in the book shows that A1 does not depend on t. With
the hope of generalizing to time-dependent case, our strategy is as follows.
First we set

A1(t, v) = Φ′v(t, v), Φ : [0, T )× V → R
Φ′v induces a Nemytskii operator, namely, Ψ′u
i.e.,Ψ′u(t, u)(t) = Φ′v(t, u(t)),
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thus 〈
A1(t, u)(t),

d

dt
u(t)

〉
=

〈
Φ′v(t, u(t)),

d

dt
u(t)

〉
=

〈
Ψ′u(t, u)(t),

d

dt
u(t)

〉
= Ψ′t(t, u)(t)− Φ′t(t, u(t)).

Looking at the first estimate in the book, we can think of treating Ψ′t(t, u)(t) as
Φ′t(t, u)(t) on the left hand side and leaving Φ′t(t, u(t)) to the right hand side. Choos-
ing

Φ(t, v) ≥ c0‖v‖qV − c1‖v‖2
H , ∀t ∈ (0, T )

‖Φ′t(t, v)‖H ≤ C̃(γ̃(t) + ‖v‖qV ), γ̃ ∈ L1(0, T )

lets us estimate analogously to ((8.62)) and obtain

‖u(t)‖V ≤ N
(

2C‖γ‖L2(0,T ) + 2C̃‖γ̃‖
1
2

L1(0,T ) (A.53)

+ 2(C + C̃)

√
c1

c0

‖u0‖H + ‖f‖L2(0,T ;H) +
√
|Φ(0, u0)|

)
for all t ∈ (0, T ). This completes the proof.

2.8.2 Well-definedness of parameter-to-state map

(S1) Pseudomonotone

We first recall, −f(t, ., θ) is called pseudomonotone iff −f(t, ., θ) is bounded
and

lim inf
k→∞

〈f(t, uk, θ), uk − u〉 ≥ 0

uk ⇀ u

}
⇒

〈f(t, u, θ), u− v〉 ≥ lim sup
k→∞

〈f(t, uk, θ), uk − v〉

∀v ∈ V.
(A.54)
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We argue this as follows. First, from the left hand side of (A.54) we refer that

lim inf
k→∞

〈f(t, uk, θ)− f(t, u, θ), uk − u〉 ≥ lim inf
k→∞

〈−f(t, u, θ), uk − u〉 = 0

lim inf
k→∞

〈∆(uk − u)− (Φ(uk)− Φ(u)), uk − u〉 ≥ 0

lim inf
k→∞

〈∆(uk − u), uk − u〉 ≥ lim inf
k→∞

〈Φ(uk)− Φ(u), uk − u〉 ≥ 0

lim inf
k→∞

− ‖∇(uk − u)‖2
L2(Ω) ≥ 0

lim sup
k→∞

‖∇(uk − u)‖2
L2(Ω) ≤ 0

lim
k→∞
‖∇(uk − u)‖2

L2(Ω) = 0

lim
k→∞
〈∆(uk − u), uk − u〉 = 0, (A.55)

where monotonicity of Φ is invoked in the above argument.
We then make an observation on the right hand side of (A.54)

lim sup
k→∞

〈f(t, uk, θ), uk − v〉

= lim sup
k→∞

{〈f(t, uk, θ), uk − u〉+ 〈f(t, uk, θ), u− v〉}

= lim sup
k→∞

{〈f(t, uk, θ)− f(t, u, θ), uk − u〉+ 〈f(t, u, θ), uk − u〉

+ 〈f(t, uk, θ), u− v〉}
= lim sup

k→∞
〈∆(uk − u)− (Φ(uk)− Φ(u)), uk − u〉

+ lim sup
k→∞

〈∆uk − Φ(uk) + θ, u− v〉

≤ lim sup
k→∞

〈∆uk − Φ(u) + θ, u− v〉 ,

which follows in order from (A.55), monotonicity of Φ, the fact that uk converges
weakly to u and weakly lower semicontinuity of 〈Φ(.), u− v〉.
Together with the last evaluation

lim sup
k→∞

〈∆uk, u− v〉 = lim sup
k→∞

〈uk,∆(u− v)〉

= 〈u,∆(u− v)〉
= 〈∆u, u− v〉 ,

it proves

lim sup
k→∞

〈f(t, uk, θ), uk − v〉 ≤ 〈∆u− Φ(u) + θ, u− v〉

= 〈f(t, u, θ), u− v〉

for any v ∈ V . This concludes the validity of (A.54).
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To accomplish the monotonicity, the boundedness of −f(t, ., θ) is needed. We
claim this by

‖ − f(t, v, θ)‖V ∗

= sup
‖∇w‖L2(Ω)≤1

∫
Ω

(−∆v + Φ(v)− θ)wdx

≤ cPF‖θ‖X + ‖v‖V + sup
‖∇w‖L2(Ω)≤1

(∫
Ω

wp̄dx

) 1
p̄
(∫

Ω

Φ(v)
p̄
p̄−1dx

) p̄−1
p̄

≤ cPF‖θ‖X + ‖v‖V + cH1→Lp̄

√
1 + c2

PF‖v‖
γ

L
γ

p̄
p̄−1 (Ω)

≤ cPF‖θ‖X + ‖v‖V + c1+γ
H1→Lp̄(1 + c2

PF )
1+γ

2 ‖v‖γV ∀v ∈ V,

provided that γ p̄
p̄−1
≤ p̄ or γ ≤ p̄− 1, which is indeed obtained by (2.50).

(S2) Semi-coercive

Since Φ is monotone,

〈−f(t, v, θ), v〉V ∗,V =

∫
Ω

(−∆v + Φ(v)− θ)vdx

≥ ‖∇v‖2
L2(Ω) −

∫
Ω

θvdx

≥ ‖v‖2
V − ‖θ‖L2(Ω)‖v‖L2(Ω)

≥ ‖v‖2
V − cPF‖θ‖X‖v‖V ,

which implies cθ0 = 1 > 0, cθ1 = cPF‖θ‖X ∈ L2(0, T ) and cθ2 = 0.

(S3) Uniqueness

By again, the monotonicity of Φ,

〈f(t, u, θ)− f(t, v, θ), u− v〉V ∗,V =

∫
Ω

(∆(u− v)− (Φ(u)− Φ(v))) (u− v)dx

≤
∫

Ω

∆(u− v)(u− v)dx

= −‖∇(u− v)‖2
L2(Ω)

≤ −1

c2
PF

‖u− v‖2
L2(Ω),

which implies ρθ = −1
c2PF
∈ L1(0, T ).

This property is used to prove uniqueness of S(θ) with given θ.
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2.8.3 Tangential cone condition

All-at-once setting

Since the observation is linear in our example, the condition (2.43) is fulfilled provided
that, for every u, ũ ∈ B2ρ(u0),

‖f(., ũ, θ̃)− f(., u, θ)− f ′u(., u, θ)(ũ− u)− f ′θ(., u, θ)(θ̃− θ)‖W ≤ ctc‖ũ− u‖Y (A.56)

or, for every t ∈ (0, T ),

‖Φ(ũ)− Φ(u)− Φ′(u)(ũ− u)‖V ∗ ≤ ctc‖ũ− u‖Y . (A.57)

Developing the left hand side (LHS) of (A.57) and assuming that Φ is differentiable
up to order two with |Φ′′(v)| ≤ c̃γ|v|γ−2, we have

LHS =

∥∥∥∥∫ 1

0

∫ 1

0

Φ′′(u+ σλ(ũ− u))(ũ− u)2dλdσ

∥∥∥∥
V ∗

≤ sup
0≤σ,λ≤1

C

(∫
Ω

(
Φ′′(u+ σλ(ũ− u))(ũ− u)2

) p̄
p̄−1 dx

) p̄−1
p̄

≤ C‖ũ− u‖L2(Ω) sup
0≤σ,λ≤1

(∫
Ω

(
|u+ σλ(ũ− u)|γ−2(ũ− u)

) 2p̄
p̄−2 dx

) p̄−2
2p̄

≤ C‖ũ− u‖L2(Ω)‖ũ− u‖V
(
‖ũγ−2‖

L
2p̄
p̄−4

+ ‖uγ−2‖
L

2p̄
p̄−4

)
≤ C‖ũ− u‖L2(Ω)‖ũ− u‖U (‖ũ‖U + ‖u‖U)

≤ ctc‖ũ− u‖Y , (A.58)

where the generic constant C may take different values whenever it appears. The tan-
gential cone coefficient ctc, which depends only on cH1→Lp̄ , cPF , γ and T , is sufficiently
small if u is sufficiently close to ũ and γ ≤ p̄

2
.

Reduced setting

We need to verify that, for all θ, θ̃ ∈ B2ρ̃(θ0),

‖S(θ̃)− S(θ)− v‖Y ≤ c̃tc‖S(θ̃)− S(θ)‖Y , (A.59)

where v solves (2.45). Letting ξ = θ̃ − θ then v = uξ solves the sensitivity equation
(2.33), and by denoting ũ := S(θ̃), u := S(θ), (A.59) becomes

‖ũ− u− uξ‖Y ≤ c̃tc‖ũ− u‖Y .
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2.8. Auxiliary results

Denoting ũ − u − uξ =: ṽ1 = ṽε=1, with ṽε as in (2.36), and using the fact that
ṽ1(0) = 0, we deduce

‖ṽ1‖L2(0,T ;L2(Ω)) ≤ C‖ṽ1‖W 1,2,2(0,T ;V,V ∗) ≤ CCθ‖r1‖L2(0,T )

≤ CCθctc‖ũ− u‖L2(0,T ;L2(Ω))

=: c̃tc‖ũ− u‖L2(0,T ;L2(Ω)),

where r1 = rε=1, and its L2(0, T )-norm is the left hand side of (A.56).

Remark 2.8.2. In three dimensions, γ = 5 is achievable with Y = L2(0, T ;V ) by
calculating in the same routine to (A.58) for Y = V ; however the realistic data space
is Y = L2(0, T ;L2(Ω)).
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Chapter 3

Tangential cone condition

The tangential condition was introduced in [49] (recalled in Chapter 1, Assumption
(1.8)) as a sufficient condition for convergence of the Landweber iteration for solving
ill-posed problems. This condition ensures nonlinearity of the forward operator fits
together with the data misfit. In this work, we present a series of time dependent
benchmark inverse problems for which we can verify this condition.

The content of this chapter is organized as follows: Section 3.1 gives an introduc-
tion to the tangential cone condition and the abstract function space setting for the
parabolic problems. Section 3.2 provides results for the all-at-once setting, that are
also made use of in the subsequent Section 3.3 for the reduced setting. The proofs of
the propositions in Section 3.2 and the notation can be found in auxiliary results.

3.1 Introduction

We consider the problem of recovering a parameter θ in the evolution equation

u̇(t) = f(t, θ, u(t)) t ∈ (0, T ) (3.1)

u(0) = u0, (3.2)

where for each t ∈ (0, T ) we consider u(t) as a function on a bounded C1,1 domain
Ω ⊂ Rd. In (3.1), u̇ denotes the first order time derivative of u and f is a nonlinear
function. We here focus on the setting of θ not being time dependent. Problems with
state equations of the form u̇(t) = f(t, θ(t), u(t)) could be treated analogously but this
would lead to different requirements on the underlying function spaces. These model
equations are equipped with additional data obtained from continuous observations
over time

y(t) = C(t, u(t)), (3.3)

with an observation operator C, which will be assumed to be linear and independent
of θ; in particular, in most of what follows C is the continuous embedding V ↪→ Y ,
with V and Y introduced below.
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3.1. Introduction

While formulating the requirements and results first of all in this general frame-
work, we will also apply it to a number of examples as follows.

Identification of a potential

We study the problem of identifying the space-dependent parameter c from observa-
tion of the state u in Ω× (0, T ) in

u̇−∆u+ cu = ϕ (t, x) ∈ (0, T )× Ω (3.4)

u|∂Ω = 0 t ∈ (0, T ) (3.5)

u(0) = u0 x ∈ Ω, (3.6)

where ϕ ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω) are known. Here, −∆ could be replaced
by any linear elliptic differential operator with smooth coefficients.
With this equation, known, among others, as diffusive Malthus equation [87], one can
model the evolution of a population u with diffusion and with exponential growth as
time progresses. The latter phenomenon is quantified by the growth rate c, which in
this particular case, depends only on the environment.

Identification of a diffusion coefficient

We further consider the problem of recovering the space-dependent parameter a from
measurements of u in Ω× (0, T ) governed by the diffusion equation

u̇−∇ ·
(
a∇u

)
= ϕ (t, x) ∈ (0, T )× Ω (3.7)

u|∂Ω = 0 t ∈ (0, T ) (3.8)

u(0) = u0 x ∈ Ω, (3.9)

where ϕ ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω) are known. This is, for instance, a simple
model of groundwater flow, whose temporal evolution is driven by the divergence of
the flux −a∇u and the source term ϕ. The coefficient a represents the diffusivity of
the sediment and u is the piezometric head [47].

Banks and Kunisch [7, Chapter I.2] discussed the more general model: u̇+∇·
(
−a∇u+

bu
)

+ cu describing the sediment formation in lakes and deep seas, in particular, the

mixture of organisms near the sediment-water interface.
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An inverse source problem with a quadratic first order non-
linearity

Here we are interested in the problem of identifying the space-dependent source term
θ from observation of the state u in Ω× (0, T )

u̇−∆u− |∇u|2 = θ (t, x) ∈ (0, T )× Ω (3.10)

u|∂Ω = 0 t ∈ (0, T ) (3.11)

u(0) = u0 x ∈ Ω . (3.12)

This quasilinear parabolic equation with a quadratic nonlinearity in ∇u arises, e.g.,
in stochastic optimal control theory [33, Chapter 3.8].

An inverse source problem with a cubic zero order nonlinear-
ity

The following nonlinear reaction-diffusion equation involves determining the space-
dependent source term θ from observation of the state u in Ω× (0, T ) in a semiliear
parabolic equation

u̇−∆u+ Φ(u) = ϕ− θ (t, x) ∈ (0, T )× Ω (3.13)

u|∂Ω = 0 t ∈ (0, T ) (3.14)

u(0) = u0 x ∈ Ω, (3.15)

where the possibly space and time dependent source term ϕ ∈ L2(0, T ;H−1(Ω)) and
the initial data u0 ∈ H1

0 (Ω) are known.
For applications of PDEs with cubic nonlinearity, we refer to Chapter 2, Section

2.1.

In part of the analysis we will also consider an additional gradient nonlinearity
Ψ(∇u) in the PDE, cf. (3.44) below.

Coming back to the general setting (3.1)–(3.3) we will make the following assump-
tions, where all the considered examples fit into. The operators defining the model
and observation equations above are supposed to map between the function spaces

f : (0, T )×X × V → W ∗ (3.16)

C : (0, T )× V → Y, (3.17)

where X , Y,W, V ⊆ Y are Banach spaces. More precisely, X is the parameter space,
Y the data space, W ∗ the space in which the equations is supposed to hold and V
the state space. The latter three are first of all the spaces for the respective values at
fixed time instances and will also be assigned a version for time-dependent functions,
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denoted by calligraphic letters. So X , Y , W∗ will denote the parameter, data and
equation spaces, respectively, and U or Ũ (to distinguish between the different versions
in the reduced and all-at-once setting below) the state space. The initial condition
u0 ∈ H, where H is a Banach space as well, will in most of what follows be supposed
to be independent of the coefficient θ here. Dependence of the initial data and also
of the observation operator on θ can be relevant in some applications but leads to
further technicalities, thus for clarity of exposition we shift consideration of these
dependencies to future work.

For fixed θ, we assume that the Caratheodory mappings f and C as defined above
induce Nemytskii operators (see Chapter 1, Definitions 1.3.1,1.3.2, and we will use
the same notation f and C) on the function space

U = L2(0, T ;V ) ∩H1(0, T ;W ∗) or Ũ = L∞(0, T ;V ) ∩H1(0, T ;W ∗) ,

cf. (3.34) for the all-at-once setting and (3.48) for the reduced setting respectively, in
which the state u will be contained, and map into the image spaceW∗ and observation
space Y , respectively, where

W∗ = L2(0, T ;W ∗), Y = L2(0, T ;Y ). (3.18)

Moreover, Ũ or U , respectively, will be assumed to continuously embed into C(0, T ;H)
in order to make sense out of (3.2).

We will consider formulation of the inverse problem, on the one hand, in a classical
way, as a nonlinear operator equation

F (θ) = y (3.19)

with a forward operator F mapping between Banach spaces X and Y , and alterna-
tively, on the other hand, as a system of model and observation equation

A(θ, u) = 0; (3.20)

C(u) = y. (3.21)

Here,

A : X × U → W∗ ×H, (θ, u) 7→ A(θ, u) = (u̇− f(θ, u), u(0)− u0)

C : U → Y
(3.22)

are the model and observation operators, so that with the parameter-to-state map
S : X → U defined by

A(θ, S(θ)) = (0, 0) (3.23)

and
F = C ◦ S, (3.24)
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(3.19) is equivalent to the all-at-once formulation (3.20), (3.21). Defining

F : X × U → W∗ ×H × Y

by
F(θ, u) = (A(θ, u), C(u)),

and setting Y = (0, 0, y), we can rewrite (3.20), (3.21) analogously to (3.19), as

F(θ, u) = Y . (3.25)

All-at-once approaches have been studied for PDE constrained optimization in, e.g.,
[79, 80, 86, 111, 94, 105, 107] and more recently, for ill-posed inverse problems in,
e.g., [18, 19, 44, 57, 59, 111], particularly for time dependent models in [58, 93]. The
fact that we are actually using different state spaces U , Ũ in these two settings is
on one hand due to the requirements arising from the need for well-definedness and
differentiability of the parameter-to-state map in the reduced setting. On the other
hand, while these constraints are not present in the all-at-once setting and a quite
general choice of the state space is possible there, whenever a Hilbert space setting
is required — e.g., for reasons of easier implementation — this does not only apply
to the parameter and data space but also to the state and equation spaces in the
all-at-once setting, whereas in a reduced setting these spaces are “hidden” inside the
forward operator.

Convergence proofs of iterative regularization methods for solving (3.19) (and like-
wise (3.25)), such as the Landweber iteration [49, 61] or the iteratively regularized
Gauss-Newton method [4, 61, 66], require structural assumptions on the nonlinear
forward operator F , such as the tangential cone condition [101] (or Chapter 1, As-
sumption (1.8))

‖F (θ)− F (θ̃)− F ′(θ)(θ − θ̃)‖Y ≤ ctc‖F (θ)− F (θ̃)‖Y ∀θ, θ̃ ∈ BXρ (θ0) . (3.26)

for some sufficiently small constant ctc. Here F ′(θ) does not necessarily need to be
the Fréchet or Gâteaux derivative of F , but it is just required to be some linear
operator that is uniformly bounded in a neighborhood of the initial guess θ0, i.e.,
F ′(θ) ∈ L(X ,Y) such that (Chapter 1, Assumption (1.9))

‖F ′(θ)‖L(X ,Y) ≤ CF ∀θ ∈ BXρ (θ0) (3.27)

for some CF > 0.
The conditions (3.26) and (3.27) enforce certain local convexity conditions of the

residual θ 7→ ‖F (θ)−y‖2, cf.[68]. In this sense, the conditions are structurally similar
to conditions used in the analysis of Tikhonov regularization, such as those in [23].
The tangential cone condition eventually guarantees convergence to the solution of
(3.19) by a gradient descent method for the residual (and also for the Tikhonov
functional). Therefore, it ensures that the iterates are not trapped in local minima.
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The key contribution of this chapter is to establish (3.26), (3.27) in the reduced
setting (3.19) as well as its counterpart in the all-at-once setting (3.25) for the above
examples (as well as somewhat more general classes of examples) of parameter iden-
tification in initial boundary value problems for parabolic PDEs represented by (3.1),
(3.2). In the reduced setting, this also involves the proof of well-definedness and
differentiability of the parameter-to-state map S, whereas in the all-at-once setting,
this is not needed, thus leaving more freedom in the choice of function spaces. Corre-
spondingly, the examples classes considered in Section 3.2 will be more general than
those in Section 3.3.

Some non-trivial static benchmark problems, where the tangential condition has
been verified, can be found e.g., in [29, 55, 85].

We mention in passing that in view of existing convergence analysis for such it-
erative regularization methods for (3.19) or (3.25) in rather general Banach spaces,
we will formulate our results in general Lebesgue and Sobolev spaces. Still, we par-
ticularly strive for a full Hilbert space setting as preimage and image spaces X and
Y , since derivation and implementation of adjoints is much easier then, and also the
use of general Banach spaces often introduces additional nonlinearity or nonsmooth-
ness. Moreover, we point out that while in the reduced setting, we will focus on
examples of parabolic problems in order to employ a common framework for estab-
lishing well-definedness of the parameter-to-state map, the all-at-once version of the
tangential condition trivially carries over to the wave equation (or also fractional sub-
or superdiffusion) context by just replacing the first time derivative by a second (or
fractional) one.

3.2 All-at-once setting

The tangential cone condition and boundedness of the derivative in the all-at-once
setting F(θ, u) = Y (3.25) with

F : X × U → W∗ ×H × Y , F(θ, u) =

 u̇− f(θ, u)
u(0)− u0

C(u)

 (3.28)

and the norms

‖(θ, u)‖X×U :=
(
‖θ‖2

X + ‖u‖2
X
)1/2

,

‖(w, h, y)‖W∗×H×Y :=
(
‖w‖2

W∗ + ‖h‖2
H + ‖y‖2

Y
)1/2
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on the product spaces read as

‖f(θ, u)− f(θ̃, ũ)− f ′θ(θ, u)(θ − θ̃)− f ′u(θ, u)(u− ũ)‖W∗

≤ cAAOtcc

(
‖ ˙̃u− u̇+ f(θ, u)− f(θ̃, ũ)‖2

W∗ + ‖u(0)− ũ(0)‖2
H + ‖C(u− ũ)‖2

Y

)1/2

,

∀(θ, u), (θ̃, ũ) ∈ BX×Uρ (θ0, u0) ,
(3.29)

and(
‖v̇ − f ′θ(θ, u)χ− f ′u(θ, u)v‖2

W∗ + ‖v(0)‖2
H + ‖Cv‖2

Y

)1/2

≤ CF
(
‖χ‖2

X + ‖v‖2
U
)1/2

,

∀(θ, u) ∈ BX×Uρ (θ0, u0) , χ ∈ X , v ∈ U
(3.30)

where we have assumed linearity of C.
Since the right hand side terms ‖u(0)− ũ(0)‖H and ‖f(θ, u)−f(θ̃, ũ)‖W∗ in (3.29)

are usually too weak to help for verification of this condition, we will just skip it in
the following and consider

‖f(θ, u)− f(θ̃, ũ)− f ′θ(θ, u)(θ − θ̃)− f ′u(θ, u)(u− ũ)‖W∗
≤ cAAOtcc ‖C(u− ũ)‖Y , ∀(θ, u), (θ̃, ũ) ∈ BX×Uρ (θ0, u0),

(3.31)

which under these conditions is obviously sufficient for (3.29). Moreover, in order for
the remaining right hand side term to be sufficiently strong in order to be able to
dominate the left hand side, we will need to have full observations in the sense that

R(C(t)) = Y . (3.32)

In the next section, it will be shown that under certain stability conditions on the
generalized ODE in (3.1), together with (3.32), the version (3.31) of the all-at-once
tangential cone condition is sufficient for its reduced counterpart (3.26).

Likewise, we will further consider the sufficient condition for boundedness of the
derivative

‖f ′θ(θ, u)‖L(X ,W∗) ≤ CF,1 , ‖f ′u(θ, u)‖L(U ,W∗) ≤ CF,2 ,

‖∂t‖L(U ,W∗) ≤ CF,0 , ‖C‖L(U ,Y) ≤ CF,3

∀(θ, u) ∈ BX×Uρ (θ0, u0) .

(3.33)

The function space setting considered here will be

U = {u ∈ L2(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)} ↪→ C(0, T ;H) ,

W = L2(0, T ;W ) , Y = L2(0, T ;Y ) ,
(3.34)

so that the third bound in (3.33) is automatically satisfied with CF,0 = 1. We focus
on Lebesgue and Sobolev spaces1

V = W s,m(Ω) , W = W t,n(Ω) , Y = Lq(Ω) , (3.35)

1In place of V , its intersection with H1
0 (Ω) might be considered in order to take into account

homogeneous Dirichlet boundary conditions. For the estimates themselves, this does not change
anything.
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3.2. All-at-once setting

with s, t ∈ [0,∞), m,n ∈ [1,∞], q ∈ [1, q̂], and q̂ the maximal index such that V
continuously embeds into Lq̂(Ω), i.e. such that

s− d

m
� −d

q̂
, (3.36)

so that with C defined by the embedding operator U → Y , the last bound in (3.33)
is automatically satisfied 2. For the notation �, we refer to right below.

The parameter space X may be very general at the beginning of Section 3.2.1 and
in Section 3.2.2. We will only specify it in the particular examples of Section 3.2.1.

Notation

• For a, b ∈ R, the notation a � b means: a ≥ b with strict inequality if b = 0.

• For normed spaces A,B, the notation A ↪→ B means: A is continuously em-
bedded in B.

• For a normed space A, an element a ∈ A and ρ > 0, we denote by BAρ (a) the
closed ball of radius ρ around a in A.

• For vectors ~a,~b ∈ Rn, ~a ·~b denotes the Euclidean inner product. Likewise, ∇ ·~v
denotes the divergence of the vector field ~v.

• C denotes a generic constant that may take different values whenever it appears.

• For p ∈ [1,∞], we denote by p∗ = p
p−1

the dual index.

We will now verify the conditions (3.31), (3.33) for some (classes of) examples.

3.2.1 Bilinear problems

Many coefficient identification problems in linear PDEs, such as the identification of a
potential or of a diffusion coefficient, as mentioned above, can be treated in a general
bilinear context.

Consider an evolution driven by a bilinear operator, i.e.,

f(θ, u)(t) = L(t)u(t) + ((Bθ)(t))u(t)− g(t) , (3.37)

2One could possibly think of also extending to more general Lebesgue spaces instead of L2 with
respect to time. As long as the summability index is the same for W and Y this would not change
anything in Section 3.2.1. As soon as the summability indices differ, one has to think of continuity of
the embedding U = Lr1(0, T ;V ) ∩W 1,r2(0, T ;W ∗) ↪→ Y = Lr3(0, T ;Y ) as a whole, possibly taking
advantage of some interpolation between Lr1(0, T ;V ) and W 1,r2(0, T ;W ∗). This could become very
technical but might pay off in specific applications.
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where for almost all t ∈ (0, T ), and all θ ∈ X , v ∈ V we have L(t), (Bθ)(t) ∈
L(V,W ∗), θ 7→ (Bθ)(t)v ∈ L(X ,W ∗), and g(t) ∈ W ∗, with

sup
t∈[0,T ]

‖L(t)‖L(V,W ∗) ≤ CL , sup
t∈[0,T ]

‖(Bθ)(t)‖L(V,W ∗) ≤ CB‖θ‖X (3.38)

so that the first and second bounds in (3.33) are satisfied, due to the estimates

‖f ′θ(θ, u)χ‖W∗ =

(∫ T

0

‖((Bχ)(t))u(t)‖2
W ∗

)1/2

≤ CB‖χ‖X
(∫ T

0

‖u(t)‖2
V

)1/2

‖f ′u(θ, u)v‖W∗ =

(∫ T

0

‖L(t)v(t) + ((Bθ)(t))v(t)‖2
W ∗

)1/2

≤ (CL + CB‖θ‖X )

(∫ T

0

‖v(t)‖2
V

)1/2

.

For the left hand side in (3.31), we have(
f(θ, u)− f(θ̃, ũ)− f ′u(θ, u)(u− ũ)− f ′θ(θ, u)(θ− θ̃)

)
(t) = −((B(θ− θ̃)(t))(u− ũ)(t) ,

and (3.31) is satisfied if and only if (3.32) and

‖(B(θ − θ̃))(u− ũ)‖W∗ ≤ cAAOtcc ‖C(u− ũ)‖Y , ∀(θ, u), (θ̃, ũ) ∈ BX×Uρ (θ0, u0)

hold. A sufficient condition for this to hold is

‖(B(θ − θ̃))(t)(v − ṽ)‖W ∗ ≤ cAAOtcc ‖C(t)(v − ṽ)‖Y ,
∀(θ, v), (θ̃, ṽ) ∈ BX×Vρ (θ0, u0(t)) , t ∈ (0, T ).

(3.39)

The proofs of the propositions for the following examples can be found in the
Section 3.4, the auxiliary results. Likewise, the conditions on the summability and
smoothness indices s, t, p, q,m, n of the used spaces, (B.107), (B.109), (B.112), (B.113),
(B.115), (B.119), (B.120), (B.121), (B.122), (B.123) as appearing in the formulation
of the propositions, are derived there.

Identification of a potential c

Problem (3.4)-(3.6) can be cast into the form (3.37) by setting θ = c and

L(t) = ∆ , (Bc)(t)v = −cv, (3.40)

(i.e., (Bc)(t) is a multiplication operator with the multiplier c). We set

X = Lp(Ω) . (3.41)
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3.2. All-at-once setting

Proposition 3.2.1. For U , W, Y according to (3.34) with (3.35) (B.107), −∆ ∈
L(V,W ∗), the operator F defined by (3.28), (3.37), (3.40), C = id : U → Y satisfies
the tangential cone condition (3.31) with a uniformly bounded operator F′(c), i.e., the
family of linear operators (F′(c))c∈M is uniformly bounded in the operator norm, for
c in a bounded subset M of X .

Remark 3.2.2. A full Hilbert space setting can be achieved by setting p = q = m =
n = 2 and choosing s ≥ 0, t > d

2
.

Identification of a diffusion coefficient a

The a problem (3.7)-(3.9) is defined by setting

L(t) ≡ 0 , (Ba)(t)v = ∇ · (a∇v) (3.42)

so that

‖(B(â)(t))v̂‖W ∗

= sup
w∈W , ‖w‖W≤1

∫
Ω

â∇v̂ · ∇w dx = sup
w∈W , ‖w‖W≤1

∫
Ω

v̂
(
∇â · ∇w + â∆w

)
dx

≤ ‖v̂‖Lq
(
‖∇â‖Lp sup

w∈W , ‖w‖W≤1

‖∇w‖
L

p∗q
q−p∗

+ ‖â‖Lr sup
w∈W , ‖w‖W≤1

‖∆w‖
L

r∗q
q−r∗

)
.

Note that since Y = Lq(Ω) we had to move all derivatives away from v̂ by means of
integration by parts, which forces us to use spaces of differentiability order at least
two in W and at least one in X . Thus, we here consider

X = W 1,p(Ω) . (3.43)

Proposition 3.2.3. For U , W, Y according to (3.34) with (3.35), (B.109), the oper-
ator F defined by (3.28), (3.37), (3.42), C = id : U → Y satisfies the tangential cone
condition (3.31) with a uniformly bounded operator F′(a).

Remark 3.2.4. A full Hilbert space setting p = q = m = n = 2 requires to choose

s ≥ 0 and t


≥ 2 if d = 1

> 2 if d = 2

> 1 + d
2

if d ≥ 3

.

3.2.2 Nonlinear inverse source problems

Consider nonlinear evolutions that are linear with respect to the parameter θ, i.e.,

f(θ, u)(t) = L(t)u(t) + Φ(u(t)) + Ψ(∇u(t))−B(t)θ, (3.44)
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3.3. Reduced setting

where for almost all t ∈ (0, T ), L(t) ∈ L(V,W ∗), B(t) ∈ L(X ,W ∗) and Φ,Ψ ∈ C2(R)
satisfy the Hölder continuity and growth conditions

|Φ′(λ)− Φ′(λ̃)| ≤ CΦ′′(1 + |λ|γ + |λ̃|γ)|λ̃− λ|κ (3.45)

for all λ̃, λ ∈ R

|Ψ′(λ)−Ψ′(λ̃)| ≤ CΨ′′(1 + |λ|γ̂ + |λ̃|γ̂)|λ̃− λ|κ̂ (3.46)

for all λ̃, λ ∈ Rd, where γ, γ̂, κ, κ̂ ≥ 0. We will show that the exponents γ, γ̂ may ac-
tually be arbitrary as long as the smoothness s, t of V and W is chosen appropriately.

Proposition 3.2.5. The operator F defined by (3.28), (3.37), (3.42), C = id : U → Y
in either of the four following cases

(a) (3.45) and Ψ affinely linear and U , W, Y as in (3.34) with (3.35), (B.112),
(B.113);

(b) (3.45), (3.46) and U , W, Y as in (3.34) with (3.35), (B.112), (B.113), (B.115),
(B.119);

(c) (3.45) and Ψ affinely linear, W, Y as in (3.34), U as in (B.120) with (3.35),
(3.36), (B.122);

(d) (3.45), (3.46), W, Y as in (3.34), U as in (B.121) with (3.35), (3.36), (B.122),
(B.123);

satisfies the tangential cone condition (3.31) with a uniformly bounded operator F′(θ).

Remark 3.2.6. A Hilbert space setting p = q = m = n = 2 is, therefore, possible for
arbitrary γ, κ, γ̂, provided t and s are chosen sufficiently large, cf. (B.112), (B.113)
in case CΨ′′ = 0, and additionally (B.115), (B.119) otherwise.

3.3 Reduced setting

In this section, we formulate the system (3.1)-(3.3) by one operator mapping from the
parameter space to the observation space. To this end, we introduce the parameter-
to-state map

S : D ⊆ X → Ũ , where u = S(θ) solves (3.1)− (3.2)

then, with D(F ) = D the forward operator for the reduced setting can be expressed
as

F : D(F ) ⊆ X → Y , θ 7→ C(S(θ)), (3.47)

67



3.3. Reduced setting

and the inverse problem of recovering θ from y can be written as

F (θ) = y.

Here, differently from the state space U in the all-at-once setting, cf., (3.34), we use
a non Hilbert state space

Ũ = {u ∈ L∞(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)} (3.48)

as this appears to be more appropriate for applying parabolic theory.

We now establish a framework for verifying the tangential cone condition as well
as boundedness of the derivative in this general setting.

For this purpose, we make the following assumptions.

Assumption 3.3.1.

(R1) Local Lipschitz continuity of f

∀M ≥ 0,∃L(M) ≥ 0,∀a.e.t ∈ (0, T ) :

‖f(t, θ1, v1)− f(t, θ2, v2)‖W ∗ ≤ L(M)(‖v1 − v2‖V + ‖θ1 − θ2‖X ),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤M, i = 1, 2.

(R2) Well-definedness of the parameter-to-state map

S : D(F ) ⊆ X → Ũ

with Ũ as in (3.48) as well as its boundedness in the sense that there exists
CS > 0 such that for all θ ∈ BXρ (θ0) the estimate

‖S(θ)‖L∞(0,T ;V ) ≤ CS

holds.

(R3) Continuous dependence on data of the solution to the linearized problem with
zero initial data, i.e., there exists a constant Clin such that for all θ ∈ BXρ (θ0),
b ∈ W∗, and any z solving

ż(t) = f ′u(θ, S(θ))(t)z(t) + b(t) t ∈ (0, T ) (3.49)

z(0) = 0, (3.50)

the estimate

‖z‖Y ≤ Clin‖b‖W∗ (3.51)

holds.

68



3.3. Reduced setting

(R4) Tangential cone condition of the all-at-once setting (3.31)

∃ρ > 0,∀(θ, u), (θ̃, ũ) ∈ BX ,Uρ (θ0, u0) :

‖f(θ̃, ũ)− f(θ, u)− f ′u(θ, u)(ũ− u)− f ′θ(θ, u)(θ̃ − θ)‖W∗ ≤ cAAOtcc ‖Cũ− Cu‖Y .

The main result of this section is as follows.

Theorem 3.3.2. Suppose Assumption 3.3.1 holds and C is the embedding V ↪→ Y .
Then there exists a constant ρ > 0 such that for all θ, θ̃ ∈ BXρ (θ0) ⊂ D(F ),

i) F ′(θ) is uniformly bounded

‖F ′(θ)‖L(X ,Y) ≤M (3.52)

for some constant M , and

ii) the tangential cone condition is satisfied

‖F (θ̃)− F (θ)− F ′(θ)(θ̃ − θ)‖Y ≤ cRedtcc ‖F (θ̃)− F (θ)‖Y (3.53)

for some small constant cRedtcc .

This is a consequence of the following two propositions, in which we combine the
all-at-once versions of the tangential cone and boundedness conditons, respectively,
with the assumed stability of S and its linearization.

Proposition 3.3.3. Given C is the embedding V ↪→ Y and u0 is independent of θ,
the tangential cone condition in the reduced setting (3.53) follows from the one in the
all-at-once setting (R4) if the linearized forward operator is boundedly invertible as
in (R3) and S is well defined according to (R2).

Proof. We begin by observing that the functions

v := S(θ)− S(θ̃)

w := S ′(θ)h

z := S(θ)− S(θ̃)− S ′(θ)(θ − θ̃)

solve the corresponding equations

v̇(t) = f(θ, S(θ))(t)− f(θ̃, S(θ̃))(t) t ∈ (0, T ), v(0) = 0 (3.54)

ẇ(t) = f ′u(θ, S(θ))w(t) + f ′θ(θ, S(θ))h(t) t ∈ (0, T ), w(0) = 0 (3.55)

ż(t) = f ′u(θ, S(θ))z(t)

+
(
− f ′u(θ, S(θ))v(t)− f ′θ(θ, S(θ))(θ − θ̃)(t)

+ f(θ, S(θ))(t)− f(θ̃, S(θ̃))(t)
)

=: f ′u(θ, S(θ))z(t) + r(t) t ∈ (0, T ), z(0) = 0. (3.56)
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3.3. Reduced setting

Hence, we end up with the following estimate, using the assumed bounded invertibility
of the linearized problem (3.56) and the fact that C is the embedding V ↪→ Y ,

‖F (θ)− F (θ̃)− F ′(θ)(θ − θ̃)‖Y = ‖S(θ)− S(θ̃)− S ′(θ)(θ − θ̃)‖Y
≤ Clin‖r‖W∗
≤ Clinc

AAO
tcc ‖F (θ)− F (θ̃)‖Y , (3.57)

where ‖r‖W∗ and cAAOtcc are respectively the left hand side and the constant in the
all-at-once tangential cone estimate, applied to u = S(θ) and ũ = S(θ̃). �

Remark 3.3.4. The inverse problem (3.19) with (3.22), (3.23), (3.24) can be written
as a composition of the linear observation operator C and the nonlinear parameter-
to-state map S. Such problems have been considered and analyzed in [52], but as
opposed to that the inversion of our observation operator is ill-posed so the theory of
[52] does not apply here.

Note that in (3.57), cAAOtcc must be sufficiently small such that the tangential
cone constant in the reduced setting cRedtcc := Clinc

AAO
tcc fulfills the smallness condition

required in convergence proofs as well. Moreover, we wish to emphasize that for the
proof of Proposition 3.3.3, the constant Clin does not need to be uniform but could
as well depend on θ. Also the uniform boundedness condition on S from (R2) is not
yet needed here.

Under further assumptions on the defining functions f , we also get existence and
uniform boundedness of the linear operator F ′(θ) as follows.

Proposition 3.3.5. Let S be well defined and bounded according to (R2), and let
(R1), (R3) be satisfied.
Then F ′(θ) is Gâteaux differentiable and its derivative given by

F ′(θ) : X → Y , where F ′(θ)h = w solves (3.55) (3.58)

is uniformly bounded in BXρ (θ0).

Proof. For differentiablity of F relying on conditions (R1)-(R3), we refer to [93,
Proposition 4.2]. Moreover, again using (R1)-(R3), for any θ ∈ BXρ (θ0) we get

‖F ′(θ)h‖Y = ‖S ′(θ)h‖Y ≤ Clin‖f ′θ(θ, S(θ))h‖L2(0,T ;W ∗)

≤ Clin
√
T‖f ′θ(θ, S(θ))‖X→W ∗‖h‖X

≤ Clin
√
TL(M)‖h‖X

for M = CS + ‖θ0‖X + ρ, where L(M) is the Lipschitz constant in (R1) and Clin is
as in (R3). Above, we employ boundedness of S by CS as assumed in (R2).
This proves uniform boundedness of F ′(θ).

We now discuss Assumption 3.3.1 in more detail.
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3.3. Reduced setting

Remark 3.3.6. For the case V = W .
We rely on the setting of a Gelfand triple V ⊆ H ⊆ V ∗ for the general framework
of nonlinear evolution equations. By this, (R2) can be fulfilled under the conditions
suggested in Roub́ıček [100, Theorems 8.27, 8.31] (or Chapter 1, Assumption 1.3.5):

For every θ ∈ D(F ),

(S1) for almost t ∈ (0, T ), the mapping −f(t, θ, ·) is pseudomonotone, i.e., −f(t, θ, ·)
is bounded and

lim inf
k→∞

〈f(t, θ, uk), uk − u〉 ≥ 0

uk ⇀ u

}
⇒

∀v ∈ V : 〈f(t, θ, u), u− v〉
≥ lim sup

k→∞
〈f(t, θ, uk), uk − v〉 .

(S2) −f(·, θ, ·) is semi-coercive, i.e.,

∀v ∈ V, ∀a.e.t ∈ (0, T ) : 〈−f(t, θ, v), v〉V ∗,V ≥ Cθ
0 |v|2V−Cθ

1(t)|v|V−Cθ
2(t)‖v‖2

H

for some Cθ
0 > 0, Cθ

1 ∈ L2(0, T ), Cθ
2 ∈ L1(0, T ) and some seminorm |.|V satisfy-

ing
∀v ∈ V : ‖v‖V ≤ c|.|(|v|V + ‖v‖H) for some c|.| > 0.

(S3) f satisfies the growth condition

∃γθ ∈ L2(0, T ), ~θ : R→ R increasing : ‖f(t, θ, v)‖V ∗ ≤ ~θ(‖v‖H)(γθ(t) + ‖v‖V )

and a condition for uniqueness of the solution, e.g.,

∀u, v ∈ V, ∀a.e.t ∈ (0, T ) : 〈f(t, θ, u)− f(t, θ, v), u− v〉V ∗,V ≤ ρθ(t)‖u− v‖2
H

for some ρθ ∈ L1(0, T )

and further conditions for S(θ) ∈ L∞(0, T ;V ), e.g, [100, Theorem 8.16, 8.18].
In case of linear f(t, θ, ·), S.1.-S.3. boil down to boundedness and semi-coercivity

S.2. of −f(·, θ, ·) according to [100, Theorem 8.27, 8.31, 8.28]. Alternatively, one
can observe that linear boundedness implies the growth condition in S.3. with γθ =
0, ~θ = ‖f(·, θ)‖, and S.2. implies the rest of S.3. with ρθ = Cθ

2 if Cθ
1 ≤ 0 as Cθ

0 >
0. The pseudomonotonicity assumption S.1., which guarantees week convergence of
f(·, θ, uk) to f(·, θ, u) when the approximation solution sequence uk converges weakly
to u, can be replaced by weak continuity of f(·, θ, ·) which holds in this linear bounded
case.

Treating the linearized problem (3.49)-(3.50) as an independent problem, we can
impose on f ′u(θ, S(θ)) the boundedness and semi-coercivity properties, and (R3) there-
fore follows from [100, Theorems 8.27, 8.31].
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Remark 3.3.7. For general spaces V,W.
Some examples even in case V 6= W allow using the results quoted in Remark 3.3.6
with an appropriately chosen Gelfand triple, see, e.g., Section 3.3.1 below.

When dealing with linear and quasilinear parabolic problems, detailed discussions
for unique exsistence of the solution are exposed in the books, e.g., of Evans [32],
Ladyzhenskaya et al. [81], Pao [95]. If constructing the solution to the initial value
problem through the semigroup approach, one can find several results, e.g., from
Evans [32], Pazy [96] combined with the elliptic results from Ladyzhenskaya et al.
[82].

Addressing (R3), a possible strategy is using the following dual argument.
Suppose W is reflexive and z is a solution to the problem (3.49)-(3.50), then by the
Hahn-Banach Theorem

‖z‖L2(0,T ;V ) = sup
‖φ‖L2(0,T ;V ∗)≤1

∫ T

0

〈z, φ〉V,V ∗dt

= sup
‖φ‖L2(0,T ;V ∗)≤1

∫ T

0

〈z,−ṗ− f ′u(θ, S(θ))∗p〉V,V ∗dt

= sup
‖φ‖L2(0,T ;V ∗)≤1

∫ T

0

〈ż − f ′u(θ, S(θ))z, p〉W ∗,Wdt

= sup
‖φ‖L2(0,T ;V ∗)≤1

∫ T

0

〈b, p〉W ∗,Wdt

≤ sup
‖φ‖L2(0,T ;V ∗)≤1

‖b‖L2(0,T ;W ∗)‖p‖L2(0,T ;W ),

where

f ′u(θ, S(θ))(t) : V → W ∗, f ′u(θ, S(θ))(t)∗ : W ∗∗ = W → V ∗,

and p solves the adjoint equation

−ṗ(t) = f ′u(θ, S(θ))∗p(t) + φ(t) t ∈ (0, T ) (3.59)

p(T ) = 0. (3.60)

If in the adjoint problem, the estimate

‖p‖L2(0,T ;W ) ≤ C̃lin‖φ‖L2(0,T ;V ∗) (3.61)

holds for some uniform constant C̃lin, then we obtain

‖z‖Y ≤ ‖C‖V→Y ‖z‖L2(0,T ;V ) ≤ ‖C‖V→Y C̃lin‖b‖W∗ . (3.62)

Thus (R3) is fulfilled.

So we can replace (R3) by
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(R3-dual) Continuous dependence on data of the solution to the adjoint linearized prob-
lem associated with zero final condition, i.e., there exists a constant C̃lin such
that for all θ ∈ BXρ (θ0), φ ∈ L2(0, T, V ∗), and any p solving (3.59)-(3.60),
the estimate (3.61) holds.

In the following sections, we examine the specific examples introduced in the
introduction in the relevant function space setting

X = Lp(Ω) or X = W 1,p(Ω) p ∈ [1,∞] (3.63)

Y = Lq(Ω) q ∈ [1, q̄] (3.64)

Ũ = {u ∈ L∞(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)}, (3.65)

where V,W will be chosen subject to the particular example, where q̂ is the maximum
power allowing V ↪→ Lq̂(Ω), and q̄ ≤ q̂ is the maximum power such that (3.51) in
(R3) holds.

3.3.1 Identification of a potential

We investigate this problem in the function spaces

D(F ) = X = Lp(Ω), Y = Lq(Ω), V = L2(Ω), W = H2(Ω) ∩H1
0 (Ω).

Now we verify the conditions proposed in Assumption 3.3.1.

(R1) Local Lipschitz continuity of f :

Applying Hölder’s inequality, we have

‖f(c̃, ũ)− f(c, u)‖W ∗ = ‖c̃ũ− cu‖W ∗ = sup
‖w‖W≤1

∫
Ω

(c̃ũ− cu)wdx

≤ sup
‖w‖W≤1

‖w‖WCW→Lp̄
(∫

Ω

|c̃(ũ− u) + (c̃− c)u|p̄∗dx
) 1

p̄∗

≤ CW→Lp̄(‖c̃‖Lp‖ũ− u‖Lr + ‖c̃− c‖Lp‖u‖Lr)
≤ L(M)(‖ũ− u‖V + ‖c̃− c‖X )

with the dual index p̄∗ = p̄
p̄−1

and r = p̄p
p̄p−p−p̄ , L(M) = CW→Lp̄CV→Lr(‖u‖V +

‖ũ‖V +‖c‖X +‖c̃‖X )+1. Above, we invoke the continuous embbedings through
the constants CW→Lp̄ , CV→Lr , where p̄ denotes the maximum power allowing
W ⊆ Lp̄. Thus, we are supposing

p ≥ max

{
2p̄

p̄− 2
,

p̄

p̄− 1

}
=

2p̄

p̄− 2
and 2− d

2
� −d

p̄
(3.66)

in order to guarantee V = L2(Ω) ↪→ Lr(Ω) and W = H2(Ω) ∩H1
0 (Ω) ↪→ Lp̄(Ω)

(R2) Well-definedness and boundedness of the parameter-to-state map:
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Verifying boundedness and semi-coercivity conditions with the Gelfand triple
H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) (while remaining with V = L2(Ω) in the defi-
nition of the space Ũ) shows that, for u0 ∈ L2(Ω), ϕ ∈ L2(0, T ;H−1(Ω)) the
initial value problem (3.4)-(3.6) admits a unique solution u ∈ W (0, T ) :=
{u ∈ L2(0, T ;H1

0 (Ω)) : u̇ ∈ L2(0, T ;H−1(Ω)} ⊂ {u ∈ L∞(0, T ;L2(Ω)) : u̇ ∈
L2(0, T ;H−2(Ω))} = Ũ .

Indeed, semi-coercivity is deduced as follows. For

p ≥ 2, d ≤ 3, (3.67)

we see∫
Ω

cu2dx ≤ ‖c‖L2(Ω)

(∫
Ω

u4dx

) 1
2

≤ ‖c‖L2(Ω)

(∫
Ω

u2dx

) 1
4
(∫

Ω

u6dx

) 1
4

≤ ‖c‖L2(Ω‖u‖
1
2

L2(Ω)‖u‖
3
2

L6(Ω)

≤ CH1
0→L6‖c‖L2(Ω‖u‖

1
2

L2(Ω)‖u‖
3
2

H1
0 (Ω)

(3.68)

≤ CH1
0→L6‖c‖L2(Ω)

(
1

4ε
‖u‖L2(Ω)‖u‖H1

0 (Ω) + ε‖u‖2
H1

0 (Ω)

)
≤ CH1

0→L6‖c‖L2(Ω)

(
1

16εε1
‖u‖2

L2(Ω) +
ε1
4ε
‖u‖2

H1
0 (Ω) + ε‖u‖2

H1
0 (Ω)

)
,

which yields semi-coercivity

〈−f(t, u, c), u〉H−1,H1
0

=

∫
Ω

(−∆u+ cu)udx

≥
(

1− CH1
0→L6‖c‖L2(Ω)

( ε1
4ε

+ ε
))
‖u‖2

H1
0 (Ω) −

CH1
0→L6

16εε1
‖c‖L2(Ω)‖u‖2

L2(Ω),

=: Cc
0‖u‖2

H1
0 (Ω) + Cc

1‖u‖2
L2(Ω),

where the constant Cc
0 is positive if choosing ε1 < ε and ε, ε1 sufficiently small.

Boundedness of f can be concluded from

‖ − f(t, c, u)‖H−1(Ω) = sup
‖v‖

H1
0
≤1

∫
Ω

(−∆u+ cu)vdx

≤ sup
‖v‖

H1
0
≤1

(
‖u‖H1(Ω)‖v‖H1(Ω) + CH1

0→L6CH1
0→L3‖c‖L2(Ω)‖u‖H1(Ω)‖v‖H1(Ω)

)
≤ C‖c‖L2(Ω)‖u‖H1(Ω).

Moreover, by the triangle inequality: ‖c‖L2(Ω) ≤ ‖c0‖L2(Ω) + ‖c − c0‖L2(Ω) ≤
‖c0‖L2(Ω) + ρ, semi-coercivity of f is satisfied with the constants C0, C1 now
depending only on the point c0. This hence gives us uniform boundedness of S
on the ball BXρ (c0).
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(R3) Continuous dependence on data of the solution to the linearized problem with
zero initial data:

We use the duality argument mentioned in Remark 3.3.7. To do so, we need to
prove existence of the adjoint state p ∈ L2(0, T ;W ) and the associated estimate
(R3-dual).

Initially, by the transformation v = e−λtp and putting τ = T − t, the adjoint
problem (3.59)-(3.60) is equivalent to

v̇(t)−∆v(t) + (λ+ c)v(t) = e−λtφ(t) t ∈ (0, T ) (3.69)

v(0) = 0. (3.70)

We note that this problem with c = ĉ ∈ L∞(Ω), λ + ĉ > −CPF , the constant
in the Poincaré-Friedrichs inequality, φ ∈ L2(0, T ;L2(Ω)), ∂Ω ∈ C2, admits a
unique solution in L2(0, T ;H2(Ω)∩H1

0 (Ω)) [32, Section 7.1.3, Theorem 5] 3 and
the operator d

dt
− ∆ + (λ + ĉ) : L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) → L2(0, T ;L2(Ω)) ×
H1(Ω), p 7→ (φ, p0) is boundedly invertible.

Suppose u solves (3.69)-(3.70), by the identity

u̇−∆u+ (λ+ c)u = e−λtφ ⇔ u̇−∆u+ (λ+ ĉ)u = e−λtφ+ (ĉ− c)u

u =

(
d

dt
−∆ + (λ+ ĉ)

)−1 [
e−λtφ+ (ĉ− c)u

]
=: Tu,

we observe that T : L2(0, T ;H2(Ω) ∩ H1
0 (Ω)) → L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) is a
contraction

‖T (u− v)‖L2(0,T ;H2∩H1
0 )

≤

∥∥∥∥∥
(
d

dt
−∆ + (λ+ ĉ)

)−1
∥∥∥∥∥
L2(0,T ;L2(Ω))→L2(0,T ;H2∩H1

0 )

‖(ĉ− c)(u− v)‖L2(0,T ;L2(Ω))

≤ C ĉ‖ĉ− c‖Lp‖u− v‖
L2(0,T ;L

2p
p−2 (Ω))

≤ Cε‖u− v‖L2(0,T ;H2∩H1
0 ), (3.71)

where Cε < 1 if we assume ĉ = c0 ∈ L∞(Ω) and ρ is sufficiently small. In some
case, smallness of ρ can be omitted (discussed at the end of (R3)). Estimate
(3.71) holds provided

W = H2(Ω) ∩H1
0 (Ω) ↪→ L

2p
p−2 (Ω) i.e., p ≥ 2p̄

p̄− 2
. (3.72)

3where smoothness of the domain can be slightly relaxed to C1,1 as assumed here, see, e.g., [40]
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3.3. Reduced setting

Thus, for φ ∈ L2(0, T ;L2(Ω)) there exists a unique solution v ∈ L2(0, T ;H2(Ω)∩
H1

0 (Ω)) to the problem (3.69)-(3.70), which implies p = eλtv ∈ L2(0, T ;H2(Ω)∩
H1

0 (Ω)) is the solution to the adjoint problem (3.59)-(3.60).

Observing that p solves

ṗ(t)−∆p(t) + ĉp(t) = (ĉ− c)p(t) + φ(t) t ∈ (0, T )

p(0) = 0,

employing again [32, Section 7.1.3 , Theorem 5] and smallness of ρ yields

‖p‖L2(0,T ;W ) ≤ C(‖(ĉ− c)p‖L2(0,T ;L2(Ω)) + ‖φ‖L2(0,T ;L2(Ω)))

≤ C(2ρ‖p‖L2(0,T ;H2∩H1
0 ) + ‖φ‖L2(0,T ;L2(Ω))) (3.73)

≤ C‖φ‖L2(0,T ;V ∗)

with some constant C independent of θ ∈ BXρ (c0). This yields (R3-dual) with
q̄ = 2.

If d = 1, p ≥ 2 or d = 2, p > 2 or d = 3, p ≥ 12
5

, the smallness condition on ρ
can be omitted. Indeed, for d = 3, p ≥ 12

5
testing the adjoint equation by −∆p

yields ∫
Ω

−ṗ∆p+ (∆p)2dx =

∫
Ω

(cp− φ)∆pdx

1

2

d

dt
‖∇p‖2

L2(Ω) + ‖∆p‖2
L2(Ω) ≤

1

2
‖∆p‖2

L2(Ω) + ‖φ‖2
L2(Ω) + ‖cp‖2

L2(Ω) (3.74)

1

2

d

dt
‖∇p‖2

L2(Ω) +
1

2
‖∆p‖2

L2(Ω) ≤ ‖φ‖2
L2(Ω) + ‖c‖2

Lp(Ω)

(∫
Ω

p
p
p−2

+ p
p−2dx

) p−2
p

≤ ‖φ‖2
L2(Ω) + ‖c‖2

Lp(Ω)‖p‖L6(Ω)‖p‖L∞(Ω)|Ω|
5p−12

6p

≤ ‖φ‖2
L2(Ω) + (‖c0‖2

X + ρ2)|Ω|
5p−12

6p

(C2
H1

0→L6

4ε
‖∇p‖2

L2(Ω)

+ εC2
H2∩H1

0→L∞

(
‖∆p‖2

L2(Ω) + ‖∇p‖2
L2(Ω)

))
.

where in the last estimate we apply Young’s inequality. Choosing ε sufficiently
small allows us to subtract the term involving ‖∆p‖2

L2(Ω) on the right hand side
from the one on the left hand side and get a positive coefficient in front. Here,
the choice of ε depends only on the constants c0, ρ,Ω, CH2∩H1

0→L∞ .
It is also obvious that, if d < 3, in the second line of the above calculation, we
can directly estimate as follow

d = 1, p ≥ 2 : ‖cp‖2
L2(Ω) ≤ ‖c‖2

L2(Ω)‖p‖2
L∞(Ω) ≤ C2

H1
0→L∞

‖c‖2
L2(Ω)‖∇p‖2

L2(Ω)

d = 2, p > 2 : ‖cp‖2
L2(Ω) ≤ ‖c‖2

Lp(Ω)‖p‖2

L
2p
p−2 (Ω)
≤ C2

H1
0→L

2p
p−2
‖c‖2

Lp(Ω)‖∇p‖2
L2(Ω).

(3.75)
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3.3. Reduced setting

Employing firstly Gronwall-Bellman inequality with initial data ∇p(0) = 0,
then taking the integral on [0, T ], we obtain

‖p‖L∞(0,T ;H1(Ω)) + ‖∆p‖L2(0,T ;L2(Ω)) ≤ C‖φ‖L2(0,T ;L2(Ω)) (3.76)

with the constant C depending only on c0, ρ. This estimate is valid for all c ∈
BXρ (c0). Since the adjoint problem has the same form as the original problem,
applying (3.76) in (3.71) we can relax ĉ, by means of without fixing ĉ = c0 but
choosing it sufficiently close to c since L∞(Ω) = Lp(Ω), |Ω| <∞ to have C ĉε ≤
Cε arbitrarily small with constant C as in (3.76). Therefore the constraint on
smallness of ρ can be omitted in these cases.

(R4) All-at-once tangential cone condition:

According to (3.36), (B.107) with s = 0, t = 2, m = n = 2, this follows if

p

p− 1
≤ q ≤ q̂ ≥ 2 and 2− d

2
� −d(p− 1)

p
+
d

q
.

Corollary 3.3.8. Assume u0 ∈ L2(Ω), ϕ ∈ L2(0, T ;H−1(Ω)), and

D(F ) = X = Lp(Ω), Y = Lq(Ω), V = L2(Ω), W = H2(Ω) ∩H1
0 (Ω)

p ≥ 2, q ∈
[
q, 2
]
, d ≤ 3 (3.77)

with q = max

{
p
p−1

, min
q∈[1,∞]

{
2− d

2
� −d(pq−p−q)

pq

}}
.

Then F defined by F (c) = u solving (3.4)-(3.6) satisfies the tangential cone con-
dition (3.53) with a uniformly bounded operator F ′(c) defined by (3.58), see also [49]
for the static case.

Remark 3.3.9. This allows a full Hilbert space setting of X and Y by choosing
p = q = 2 as long as d ≤ 3.

3.3.2 Identification of a diffusion coefficient

We pose this problem in the function spaces

X = W 1,p(Ω), Y = Lq(Ω), V = L2(Ω), W = H2(Ω) ∩H1
0 (Ω) p > d

(3.78)

so that X ↪→ L∞(Ω) and define the domain of F by

D(F ) = {a ∈ X : a ≥ a > 0 a.e. on Ω}. (3.79)

Now we examine the conditions (R1)-(R3).
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3.3. Reduced setting

(R1) Local Lipschitz continuity of f :

‖ − ∇·
(
ã∇ũ

)
+∇ ·

(
a∇u

)
‖W ∗

= sup
‖w‖W≤1

∫
Ω

(ã∇ũ− a∇u)∇wdx

= sup
‖w‖W≤1

∫
Ω

(a∇(ũ− u) + (ã− a)∇ũ)∇wdx

= sup
‖w‖W≤1

∫
Ω

(ũ− u)(∇a∇w + a∆w) + ũ(∇(ã− a)∇w + (ã− a)∆w)dx

≤ sup
‖w‖W≤1

∫
Ω

(‖ũ− u‖L2‖∇a‖Lp + ‖ũ‖L2‖∇(a− a)‖Lp)‖∇w‖
L

2p
p−2

+ (‖ũ− u‖L2‖a‖L∞ + ‖ũ‖L2‖a− a‖L∞)‖∆w‖L2dx

≤ L(M)(‖ũ− u‖V + ‖ã− a‖X )

with M =
(
C
W→W 1,

2p
p−2

+ CX→L∞
)

(‖u‖V + ‖ũ‖V + ‖c‖X + ‖c̃‖X ), subject to

the constraint

W = H2(Ω) ∩H1
0 (Ω) ↪→ L

2p
p−2 (Ω) i.e., p ≥ 2p̄

p̄− 2
. (3.80)

(R2) Well-definedness and boundedness of the parameter-to-state map:

A straightforward verification of boundedness and coercivity gives unique exis-
tence of the solution u ∈ W (0, T ) ⊂ Ũ for a ∈ D(F ), ϕ ∈ L2(0, T ;H−1(Ω)), u0 ∈
L2(Ω).

Similarly to the c-problem, the fact that the semi-coercivity property of f holds

〈−f(t, a, u), u〉H−1,H1
0

=

∫
Ω

−∇ · (a∇u)udx ≥ a‖u‖H1
0 (Ω)

with the coefficient a being independent of a shows uniform boundedness of S.

(R3) Continuous dependence on data of the solution to the linearized problem with
zero initial data:

We employ the result in [32, Section 7.1.3, Theorem 5] with noting that the
actual smoothness condition needed for the coefficient is that, a is differentiable
a.e on Ω and a ∈ W 1,∞(Ω) rather than a ∈ C1(Ω). From the observation
a ∈ D(F ) = W 1,p(Ω), p > d is differentiable a.e and the fact that W 1,∞(Ω) is
dense in W 1,p(Ω), it enables us to imitate the contraction scenario and the dual
argument as in the c-problem.
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3.3. Reduced setting

Taking u, v solving (3.7)-(3.9), we see

T : L2(0, T ;H2(Ω) ∩H1
0 (Ω))→ L2(0, T ;H2(Ω) ∩H1

0 (Ω))

T =

(
d

dt
−∇ ·

(
â∇
))−1

∇ ·
(

(a− â)∇
)

is a contraction

‖T (u− v)‖L2(0,T ;H2∩H1
0 )

≤

∥∥∥∥∥
(
d

dt
−∇ ·

(
â∇
))−1

∥∥∥∥∥
L2(0,T ;L2(Ω))→L2(0,T ;H2∩H1

0 )

‖∇ ·
(

(a− â)∇(u− v)
)
‖L2(0,T ;L2(Ω))

≤ C â‖â− a‖X‖u− v‖L2(0,T ;H2∩H1
0 )

≤ Cε‖u− v‖L2(0,T ;H2∩H1
0 ), (3.81)

where Cε < 1 if we assume â = a0 ∈ W 1,∞(Ω) and ρ is sufficiently small.
If the index p is large enough, smallness of ρ can be omitted (discussed at
the end of (R3)). Therefore, given φ ∈ L2(0, T ;L2(Ω)), the adjoint state p ∈
L2(0, T ;H2 ∩H1

0 ) uniquely exists.

We also have the estimate

‖p‖L2(0,T ;W ) ≤ C‖∇ ·
(

(a− â)∇p
)
‖L2(0,T ;L2(Ω)) + ‖φ‖L2(0,T ;L2(Ω)))

≤ C(2ρ‖p‖L2(0,T ;H2∩H1
0 ) + ‖φ‖L2(0,T ;L2(Ω)))

≤ C‖φ‖L2(0,T ;V ∗),

which proves continuous dependence of p on φ ∈ L2(0, T ;V ∗), consequently, con-
tinuous dependence of the solution z ∈ L2(0, T ;V ) on the data b ∈ L2(0, T ;W ∗)
in (3.49)-(3.50). Here smallness of ρ is assumed.
If p ≥ 4, smallness of ρ is not required. To verify this, we test the adjoint
equation by −∆p∫

Ω

−ṗ∆p+ a(∆p)2dx =

∫
Ω

(−∇a∇p− φ)∆pdx

1

2

d

dt
‖∇p‖2

L2(Ω) + a‖∆p‖2
L2(Ω) ≤

a

2
‖∆p‖2

L2(Ω) +
1

a
‖φ‖2

L2(Ω) +
1

a
‖∇a∇p‖2

L2(Ω)

1

2

d

dt
‖∇p‖2

L2(Ω) +
a

2
‖∆p‖2

L2(Ω) ≤
1

a
‖φ‖2

L2(Ω) +
1

a
‖∇a∇p‖2

L2(Ω), (3.82)

where the last term on the right hand side can be estimated as in (3.68) of
the c-problem with (∇a)2 in place of c, ∇p in place of u and the assumption
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3.3. Reduced setting

X ↪→ W 1,4(Ω)

1

a
‖∇a∇p‖2

L2(Ω)

≤
CH1

0→L6

a
‖∇a‖2

L4(Ω)

(
1

16εε1
‖∇p‖2

L2(Ω) +
( ε1

4ε
+ ε
)
‖∇p‖2

H1
0 (Ω)

)
≤

2CH1
0→L6

a
(‖a0‖2

X + ρ2)

(
1

16εε1
‖∇p‖2

L2(Ω) +
( ε1

4ε
+ ε
)
‖∆p‖2

L2(Ω)

)
. (3.83)

Choosing ε1 < ε, and ε1, ε sufficiently small such that we can move the term
involving ‖∆p‖2

L2(Ω) from the right hand side to the left hand side of (3.82).

Note that, this choice of ε1, ε is just subject to a0 and ρ.
Proceeding similarly to the c-problem, meaning applying Gronwall-Bellman in-
equality then taking the integral on [0, T ], we obtain

‖p‖L∞(0,T ;H1(Ω)) + ‖∆p‖L2(0,T ;L2(Ω)) ≤ C‖φ‖2
L2(0,T ;L2(Ω)) (3.84)

with a constant C depending only on a0, ρ.

Observing the similarity in the form of the adjoint problem and the original
problem, invoking the uniform bound (3.84) w.r.t parameter a and the fact
W 1,∞(Ω) = W 1,p(Ω) one can eliminate the need of smallness of ρ.

(R4) All-at-once tangential cone condition:

According to (3.36), (B.109) with s = 0, t = 2, m = n = 2, we require

p

p− 1
≤ q ≤ q̂ ≥ 2 and 1− d

2
� −d(p− 1)

p
+
d

q
and − d

2
≥ −d+

d

p
− 1 .

Corollary 3.3.10. Assume u0 ∈ L2(Ω), ϕ ∈ L2(0, T ;H−1(Ω)), and

X = W 1,p(Ω), Y = Lq(Ω), V = L2(Ω), W = H2(Ω) ∩H1
0 (Ω)

p ≥ 2, q ∈
[
q, 2
]
, d < p,

(3.85)

where q = max

{
p
p−1

, min
q∈[1,∞]

{
1− d

2
� −d(p−1)

p
+ d

q
∧ −d

2
≥ −d+ d

p
− 1
}}

.

Then F defined by F (a) = u solving (3.7)-(3.9) satisfies the tangential cone con-
dition (3.53) with a uniformly bounded operator F ′(a) defined by (3.58).

Remark 3.3.11. This yields the possibility of a full Hilbert space setting p = q = 2
of X and Y in case d = 1, see also [47] and, for the static case, [49].
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3.3.3 Inverse source problem with quadratic nonlinearity

By the transformation U := eu, the initial-value problem (3.10)–(3.12) can be con-
verted into an inverse potential problem as considered in Section 3.3.1

U̇ −∆U + θU = 0 (t, x) ∈ (0, T )× Ω (3.86)

U|∂Ω = 1 t ∈ (0, T ) (3.87)

U(0) = U0 x ∈ Ω (3.88)

with U0 = eu0 . Thus, in principle it is covered by the analysis from the previous
section, as long as additionally positivity of U can be established. So the purpose of
this section is to investigate whether we can allow different function spaces X, Y by
directly considering (3.10)–(3.12) instead of (3.86)–(3.88).

We show that f verifies the hypothesis proposed for the tangential cone condition
in the reduced setting on the function spaces

X = Lp(Ω), Y = Lq(Ω), V = W = H2(Ω) ∩H1
0 (Ω). (3.89)

(R1) Local Lipschitz continuity of f :

‖ − |∇ũ|2 + |∇u|2 − θ̃ + θ‖W ∗ = sup
‖w‖W≤1

∫
Ω

(
∇(u− ũ) · ∇(u+ ũ)− θ̃ + θ

)
wdx

≤ CW→Lp̄
(
‖(∇(u− ũ) · ∇(u+ ũ)‖

L
p̄
p̄−1

+ ‖θ − θ̃‖
L

p̄
p̄−1

)
≤ CW→Lp̄

(
‖∇(u− ũ)‖

L
2p̄
p̄−1
‖∇(u+ ũ)‖

L
2p̄
p̄−1

+ ‖θ − θ̃‖
L

p̄
p̄−1

)
≤ CW→Lp̄

(
C2

V→W 1,
2p̄
p̄−1
‖u− ũ‖V ‖u+ ũ‖V + C

X→L
p̄
p̄−1
‖θ − θ̃‖X

)
.

We can chose L(M) = CW→Lp̄

(
C2

V→W 1,
2p̄
p̄−1

(‖u‖V + ‖ũ‖V ) + C
X→L

p̄
p̄−1

)
+ 1,

under the conditions

V = H2(Ω) ∩H1
0 (Ω) ↪→ W 1, 2p̄

p̄−1 (Ω) i.e., 1− d

2
≥ −d(p̄− 1)

2p̄

X = Lp(Ω) ↪→ L
p̄
p̄−1 (Ω) i.e., p ≥ p̄

p̄− 1
.

(3.90)

(R2) Well-definedness and boundedness of parameter-to-state map:

We argue unique existence of the solution to (3.10)–(3.12) via the transformed
problem (3.86)–(3.88) for U = eu.

To begin, by a similar argument to (3.71) with the elliptic operator A = −∆+
θ, θ ∈ Lp(Ω) in place of the parabolic operator, we show that the corresponding
elliptic problem admits a unique solution in H2(Ω) ∩ H1

0 (Ω) if the index p
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satisfies (3.72). Employing next the semigroup theory in [32, Section 7.4.3,
Theorem 5] or [96, Chapter 7, Corollary 2.6] with assuming that U0 ∈ D(A) =
H2(Ω) ∩ H1

0 (Ω) implies unique existence of a solution U ∈ C1(0, T ;H2(Ω)) to
(3.86)–(3.88).

Let U, Û respectively solve (3.86)–(3.88) associated with the coefficients θ ∈
X , θ̂ ∈ L∞(Ω) with the same boundary and initial data, then v = U − Û solves

v̇(t)−∆v(t) + θ̂v(t) = (θ̂ − θ)U(t) t ∈ (0, T )

v(0) = 0.

Owing to the regularity from [32, Section 7.1.3, Theorem 5] and estimating
similarly to (3.71), we obtain

‖U − Û‖L∞(0,T ;H2(Ω)) ≤ C θ̂‖(θ̂ − θ)U‖H1(0,T ;L2(Ω))

≤ C‖θ̂ − θ‖X‖U‖H1(0,T ;H2(Ω)) (3.91)

with positive Û since θ̂ ∈ L∞(Ω) and the constant C depending only on θ0, ρ.
Here we assume θ̂ = θ0 ∈ L∞(Ω) and ρ is sufficiently small such that the right
hand side is sufficiently small. Then U ∈ L∞(0, T ;H2(Ω)) ⊆ L∞((0, T ) × Ω)
is close to Û and therefore positive as well. This assertion is valid if 0 < U0 =
eu0 ∈ H2(Ω) ∩H1

0 (Ω), 0 < U |δΩ, which is chosen as U |δΩ = 1 in this case (such
that log(U |δΩ) = 0) and

H2(Ω) ↪→ L
2p
p−2 (Ω) i.e., p ≥ 2p̄

p̄− 2

V = H2(Ω) ↪→ L∞(Ω) i.e., d ≤ 3.

(3.92)

This leads to unique existence of the solution u := log(U) to the problem
(3.10)–(3.12), moreover 0 < c ≤ U ∈ C1(0, T ;H2(Ω)) allows u = log(U) ∈
C1(0, T ;H2(Ω) ∩H1

0 (Ω)).
If d = 1, p ≥ 2, no assumption on smallness of ρ is required since

‖U − Û‖L∞(0,T ;H1(Ω)) ≤ Cθ‖(θ̂ − θ)Û‖L2(0,T ;L2(Ω)) ≤ C‖θ̂ − θ‖X‖Û‖L2(0,T ;H2(Ω))

(3.93)

due to the estimates (3.74)–(3.76) in Section 3.3.1. Here the constant C depends
only on θ0, ρ as claimed in (3.76). This and the fact L∞(Ω) = Lp(Ω) allow us to
chose θ̂ ∈ L∞(Ω) being sufficiently close to θ ∈ Lp(Ω) to make the right hand
side of (3.93) arbitrarily small without the need of smallness of ρ.
We have observed that, with the same positive boundary and initial data, the
solution U = U(θ) to (3.86)–(3.88) is bounded away from zero for all θ ∈ BXρ (θ0).
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Besides, S : θ 7→ U is a bounded operator as proven in (R2) of Section 3.3.1.

Consequently, u = log(U) with ∆u = − |∇U |
2

U2 + ∆U
U

is uniformly bounded in
L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) for all θ ∈ BXρ (θ0), thus S : θ 7→ u is a bounded
operator on BXρ (θ0).

Moreover, we can derive a uniform bound for U in H1(0, T ;H2(Ω)) with respect
to θ. From

(U̇ − ˙̂
U)−∆(U − Û) + (θ − θ̂)(U − Û) = −θ̂(U − Û)− (θ − θ̂)Û ,

by taking the time derivative of both sides then test them with −∆(U̇ − ˙̂
U) we

have

1

2

d

dt
‖∇(U̇ − ˙̂

U)‖2
L2(Ω) + ‖∆(U̇ − ˙̂

U)‖2
L2(Ω)

≤ CH2↪→L∞‖θ − θ̂‖L2(Ω)‖∆(U̇ − ˙̂
U)‖2

L2(Ω)

+ ‖θ̂‖L∞(Ω)‖U̇ − ˙̂
U‖L2(Ω)‖∆(U̇ − ˙̂

U)‖L2(Ω)

+ CH2↪→L∞‖θ − θ̂‖L2(Ω)‖∆
˙̂
U‖L2(Ω)‖∆(U̇ − ˙̂

U)‖L2(Ω))

1

2

d

dt
‖∇(U̇ − ˙̂

U)‖2
L2(Ω) + (1− ρCH2↪→L∞ − ε)‖∆(U̇ − ˙̂

U)‖2
L2(Ω)

≤ 1

2ε

(
‖θ̂‖2

L∞(Ω)‖U̇ −
˙̂
U‖2

L2(Ω) + C2
H2↪→L∞ρ

2‖∆ ˙̂
U‖2

L2(Ω)

)
,

where ‖∆ ˙̂
U‖L2(Ω) is attained by estimating with the same technique for (3.86)–

(3.88) with the coefficient θ̂ ∈ L∞(Ω). Since ε is arbitrarily small, if ρ is
sufficiently small and the following condition holds

X = Lp(Ω) ↪→ L2(Ω) i.e., p ≥ 2, (3.94)

applying Gronwall’s inequality then integrating on [0, T ] yields

‖U − Û‖H1(0,T ;H2(Ω)) ≤ C‖θ̂ − θ‖X‖Û‖H1(0,T ;H2(Ω)) (3.95)

for fixed Û = S(θ̂) = S(θ0). So, S(BXρ (θ0)) is bounded in H1(0, T ;H2(Ω)) and
its diameter can be controlled by ρ. In case d = 1, smallness of ρ can be omitted
if one uses the estimate (3.93).

(R3) Continuity of the inverse of the linearized model:

Now we consider the linearized problem

ż(t)−∆z(t) + 2∇u(t) · ∇z(t) = r(t) t ∈ (0, T ) (3.96)

z(0) = 0, (3.97)
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whose adjoint problem after transforming t = T − τ is

ṗ(t)−∆p(t)− 2∇ · (∇u(t)p(t)) = φ(t) t ∈ (0, T ) (3.98)

p(0) = 0. (3.99)

Since u ∈ C1(0, T ;H2(Ω) ∩ H1
0 (Ω)) as proven in (R2), this equation with the

coefficients m := −2∇u ∈ C1(0, T ;H1(Ω)), n := −2∆u ∈ C1(0, T ;L2(Ω)) is
feasible to attain the estimate (R3) by the contraction argument.

Indeed, let us take p solving (3.98)–(3.99), then

ṗ−∆p+ m̂ · ∇p+ n̂p = φ+ (m̂−m) · ∇p+ (n̂− n)p

p =

(
d

dt
−∆ + m̂ · ∇+ n̂

)−1

[φ+ (m̂−m) · ∇p+ (n̂− n)p]

=: Tp

with some m̂ ∈ L∞((0, T )×Ω) and some n̂ ∈ L∞((0, T )×Ω) approximating m
and n. Then for d ≤ 3, T : L2(0, T ;H2(Ω)∩H1

0 (Ω))→ L2(0, T ;H2(Ω)∩H1
0 (Ω))

is a contraction

‖T (p− q)‖L2(0,T ;H2∩H1
0 )

≤

∥∥∥∥∥
(
d

dt
−∆ + m̂ · ∇+ n̂

)−1
∥∥∥∥∥
L2(0,T ;L2(Ω))→L2(0,T ;H2∩H1

0 )

.
(
‖(m̂−m) · ∇(p− q)‖L2(0,T ;L2(Ω)) + ‖(n̂− n)(p− q)‖L2(0,T ;L2(Ω))

)
≤ C θ̂

(
‖m̂−m‖L∞(0,T ;H1(Ω))‖∇(p− q)‖L2(0,T ;H1(Ω))

+ ‖n̂− n‖L∞(0,T ;L2(Ω))‖p− q‖L2(0,T ;L∞(Ω))

)
≤ Cε‖p− q‖L2(0,T ;H2∩H1

0 ), (3.100)

where H1
0 (Ω) ↪→ L6(Ω), H2(Ω) ∩H1

0 (Ω) ↪→ L∞(Ω) for d ≤ 3. Above, we apply

from [32, Section 7.1.3 , Theorem 5] the continuity of
(
d
dt
−∆ + m̂ · ∇+ n̂

)−1

with noting that, although the theorem is stated for time-independent coeffi-
cients, the proof reveals it is still applicable for m̂ = m̂(t, x), n̂ = n̂(t, x) being
bounded in time and space.
The above constant C θ̂, which depends on m̂ ∈ ∇·S(BXρ (θ0))∩L∞(0, T ;L∞(Ω)),
n̂ ∈ ∆S(BXρ (θ0)) ∩ L∞(0, T ;L∞(Ω)) can be bounded by some constant C de-
pending only on S(θ0) and the diameter of S(BXρ (θ0)) similarly to Sections

3.3.1 and 3.3.2 if choosing θ̂ = θ0. In order to make Cε less than one, we
require ‖m̂ − m‖L∞(0,T ;H1(Ω)) and ‖n̂ − n‖L∞(0,T ;L2(Ω)) to be sufficiently small.

Those conditions turn out to be uniform boundedness of ‖Û − U‖L∞(0,T ;H2(Ω))

(or the diameter of S(BXρ (θ0)), which can be seen as smallness of ρ as in
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3.3. Reduced setting

(3.95) since H1(0, T ) ↪→ L∞(0, T ). From that, existence of the dual state
p ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) for given φ ∈ L2(0, T ;L2(Ω)) is shown.

Then (R3-dual) follows without adding further constraints on p

‖p‖L2(0,T ;H2(Ω))

≤ C(‖(m̂−m) · ∇p‖L2(0,T ;L2(Ω)) + ‖(n̂− n)p‖L2(0,T ;L2(Ω)) + ‖φ‖L2(0,T ;L2(Ω)))

≤ C‖φ‖L2(0,T ;L2(Ω))

with constant C depending only on some fixed m̂, n̂ and the assumption on
smallness of ρ. Here with the L2-norm on the right hand side, the maximum q
is limited by q̄ = 2.

Observing that the problem (3.98)–(3.99) has the form of the a-problem written
in (3.82), with a = 1,∇a = −2∇u(t) ∈ L6(Ω) and the additional term in the
last line of the right hand side, namely,

1

a
‖np‖2

L2(Ω) = ‖∆up‖2
L2(Ω) ≤ ‖∆u‖2

L2(Ω)‖p‖2
L∞(Ω)

≤ C2
H1

0→L∞
‖∆u‖2

L2(Ω)‖∇p‖2
L2(Ω) (3.101)

if the dimension d = 1.
The solution u = S(θ) also lies in some ball in C1(0, T ;H2(Ω) ∩H1

0 (Ω)) for all
θ ∈ BXρ (θ0), as in (R2) we have shown boundedness of the operator S.
It allows us to evaluate analogously to (3.82)–(3.83) with taking into account
the additional term (3.101) to eventually get

‖∆p‖L2(0,T ;L2(Ω)) ≤ C‖φ‖2
L2(0,T ;L2(Ω))

with the constant C depending only on θ0, ρ. Hence, if d = 1, ρ is not required
to be small.

(R4) All-at-once tangential cone condition:

According to (3.36), (B.123) with s = t = 2, m = n = 2, γ̂ = 0, ρ = 2 this
follows if

2− d

2
� 1− d

q∗
+
d

R
and

1 ≤ R

q∗
and q ≤ q̂ and 2− d

2
� max

{
−d
q̂
, 1− d

R

}
,

where the latter conditions come from the requirements V = H2(Ω)∩H1
0 (Ω) ↪→

W 1,R(Ω).
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Corollary 3.3.12. Assume u0 ∈ V and

D(F ) = X = Lp(Ω), Y = Lq(Ω), V = W = H2(Ω) ∩H1
0 (Ω)

p ≥ 2, q ∈
[
q, 2
]
, d ≤ 3

(3.102)

with q = min
q

{
2− d

2
� 1− d+ d

q
+ d

p̌
∧ q ≥ 1 + 1

p̌−1

}
.

Then F defined by F (θ) = u solving (3.10)-(3.12) satisfies the tangential cone
condition (3.53) with a uniformly bounded operator F ′(θ) defined by (3.58).

Remark 3.3.13. To achieve a Hilbert space setting for X and Y , one can choose
p = q = 2 if d ≤ 3, see also [93].

3.3.4 Inverse source problem with cubic nonlinearity

We investigate this problem in the function spaces

X = Lp(Ω), Y = Lq(Ω), V = W = H1
0 (Ω).

In the following we examine the conditions required for deriving the tangential
cone condition and boundedness of the derivative of the forward operator.

(R1) Local Lipschitz continuity of f :

‖ũ3 − u3 + θ̃ − θ‖W ∗ = sup
‖w‖W≤1

∫
Ω

(ũ− u)(ũ2 + ũu+ u2)w + (θ̃ − θ)wdx

≤ CW→Lp̄
(
‖(ũ− u)(ũ2 + ũu+ u2)‖

L
p̄
p̄−1

+ ‖θ̃ − θ‖
L

p̄
p̄−1

)
≤ CW→Lp̄

(
2‖ũ− u‖Lp̄(‖ũ‖2

L
2p̄
p̄−2

+ ‖u‖2

L
2p̄
p̄−2

) + ‖θ̃ − θ‖
L

p̄
p̄−1

)
≤ CW→Lp̄

(
2CV→Lp̄C

2

V→L
2p̄
p̄−2
‖ũ− u‖V (‖ũ‖2

V + ‖u‖2
V ) + ‖θ̃ − θ‖XC

X→L
p̄
p̄−1

)
.

We chose L(M) = CW→Lp̄

(
2CV→Lp̄C

2

V→L
2p̄
p̄−2

(‖ũ‖2
V + ‖u‖2

V ) + C
X→L

p̄
p̄−1

)
+ 1,

subject to the conditions

V = W = H1
0 (Ω) ↪→ Lp̄(Ω) i.e., 1− d

2
� −d

p̄

V = H1
0 (Ω) ↪→ L

2p̄
p̄−2 (Ω) i.e., d ≤ 4

X = Lp(Ω) ↪→ L
p̄
p̄−1 (Ω) i.e., p ≥ p̄

p̄− 1
.

(3.103)

(R2) Well-definedness and boundedness of the parameter-to-state map:
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Verifying the conditions S.1.-S.3. with the Gelfand triple H1
0 (Ω) ↪→ L2(Ω) ↪→

H−1(Ω) shows that the problem (3.13)-(3.15) admits a unique solution in the
space W (0, T ). Subsequently, [100, Theorem 8.16] strengthens the solution to
belong to L∞(0, T ;V ). To validate this regularity result, the following addi-
tional assumptions are made

X = Lp(Ω) ↪→ L2(Ω) i.e., p ≥ 2, (3.104)

the initial data u0 ∈ V and the known source term ϕ ∈ L2(0, T ;L2(Ω)).

From [93, Proposition 4.2, Section 6.1], we have

‖S(θ)‖L∞(0,T ;V ) ≤ N

(
‖θ + ϕ‖L2(0,T ;L2(Ω) +

√∫
Ω

1

2
|∇u0|2 +

1

4
u4

0dx

)

≤ N

(
√
T (‖θ0‖L2(Ω) + ρ) + ‖ϕ‖L2(0,T ;L2(Ω) +

√∫
Ω

1

2
|∇u0|2 +

1

4
u4

0dx

)

for some N depending only on cθ0 = c0 = 1
2
. This thus implies uniform bound-

edness of S on BXρ (θ0).

(R3) Continuous dependence on data of the solution to the linearized problem with
zero initial data:

For this purpose, semi-coercivity of the linearized forward operator is obvious

〈−f ′u(t, θ, v), v〉V ∗,V =

∫
Ω

(−∆v + 3u2v)vdx

≥ ‖∇v‖2
L2(Ω) = ‖v‖2

V .

(R4) All-at-once tangential cone condition:

According to (3.36), (B.122), with s = t = 1, m = n = 2, γ = κ = 1, r = q̂ = p̄
this follows if

2 ≤ p̄

q∗
and 1− d

2
� − d

q∗
+

2d

p̄
and q ≤ p̄ and 1− d

2
� −d

p̄
,

where the latter condition comes from the requirement V = H1
0 (Ω) ↪→ Lp̄(Ω).

Corollary 3.3.14. Assume u0 ∈ H1
0 (Ω), ϕ ∈ L2(0, T ;L2(Ω)), and

D(F ) = X = Lp(Ω), Y = Lq(Ω), V = W = H1
0 (Ω)

p ≥ 2, q ∈
[
q, q̄
]
, d ≤ 4,

(3.105)
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where q = min
q

{
1− d

2
� −d+ d

q
+ 2d

p̄
∧ q ≥ 1 + 2

p̄−2

}
with

d = 1 and q̄ =∞, d = 2 and q̄ <∞, d ≥ 3 and q̄ =
2d

d− 2
. (3.106)

Then F defined by F (θ) = u solving (3.13)-(3.15) satisfies the tangential cone
condition (3.53) with a uniformly bounded operator F ′(θ) defined by (3.58).

Remark 3.3.15. Here X and Y can be chosen as Hilbert spaces with p = q = 2 and
d ≤ 3.

Conclusion and outlook

The key contribution of this chapter is establishing two main ingredients for the
iterative regularization methods: the tangential cone condition and locally uniform
boundedness of the derivative of the forward operator F . We establish these structural
assumptions on the nonlinear operator F for some class of parabolic model problems
in the reduced setting as well as its counterpart in the all-at-once setting.

The following questions are considered to be open problems:
In this study, one crucial assumption enabling justification of the tangential cone

condition is the full observation. Instead of this, when considering measurement of u
only on the boundary or a part of Ω (which means C is the trace or the restriction), one
might need to investigate alternative nonlinearity conditions, e.g., the adjoint range
invariance (which is sufficient for the tangential cone condition) or range invariance
[62, Chapter 4.3] to ensure convergence of the iterative methods.

It is well-known for regularization theory that convergence rates can be obtained
under an additional smoothness property of the true solution, known as the “source
condition” [31]: x† − x0 = φ(F ′(x†)∗F ′(x†))v for some v ∈ N (F ′(x†))⊥ and some
index function φ, i.e., φ : [0,∞)→ [0,∞) is continunous increasing and φ(0) = 0.
A recent concept of source condition named “variational source condition” [54, 53, 34]
has been introduced in the form

x ∈ D(F ) :
β

2
‖x− x†‖2

X ≤
1

2
‖x‖2

X −
1

2
‖x†‖2

X + Φ
(
‖F (x)− F (x†)‖2

Y
)

with some β ∈ (0, 1] and concave index function Φ. Such a variational souce condition
does not only yield the classical source condition but also incorporates the nonlinear
structure of F . So far, this variational source conditions has been verified only for a
few cases. Establishing the variational source condition for further practical examples
would be desirable.
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3.4 Auxiliary results

Proof of Proposition 3.2.1

On (3.41) for some p ∈ [1,∞], we can estimate by applying Hölder’s inequality, once
with exponent p and once with exponent q

p∗
(where p∗ = p

p−1
is the dual index)

‖(Bĉ)(t)v̂‖W ∗ = sup
w∈W , ‖w‖W≤1

∫
Ω

ĉ v̂ w dx ≤ ‖ĉ‖Lp‖v̂‖Lq sup
w∈W , ‖w‖W≤1

‖w‖
L

p∗q
q−p∗

,

where we need to impose q ≥ p∗ and in case of equality formally set p∗q
q−p∗ = ∞. In

order to guarantee continuity of the embedding W ↪→ L
p∗q
q−p∗ (Ω) as needed here, we

therefore, together with (3.36), require the conditions

s− d

m
� −d

q̂
and q̂ ≥ q ≥ p∗ and t− d

n
� −d(q − p∗)

p∗q
. (B.107)

Proof of Proposition 3.2.3

With X as in (3.43), in order to guarantee the required boundedness of the embed-
dings

X ↪→ Lr(Ω) , W ↪→ W 1, p
∗q

q−p∗ (Ω) , W ↪→ W 2, r
∗q

q−r∗ (Ω) ,

for some r ∈ [1,∞] such that r∗ ≤ q

we impose, additionally to (3.36), the conditions

(a) q̂ ≥ q ≥ max{p∗, r∗} and (b) t− 1− d

n
� −d(q − p∗)

p∗q
and

(c) t− 2− d

n
� −d(q − r∗)

r∗q
and (d) 1− d

p
� −d

r

for some r ∈ [1,∞]. To eliminate r, observe that the requirement (c), i.e., t−2− d
n
�

− d
r∗

+ d
q

gets weakest when r∗ is chosen minimal, which, subject to requirement (d)
is

r


=∞ if p > d

<∞ if p = d

= dp
d−p if p < d

, i.e., r∗


= 1 if p > d

> 1 if p = d

= dp
dp−d+p

if p < d

. (B.108)
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Inserting this into (c) and taking into account (3.36), we end up with the following
requirements on s, t, p, q,m, n (using the fact that q ≥ p∗ implies q ≥ dp

dp−d+p
):

s− d

m
� −d

q̂
and q̂ ≥ q ≥ p∗ and

t− 1− d

n
� −d(q − p∗)

p∗q
and t− 2− d

n


� −d+ d

q
if p > d

> −d+ d
q

and q > 1 if p = d

� −dp−d+p
p

+ d
q

if p < d

.

(B.109)

Proof of Proposition 3.2.5

Here we have(
f(θ, u)− f(θ̃, ũ)− f ′u(θ, u)(u− ũ)− f ′θ(θ, u)(θ − θ̃)

)
(t)

=

∫ 1

0

(
Φ′((u(t) + σ(ũ(t)− u(t))− Φ′(u(t))

)
dσ (ũ(t)− u(t))

+

∫ 1

0

(
Ψ′(∇u(t) + σ(∇ũ(t)−∇u(t))−Ψ′(∇u(t))

)
dσ∇(ũ(t)− u(t)) .

This shows that the only condition which has to be taken into account when choosing
the space X is that B(t) ∈ L(X ,W ∗). Again we assume C(t) to be the embedding
operator V ↪→ Y .

As opposed to Section 3.2.1, where we could do the estimates pointwise in time,
we will now also have to to use Hölder estimates with respect to time. To this end,
we dispose over the following continuous embeddings

U ↪→ L2(0, T ;W s,m(Ω))

U ↪→ L∞(0, T ;H s̃(Ω)) provided W s−s̃,m(Ω) ↪→ W t+s̃,n(Ω) ,

where the first holds just by definition of U and the second follows from [100, Lemma

7.3]4 with W̃ = W t+s̃,n(Ω), using the fact that

u ∈ L2(0, T ;W s,m(Ω)) ∩H1(0, T ; (W t,n(Ω))∗)

⇔ Ds̃u ∈ L2(0, T ;W s−s̃,m(Ω)) ∩H1(0, T ; (W t+s̃,n(Ω))∗),

where Ds̃v =
∑
|α|≤s̃D

αv.

4L2(0, T ; W̃ ) ∩H1(0, T ; W̃ ∗) ↪→ L∞(0, T ;L2(Ω))
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We first consider the case of an affinely linear (or just vanishing) function Ψ, which
still comprises, e.g., models with linear drift and diffusion, so that CΨ′′ can be set to
zero. We can then estimate

‖f(θ, u)− f(θ̃, ũ)− f ′u(θ, u)(u− ũ)− f ′θ(θ, u)(θ − θ̃)‖L2(0,T ;W ∗)

≤ CΦ′′

(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫
Ω

(1 + |u(t)|γ + |ũ(t)|γ) |ũ(t)− u(t)|1+κw dx
)2

dt

)1/2

,

where, using Hölder’s inequality three times (P = q, P = r
q∗(γ+κ)

, P = γ+κ
γ

) and

continuity of the embedding H s̃(Ω) ↪→ Lr(Ω) provided s̃− d
2
� −d

r(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫
Ω

|u(t)|γ |ũ(t)− u(t)|1+κw dx
)2

dt

)1/2

≤ ‖ũ− u‖L2(0,T ;Lq(Ω)) sup
w∈W , ‖w‖W≤1

∥∥∥|u|γ|ũ− u|κw∥∥∥
L∞(0,T ;Lq∗ (Ω))

≤ ‖ũ− u‖Y
∥∥∥(|u|γ|ũ− u|κ) 1

γ+κ
∥∥∥γ+κ

L∞(0,T ;Lr(Ω))
sup

w∈W , ‖w‖W≤1

‖w‖
L

rq∗
r−q∗(γ+κ) (Ω)

≤ ‖ũ− u‖Y‖u‖γL∞(0,T ;Lr(Ω))‖ũ− u‖
κ
L∞(0,T ;Lr(Ω)) sup

w∈W , ‖w‖W≤1

‖w‖
L

rq∗
r−q∗(γ+κ) (Ω)

≤ (CΩ
H s̃→Lr)

γ+κ‖u‖γ
L∞(0,T ;H s̃(Ω))

‖ũ− u‖κL∞(0,T ;H s̃(Ω))

‖ũ− u‖Y sup
w∈W , ‖w‖W≤1

‖w‖
L

rq∗
r−q∗(γ+κ) (Ω)

(B.110)
(and likewise for the term containing |ũ(t)|γ) for some r ∈ [1,∞] with r

q∗
≥ γ + κ. In

order to get finiteness of the L∞(0, T ;H s̃(Ω)) norms appearing here by means of [100,
Lemma 7.3], we assume the embedding W s−s̃,m(Ω) ↪→ W t+s̃,n(Ω) to be continuous,
which leads to the condition

s− s̃− d

m
� t+ s̃− d

n
and s− s̃ ≥ t+ s̃ .

Moreover, in order to guarantee continuity of the embedding W ↪→ L
rq∗

r−q∗(γ+κ) (Ω) and
for the above Hölder estimate to make sense we impose

γ + κ ≤ r

q∗
and t− d

n
� −d(r − q∗(γ + κ))

rq∗

for some r ∈ [1,∞]. Summarizing, we have the following conditions

s̃− d

2
� −d

r
and s− s̃− d

m
� t+ s̃− d

n
and s− s̃ ≥ t+ s̃ and

γ + κ ≤ r

q∗
and t− d

n
� −d(r − q∗(γ + κ))

rq∗
= − d

q∗
+
d(γ + κ)

r
,

(B.111)
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which imply

s ≥ d

m
+ d− d

q∗
+ d

γ + κ− 2

r
.

This lower bound on s gets weakest for maximal r, if γ + κ > 2 and for minimal r if
γ + κ < 2. We therefore make the following case distinction.
If γ + κ > 2 or γ + κ = 2 and q = 1 we set r = ∞, which leads to s̃ > d

2
, hence,

according to (B.111), we can choose

case γ + κ > 2 or (γ + κ = 2 and q = 1):

t >
d

n
− d

q∗
, q ≤ q̂ ,

s > max

{
t+ d+ max

{
0,
d

m
− d

n

}
,
d

m
− d

q̂

}
.

(B.112)

If γ + κ < 2 or γ + κ = 2 and q > 1 we set r = max{1, q∗(γ + κ)} < ∞, s̃ :=
max{0, d

2
− d

r
} and, according to (B.111), can therefore choose

case γ + κ < 2 or (γ + κ = 2 and q > 1):

t >
d

n
+ min

{
0,− d

q∗
+ d(γ + κ)

}
, q ≤ q̂ ,

s > max

{
t+ max

{
0, d− 2d

max{1, q∗(γ + κ)}

}
,
d

m
− d

q̂

}
.

(B.113)

Now we consider the situation of nonvanishing gradient nonlinearites CΨ′′ > 0
where we additionally need to estimate terms of the form(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫
Ω

|∇u(t)|γ̂ |∇ũ(t)−∇u(t)|1+κ̂w dx
)2

dt

)1/2

,

which, in order to end up with an estimate in terms of ‖ũ− u‖L2(0,T ;Lq(Ω)) requires us
to move the gradient by means of integration by parts. Assuming for simplicity that
κ̂ = 1 we get(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫
Ω

|∇u(t)|γ̂ |∇ũ(t)−∇u(t)|2w dx
)2

dt

)1/2

=

(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫
Ω

(ũ(t)− u(t)) gw(t) dx
)2

dt

)1/2

≤ ‖ũ− u‖L2(0,T ;Lq(Ω)) sup
w∈W , ‖w‖W≤1

‖gw‖L∞(0,T ;Lq
∗

(Ω)),
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where

gw(t) = ∇ ·
(
|∇u(t)|γ̂∇(ũ(t)− u(t))w

)
= γ̂|∇u(t)|γ̂−2(∇2u(t)∇u(t)) · ∇(ũ(t)− u(t))w

+ |∇u(t)|γ̂ ∆(ũ(t)− u(t))w + |∇u(t)|γ̂∇(ũ(t)− u(t)) · ∇w
=: g1(t) + g2(t) + g3(t),

where ∇2 denotes the Hessian. For the last term we proceed analogously to above
(basically replacing u by ∇u and w by ∇w) to obtain

‖g3‖L∞(0,T ;Lq∗ (Ω)) = ‖ |∇u(t)|γ̂∇(ũ(t)− u(t)) · ∇w‖L∞(0,T ;Lq∗ (Ω))

≤ ‖∇u‖γ̂
L∞(0,T ;LR(Ω))

‖∇(ũ− u)‖L∞(0,T ;LR(Ω)) sup
w∈W , ‖w‖W≤1

‖∇w‖
L

Rq∗
R−q∗(γ̂+1) (Ω)

(B.114)
and use [100, Lemma 7.3] with ∇u ∈ L2(0, T ;W s−1,m(Ω)) ∩ H1(0, T ; (W t+1,n(Ω))∗),
which under the conditions

t− d

n
� 1− d(R− q∗(γ̂ + 1))

Rq∗
,

s− 1− s̃− d

m
� t+ 1 + s̃− d

n
, s− 1− s̃ ≥ t+ 1 + s̃ , s̃− d

2
� − d

R

(B.115)

yields ∇u ∈ L∞(0, T ;H s̃(Ω)) ⊆ L∞(0, T ;LR(Ω)) and W ↪→ W 1, Rq∗
R−q∗(γ̂+1) (Ω).

The other two terms can be bounded by

|g1(t)+g2(t)| ≤
(
γ̂|∇2u(t)| |∇u(t)|γ̂−1 |∇(ũ(t)−u(t))|+ |∇2(ũ(t)−u(t))| |∇u(t)|γ̂

)
|w|

(note that here | · | denotes the Frobenius norm of a matrix) so that it suffices to find
an estimate on expressions of the form

‖|∇2z| |∇v|γ̂−1 |∇y| |w|‖L∞(0,T ;L2(Ω))

for z, v, y ∈ U , w ∈ W . To this end, we will again employ [100, Lemma 7.3], making
use of the fact that for any %,R ∈ [1,∞), due to Hölder’s inequality with P = %

2
and

with P = R(%−2)
2%γ̂

, the estimate

‖ |∇2z| |∇v|γ̂−1|∇y| |w|‖L2(Ω)

≤ ‖ |∇2z| ‖L%(Ω)‖
(
|∇v|γ̂−1|∇y|

) 1
γ̂ ‖γ̂

LR(Ω)
‖w‖

L
2R%

R(%−2)−2%γ̂ (Ω)

≤ CΩ
H ŝ→L%(C

Ω
H š→L%)

γ̂‖ |∇2z|‖H ŝ(Ω)‖
(
|∇v|γ̂−1|∇y|

) 1
γ̂ ‖γ̂H š(Ω)‖w‖

L
2R%

R(%−2)−2%γ̂ (Ω)

(B.116)
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holds. To make sense of these Hölder estimates and to guarantee continuity of the

embedding W ↪→ L
2R%

R(%−2)−2%γ̂ (Ω) we impose

% ≥ 2 and R ≥ 2%γ̂

%− 2
and t− d

n
� −d(R(%− 2)− 2%γ̂)

2R%
= −d

2
+
d

%
+
dγ̂

R
(B.117)

Taking into account the fact that here ∇2z contains second and
(
|∇v|γ̂−1|∇y|

) 1
γ̂

first

derivatives of elements of U , we therefore aim at continuity of the embeddings

L2(0, T ;W s−2,m(Ω)) ∩H1(0, T ;W t+2,n(Ω)) ↪→ L∞(0, T ;H ŝ(Ω)) ↪→ L∞(0, T ;L%(Ω))

L2(0, T ;W s−1,m(Ω)) ∩H1(0, T ;W t+1,n(Ω)) ↪→ L∞(0, T ;H š(Ω)) ↪→ L∞(0, T ;LR(Ω)) ,

which can be achieved by means of [100, Lemma 7.3] under the conditions

s− 2− ŝ− d

m
� t+ 2 + ŝ− d

n
and s− 2− ŝ ≥ t+ 2 + ŝ and ŝ− d

2
� −d

%

s− 1− š− d

m
� t+ 1 + š− d

n
and s− 1− š ≥ t+ 1 + š and š− d

2
� − d

R
.

(B.118)
For instance, we may set % = 2, R =∞ to obtain, inserting into (B.115), (B.117),

(B.118), that ŝ ≥ 0, š > d
2

hence

t >
d

n
, t− d

n
� 1− d

q∗
, s � t+ 2 + max{2, d}+

d

m
− d

n
, s ≥ t+ 2 + max{2, d}

s− d

m
� −d

q̂
, q ≤ q̂ .

(B.119)

In order to avoid the use of too high values of s and t, we can alternatively skip
the use of [100, Lemma 7.3] and instead set

U = {u ∈ L∞(0, T ;Lr(Ω)) ∩ L2(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)} (B.120)

in case CΨ′′ = 0, or

U = {u ∈ L∞(0, T ;Lr(Ω) ∩W 1,R(Ω) ∩W 2,%(Ω)) ∩ L2(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)}
(B.121)

otherwise. This can also be embedded in a Hilbert space setting by replacing L∞(0, T )
with Hσ(0, T ) for some σ > 1

2
. Going back to estimate (B.110) in case CΦ′′ = 0 we

end up with the conditions

γ + κ ≤ r

q∗
and t− d

n
� − d

q∗
+
d(γ + κ)

r
, (B.122)
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cf. (B.111), and in case CΨ′′ > 0, considering estimates (B.114), (B.116) otherwise,
we require

t− d

n
� max

{
1− d

q∗
+
d(γ̂ + 1)

R
,−d

2
+
d

%
+
dγ̂

R

}
and

γ̂ + 1 ≤ R

q∗
and % ≥ 2 and γ̂ ≤ R(%− 2)

2%
,

(B.123)

cf. (B.115) (B.117), and in both cases we additionally need to impose (3.36).
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Part II

MAGNETIC PARTICLE
IMAGING





Chapter 4

How Magnetic Particle Imaging
works

In 2005, a completely new quantitative imaging method called Magnetic Particle
Imaging (MPI) has been invented. MPI detects the nonlinear magnetization be-
havior of magnetic nanoparticles to an oscillating magnetic field for the purpose
of determining the particle concentration. This technique promises high-resolution,
high-sensitivity and real-time imaging.

In this chapter, we introduce some basic concepts of how MPI works. Essentially,
the folowing information is summarized from the book by Knopp and Buzug [73].

4.1 MPI: a novel imaging technique

Magnetic particle imaging (MPI) is a dynamic imaging modality for medical appli-
cations that has first been introduced in 2005 by B. Gleich and J. Weizenecker [39].
Magnetic nanoparticles, consisting of a magnetic iron oxide core and a nonmagnetic
coating, are inserted into the body to serve as a tracer. The key idea is to measure the
nonlinear response of the nanoparticles to a temporally changing external magnetic
field in order to draw conclusions on the spatial concentration of the particles inside
the body. Since the particles are distributed along the bloodstream of a patient,
the particle concentration yields information on the blood flow and is thus suitable
for cardiovascular diagnosis or cancer detection [73, 74]. An overview of MPI basics
is given in [73]. Since MPI requires the nanoparticles as a tracer, it mostly yields
quantitative information on their distribution, but does not image the morphology of
the body, such as the tissue density. The latter can be visualized using computerized
tomography (CT) [90] or magnetic resonance imaging (MRI) [51]. These do not re-
quire a tracer, but involve ionizing radiation in the case of CT or, in the case of MRI,
a strong magnetic field and a potentially high acquisition time. Other tracer-based
methods are, e.g., single photon emission computerized tomography (SPECT) and
positron emission tomography (PET) [35, 91, 106], which both involve radioactive
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radiation. The magnetic nanoparticles that are used in MPI, on the other hand, are
not harmful for organisms.

Table 4.1: Quantitative comparison of different imaging modalities.

CT MRI PET SPECT MPI

spatial resolution 0.5 mm 1 mm 4 mm 10 mm < 1 mm

acquisition time 1 s 1 s - 1 h 1 min 1 min < 0.1 s

sensitivity low low high high high

harmfulness X-ray heating radiation radiation heating

MPI physics

MPI uses a magnetic gradient field, known as a selection field, to saturate all particles
outside a field-free point (FFP). The FFP is then rapidly traveled across a scanned
volume by an oscillating excitation or drive field, that causes a change in magnetiza-
tion of the particles. This temporal change in magnetization induces a voltage in the
receive coil, which can be assigned to the instantaneous FFP location, generating an
image of the particle concentration. These terminologies will be explained further in
the next sections.

The MPI process could be summarized as follow:

• Magnetic nanoparticles consisting of a magnetic iron oxide core, whose diameter
is in the range 1-100 nm and a nonmagnetic coating, are injected into the body
to serve as a tracer.

• A magnetic gradient field is applied to saturate all particles outside a field-free
point (FFP), the point where the applied field is zero.

• The FFP is then rapidly driven along a given trajectory across the scanned
volume by an oscillating excitation field, causing a change in magnetization of
the particles. [73].

• According to Faraday’s law of induction, this temporal change in magnetization
induces a voltage in the receive coil. This signal can be assigned to the instan-
taneous FFP location, which implies an image of the particle concentration.
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4.2 Magnetic particles

Particle material

The goal of MPI is to identify the spatial distribution of magnetic material injected
into the blood stream of a human body. One suitable magnetic material for MPI is
iron oxide, which is usually available in the form of iron oxide based nanoparticles.
Such particles consist of a magnetic core with a diameter in the range 1-100 nm, which
causes its magnetization behavior. The magnetic core is covered by a magnetically
neutral coating in order to prevent the impact among particles (superparamagnetic).

Particle concentration

Due to the small particle size in the nanometer range, it is impractical to capture the
precise position of a particular particle. Instead, MPI aims at producing an image
of the spatial particle concentration, which is defined by the number of particles per
volume

c(x) =
number of particles

volume
.

Particle magnetization

The magnetic behavior of a single particle is described by its magnetic moment vector.
When applying an external magnetic field, the particles start to align with the applied
field causing the change in particle magnetization, i.e., the sum of magnetic moments
as in Figure 4.1.

Figure 4.1: Magnetic behavior of superparamagnetic nanoparticles M in an applied
magnetic field H.
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The relation between the external magnetic field and the magnetization is not
linear but exhibits a nonlinear behavior. When increasing the applied field, the
magnetization initially shows a sharp increase, after that it goes flat into saturation,
where the magnetization hardly changes anymore (see Figure 4.2).

Figure 4.2: The relation between the external magnetic field and the magnetization
of the particles of 30 nm diameter.

Relaxation effect

In reality, when applying a time varying magnetic field, the magnetic moment vector
does not immediate follow the field H. It needs a certain time to reach the direction
of H, in particular, the change in magnetization will be slightly later than the change
in the applied field. This delay is called the relaxation time τ .

In general, there are two ways of how a particle changes its direction according
to an applied magnetic field. Either the particle itself performs a physical rotation,
which is named Brownian rotation; or only the magnetic moment in a fixed particle
rotates, which is named Neél relaxation (Figure 4.3).

The relaxation effect heavily depends on the frequency fH of the applied magnetic
field. If fH > 1/τ , the magnetization can not follow the change of the applied field.
This means, MPI technique must be performed with a relevant applied frequency.
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Figure 4.3: Comparison of Néel and Brownian rotation.

4.3 Signal generation

Induction principle

According to Faraday’s law of induction, whenever the magnetic flux density B
changes temporally, it induces an electric field E (Figure 4.4)

∇× E = −dB
dt
, B = µ0(H + M),

where µ0 is the magnetic permeability in vacuum. And the voltage recorded in the
receive coil is the integral of the electric field strength along the conductor

v(t) =

∫
∂S

E(l) · dl = − d

dt

∫
S

B(r, t) · dA.

Detection of particle magnetization

As the magnetic flux density includes both applied excitation field H and particle
magnetization M, one needs to distinguish the induced excitation signal vH and the
induced particle signal vP , which is the desirable signal

vP (t) = − d

dt
µ0

∫
S

M(r, t) · dA. (4.1)
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Figure 4.4: Voltage induced in a receive coil.

Indeed, it is achievable since vP and vH are different on the frequency domain, more
precisely, vP has higher frequency components than vH (see Figure 4.5). This fre-
quency discrimination is the result of the nonlinear magnetization with respect to
the applied field captured in Figure 4.2. This motivates a method to eliminate the
unwanted part vH by applying a bandpass filter.

Figure 4.5: Signal generation in MPI: The particles are excited by a sinusoidal mag-
netic field causing a magnetization progression, which resembles a rectangular func-
tion. The induced particle signal contains two sharp peaks and can be distinguished
from the sinusoidal excitation signal.
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4.4 Selection field and drive field

The unique feature of MPI is the oscillating applied magnetic field, which causes
the particles passing through the field free point to flip back and forth resulting the
temporal change in their magnetization. This magnetization change is the key factor
inducing the measurable voltage in the receive coil.

The applied magnetic field H (the total field) usually consists of two fields: a
selection or gradient field and a drive or excitation HD as in Figure 4.6.

The selection field is designed to be space-inhomogeneous and contains one special
location named field free point (FFP), which is simply characterized by the point
where the field magnitude is zero. Outside of the vicinity of the FFP, the field
strength is quickly increasing in a linear fashion. The name “gradient field” indicates
the gradient of the field being constant according to its linearity.

The drive field HD is realized as constant in space but varies in time. This time-
dependent field is employed to drive the FFP to every position in the scanned object
as time progresses. The temporal change of this field is translated to a movement of
the FFP, when it is superimposed with the selection field. Rapidly moving the FFP
across the sample in an particular trajectory excites the particle in the FFP to be
magnetized, thus induces the particle signal.

The most prominent FFP trajectories are Cartesian and Lissajous (Figure 4.7).

Figure 4.6: 2D translation of the FFP achieved by the superposition of a drive field
with a selection field.
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Figure 4.7: Cartesian and Lissajous trajectories for different density parameters ND.

4.5 From data to images

The reconstruction problem in MPI is determining the particle distribution given the
measured voltages in (4.1)

v(t) = − d

dt
µ0

∫
S

M · dA = − d

dt
µ0

∫
S

cm · dA

=:

∫
Ω

c(x)s(x, t) dx. (4.2)

Here, m is magnetization of the material defined from the particle magnetization M
via the relation M = c.m, and s is the system function encoding m and involves
physical constants.

In order to reconstruct the particle distribution, it is obligatory to known the
system function s, which appears as the kernel of the Fredholm integral equation of
the first kind formulated by (4.2). Obviously, the system function depends on d

dt
m;

hence the material magnetization m is required to be specified.
In MPI, the problem of finding the correct integral kernel/system function remains

unsolved. This is the reason for our research in the next two chapters.
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Chapter 5

MPI in the context of inverse
problem

A decent mathematical model demands for a data-driven computation of the system
function which does not only describe the measurement geometry but also encodes
the interaction of the particles with the external magnetic field. The physical model
of this interaction is given by the Landau-Lifshitz-Gilbert (LLG) equation. The
determination of the system function can be seen as an inverse problem of its own,
which can be interpreted as a calibration problem for MPI. In this chapter, the
calibration problem is formulated as an inverse parameter identification problem for
the LLG equation.

We begin with a detailed introduction to the modelling in MPI. Section 5.2 de-
scribes the full forward problem and presents the initial boundary value problem for
the LLG equation that we use to describe the magnetization evolution. In Section 5.3,
we formulate the inverse problem of calibration both in the all-at-once and in the re-
duced setting to obtain the final operator equation that is analyzed in the subsequent
section. First, in Section 5.4.1, we present an analysis for the all-at-once setting. The
inverse problem in the reduced setting is then addressed in Section 5.4.2. Finally, we
conclude our findings and give an outlook on further research.

5.1 Introduction

At this point, there have been promising preclinical studies on the performance of
MPI showing that this imaging modality has a great potential for medical diagnosis
since it is highly sensitive with a good spatial and temporal resolution, and the
data acquisition is very fast [74]. However, particularly in view of an application
to image the human body, there remain some obstacles. One obstacle is the time-
consuming calibration process. In this work, we assume that the concentration of the
nanoparticles inside the body remains static throughout both the calibration process
and the actual image acquisition. Mathematically, the forward problem of MPI then
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can essentially be formulated as an integral equation of the first kind for the particle
concentration (or distribution) c,

u(t) =

∫
Ω

c(x)s(x, t) dx,

where the integration kernel s is called the system function. The system function
encodes some geometrical aspects of the MPI scanner, such as the coil sensitivities of
the receive coils in which the particle signal u is measured, but mostly it is determined
by the particle behavior in response to the applied external magnetic field.

The actual inverse problem in MPI is to reconstruct the concentration c under the
knowledge of the system function s from the measured data u. To this end, the system
function has to be determined prior to the scanning procedure. This is usually done by
evaluating a series of full scans of the field of view, where in each scan, a delta sample
is placed in a different pixel until the entire field of view is covered [73]. Another
option is a model-based approach for s (see [72] for an example), which basically
involves a model for the particle magnetization. Since this model often depends on
unknown parameters, the model-based determination of the system function itself
can again be formulated as an inverse problem. This article now addresses this latter
type of inverse problem, i.e., the identification of the system function for a known
set of concentrations from calibration measurements. More precisely, our goal is to
find a decent model for the time-derivative of the particle magnetization m, which is
proportional to s.

So far, in model-based approaches for the system function, the particle magnetiza-
tion m is not modeled directly. Instead, one describes the mean magnetization m of
the particles via the Langevin function, i.e., the response of the particles is modeled
on the mesoscopic scale [73, 71]. This approach is based on the assumption that the
particles are in thermodynamic equilibrium and respond directly to the external field.
For this reason, the mean magnetization is assumed to be a function of the external
field, such that the mean magnetization is always aligned with the external field. The
momentum of the mean magnetization is calculated via the Langevin function. This
model, however, neglects some properties of the particle behavior. In particular, the
magnetic moments of the particles do not align instantly with the external field [25].

In this work, we thus address an approach from micromagnetics, which models the
time-dependent behavior of the magnetic material inside the particles’ cores on the
micro scale and allows for taking into account various additional physical properties
such as particle-particle interaction. For an overview, see for example [76]. Since the
core material is iron oxide, which is a ferrimagnetic material that shows a similar
behavior as ferromagnets [26, 27], we use the Landau-Lifshitz-Gilbert (LLG) equation

∂

∂t
m = −α̃1m× (m×Heff) + α̃2m×Heff ,

see also [37, 83], for the evolution of the magnetization m of the core material. The
field Heff incorporates the external magnetic field together with other relevant physical
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effects. According to the LLG equation, the magnetization m performs a damped
precession around the field vector of the external field, which leads to a relaxation
effect. The LLG equation has been widely applied to describe the time evolution in
micromagnetics [16, 43, 30].

In contrast to the imaging problem of MPI, the inverse problem of determining
the magnetization m along with the constants α̃1, α̃2 turns out to be a nonlinear
inverse problem, which is typical for parameter identification problems for partial
differential equations, for example electrical impedance tomography [14], terahertz
tomography [113], ultrasound imaging [24] and other applications from imaging and
nondestructive testing [70].
We use the all-at-once as well as the reduced formulation of this inverse problem in
a Hilbert space setting, see also [57, 58, 93], and analyze both cases including well-
definedness of the forward mapping, continuity, Fréchet differentiability and calculate
the adjoint mappings for the Fréchet derivatives. By consequence, iterative methods
such as the Landweber method [49, 84], also in combination with Kaczmarz’ method
[45, 46], Newton methods (see, e.g., [99]), or subspace techniques [112] can be applied
for the numerical solution. An overview of suitable regularization techniques is given
in [63, 67].

Notation

The differential operators −∆ and ∇ are applied component wise to a vector field.
In particular, this means that by ∇u we denote the transpose of the Jacobian of u.
Moreover, 〈a,b〉 or a · b denotes the Euclidean inner product between two vectors;
A : B the Frobenius inner product between two matrices.

5.2 Underlying physical model for MPI

The basic physical principle that is exploited in MPI is Faraday’s law of induction,
which states that whenever the magnetic flux density B through a coil changes in
time, this change induces an electric current in the coil. This current, or rather the
respective voltage, can be measured. In MPI, the magnetic flux density B consists of
the external applied magnetic field Hext and the particle magnetization MP, i.e.,

B = µ0

(
Hext + MP

)
,

where µ0 is the magnetic permeability in vacuum. The particle magnetization MP(x, t)
in x ∈ Ω ⊆ R3 depends linearly on the concentration c(x) of magnetic material, which
corresponds to the particle concentration, in x ∈ Ω and on the magnetization m(x, t)
of the magnetic material. We thus have

MP(x, t) = c(x)m(x, t),
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where |m| = mS > 0, i.e., the vector m has the fixed length mS that depends on the
magnetic core material inside the particles. At this point it is important to remark
that we use a slightly different approach to separate the particle concentration, which
carries the spatial information on the particles, from the magnetization behavior of
the magnetic material and the measuring process. In our approach, the concentration
is a dimensionless quantity, whereas in most models, it is defined as the number of
particles per unit volume (see, e.g. [73], also Section 4.2 in Chapter 4).

A detailed derivation of the forward model in MPI, based on the equilibrium
model for the magnetization, can be found in [73]. The steps that are related to the
measuring process can be adapted to our approach. For the reader’s convenience, we
want to give a short overview and introduce the parameters related to the scanner
setup.
If the receive coil is a simple conductor loop, which encloses a surface S, the voltage
that is induced can be expressed by

u(t) = − d

dt

∫
S

B(x, t) · dA = −µ0
d

dt

∫
S

(
Hext + MP

)
· dA. (5.1)

The signal that is recorded in the receive coil thus originates from temporal changes
of the external magnetic field H as well as of the particle magnetization MP,

u(t) = −µ0

(∫
Ω

pR(x) · ∂
∂t

Hext(x, t) dx+

∫
Ω

pR(x) · ∂
∂t

MP(x, t) dx

)
(5.2)

=: uE(t) + uP(t) (5.3)

For the signal that is caused by the change in the particle magnetization we obtain

uP(t) = −µ0
d

dt

∫
Ω

pR(x) ·MP(x, t) dx

= −µ0

∫
Ω

pR(x) · ∂
∂t

MP(x, t) dx

= −µ0

∫
Ω

c(x)pR(x) · ∂
∂t

m(x, t) dx

= −µ0

∫
Ω

c(x)s(x, t) dx.

The function

s(x, t) := pR(x) · ∂
∂t

m(x, t) =

〈
pR(x),

∂

∂t
m(x, t)

〉
R3

(5.4)

is called the system function and can be interpreted as a potential to induce a signal
in the receive coil. The function pR is called the coil sensitivity and is determined
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by the architecture of the respective receive coil. For our purposes, we assume that
pR is known. The measured signal that originates from the magnetic particles can
thus essentially be calculated via an integral equation of the first kind with a time-
dependent integration kernel s.

The particle magnetization, however, changes in time in response to changes of the
external field. It is thus an important objective to encode the interplay of the external
field and the particles in a sufficiently accurate physical model. The magnetization
of the magnetic particles that are used in MPI can be considered on different scales.
The following characterization from ferromagnetism has been taken from [76]:

• On the atomic level, one can describe the behavior of a magnetic material as
a spin system and take into account stochastic effects that arise, for example,
from Brownian motion.

• In the microscopic scale, continuum physics is applied to work with determin-
istic equations describing the magnetization of the magnetic material.

• In the mesoscopic scale, we can describe the magnetization behavior via a mean
magnetization, which is an average particle magnetic moment.

• Finally, on a macroscopic scale, all aspects that arise from the microstructure are
neglected and the magnetization is described by phenomenological constitutive
laws.

In this work, we intend to use a model from micromagnetism allowing us to
work with a deterministic equation to describe the magnetization of the magnetic
material. The core material of the nanoparticles consists of iron-oxide or magnetite,
which is a ferrimagnetic material. The magnetization curve of ferrimagnetic materials
is similar to the curve that is observed for ferromagnets but with a lower saturation
magnetization (see, e.g., [26, 27]). This approach has also been suggested in [98]. The
evolution of the magnetization in time is described by the Landau-Lifshitz-Gilbert
(LLG) equation

mt :=
∂

∂t
m = −α̃1m× (m×Heff) + α̃2m×Heff , (5.5)

see [37, 76] and the therein cited literature. The coefficients

α̃1 :=
γαD

mS(1 + α2
D)

> 0, α̃2 :=
γ

(1 + α2
D)

> 0

are material parameters that contain the gyromagnetic constant γ, the saturation
magnetization mS of the core material and a damping parameter αD. The vector
field Heff is called the effective magnetic field. It is defined as the negative gradient
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−DE(m) of the Landau energy E(m) of a ferromagnet, see, e.g., [76]. Taking into
account only the interaction with the external magnetic field H and particle-particle
interactions, this energy is given by

EA(m) = A

∫
Ω

|∇m|2 dx− µ0mS

∫
Ω

〈H,m〉R3 dx,

where A ≥ 0 is a scalar parameter (the exchange stiffness constant [37]). We thus
have

Heff = 2A∆m + µ0mSHext. (5.6)

Together with Neumann boundary conditions and a suitable initial condition, our
model for the magnetization thus reads

mt = −α1m× (m× (∆m + hext)) + α2m× (∆m + hext) in [0, T ]× Ω (5.7)

0 = ∂νm on [0, T ]× ∂Ω (5.8)

m0 = m(t = 0) |m0| = mS in Ω, (5.9)

where hext = µ0mS

2A
Hext and α1 := 2Aα̃1, α2 := 2Aα̃2 > 0. The initial value m0 =

m(t = 0) corresponds to the magnetization of the magnetic material in the beginning
of the measurement. To obtain a reasonable value for m0, we take into account that
the external magnetic field is switched on before the measuring process starts, i.e.,
m0 is the state of the magnetization that is acquired when the external field is static.
This allows us to precompute m0 as the solution of the stationary problem

α1m0 × (m0 × (∆m0 + hext(t = 0))) = α2m0 × (∆m0 + hext(t = 0)) (5.10)

with Neumann boundary conditions.

Remark 5.2.1. In the stationary case, damping does not play a role, and if we addi-
tionally neglect particle-particle interactions, we obtain the approximative equation

m̂0 × (m̂0 × hext(t = 0)) = 0

with an approximation m̂0 to m̂, since α2 ≈ 0 and Heff ≈ µ0mSHext. The above
equation yields m̂0 ‖ hext(t = 0). Together with |m̂0| = mS this yields

m̂0 = mS
hext(t = 0)

|hext(t = 0)|
.

This represents a good approximation to m0 where hext is strong at the time point
t = 0:

m0 ≈ m̂0 = mS
hext(t = 0)

|hext(t = 0)|
.
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5.2.1 Observation operator

Faraday’s law states that a temporally changing magnetic field induces an electric
current in a conductor loop or coil, which yields the relation (5.1). By consequence,
not only the change in the particle magnetization contributes to the induced current
but also the dynamic external magnetic field Hext. Since we need the particle signal
for the determination of the particle magnetization, we need to separate the particle
signal from the excitation signal due to the external field. This is realized by process-
ing the signal in a suitable way using filters.
MPI scanners usually use multiple receive coils to measure the induced particle signal
at different positions in the scanner. We assume that we have L ∈ N receive coils
with coil sensitivities pR

` , ` = 1, ..., L, and the measured signal is given by

ṽ`(t) = −µ0

∫ T

0

ã`(t− τ)

∫
Ω

c(x)pR
` (x) · ∂

∂τ
m(x, τ) dx dτ, (5.11)

where T is the repetition time of the acquisition process, i.e., the time that is needed
for one full scan of the object, and a` : [0, T ] → R is the transfer function with
periodic continuation ã` : R→ R. The transfer function serves as a filter to separate
particle and excitation signal, i.e., it is chosen such that

ṽE
` (t) :=

(
ã` ∗ uE

`

)
(t) = −µ0

∫ T

0

ã`(t− τ)

∫
Ω

pR
` (x) · ∂

∂t
Hext(x, t) dx dt ≈ 0.

In practice, ã` is often a band pass filter. For a more detailed discussion of the transfer
function, see also [73]. In this work, the transfer function is known analytically.

We define
K`(t, τ, x) := −µ0ã`(t− τ)c(x)pR

` (x),

such that the measured particle signals are given by

v`(t) =

∫ T

0

∫
Ω

K`(t, τ, x) · ∂
∂τ

m(x, τ) dτ dx, (5.12)

where m fulfills (5.7), (5.8), (5.9).

To determine m in Ω × (0, T ), we use the data vk`(t), k = 1, ..., K, ` = 1, ..., L,
from the scans that we obtain for different particle concentrations ck, k = 1, ..., K,
K ∈ N. The forward operator thus reads

vk`(t) =

∫ T

0

∫
Ω

Kk`(t, τ, x)· ∂
∂τ

m(x, τ) dx dτ, Kk`(t, τ, x) := −µ0ã`(t−τ)ck(x)pR
` (x).

(5.13)
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5.2.2 Landau-Lifshitz-Gilbert equation

In this section, we derive additional formulations of (5.7) - (5.9) that are suitable
for the analysis. The approach is motivated by [76], where only particle-particle
interactions are taken into account.
First of all, we observe that multiplying (5.7) with m on both sides yields

1

2
· d

dt
|m(x, t)|2 = m(x, t) ·mt(x, t) = 0, (5.14)

which shows that the absolute value of m does not change in time. Since |m0| = mS,
we have m(x, t) ∈ mS · S2, where S2 := {v ∈ R3 : |v| = 1} is the unit sphere in
R3. As a consequence, we have 0 = ∇|m|2 = 2∇m ·m in Ω, so that by taking the
divergence, we get

〈m,∆m〉 = −〈∇m,∇m〉. (5.15)

Now we make use of the identity

a× (b× c) = 〈a, c〉b− 〈a,b〉c

for a,b, c ∈ R3 to derive

m× (m×∆m) = 〈m,∆m〉m− |m|2∆m = −|∇m|2m−m2
S∆m, (5.16)

m× (m× hext) = 〈m,hext〉m− |m|2hext = 〈m,hext〉m−m2
Shext. (5.17)

Using (5.15) together with (5.16), (5.17) and |m| = mS, we obtain from (5.7) - (5.9)

mt − α1m
2
S ∆m = α1|∇m|2m + α2m×∆m− α1〈m,hext〉m

+ α1m
2
S hext + α2m× hext in [0, T ]× Ω (5.18)

0 = ∂νm on [0, T ]× ∂Ω (5.19)

m0 = m(t = 0), |m0| = mS in Ω. (5.20)

Taking the cross product of m with (5.18) and multiplying with −α̂2, where
α̂1 = α1

m2
Sα

2
1+α2

2
, α̂2 = α2

m2
Sα

2
1+α2

2
, by (5.16), (5.17) and cancellation of the first and third

term on the right hand side, we get

− α̂2m×mt + α1α̂2m
2
S m×∆m

=
α2

2

m2
Sα

2
1 + α2

2

(
|∇m|2m +m2

S∆m
)

α1α̂2m
2
S m× hext +

α2
2

m2
Sα

2
1 + α2

2

(
m2

Shext − 〈m,hext〉m
)
,

where the second term on the left hand side can be expressed via (5.18) as

α1α̂2m×∆m

= α̂1mt +
α2

1

m2
Sα

2
1 + α2

2

(
−m2

S∆m− |∇m|2m + 〈m,hext〉m−m2
Shext

)
− α1α̂2m× hext.
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This yields the alternative formulation

α̂1m
2
Smt − α̂2m×mt −m2

S∆m = |∇m|2m +m2
Shext − 〈m,hext〉m

in [0, T ]× Ω, (5.21)

0 = ∂νm on [0, T ]× ∂Ω, (5.22)

m0 = m(t = 0), |m0| = mS in Ω. (5.23)

5.3 Inverse problem for calibration process

Apart from the obvious inverse problem of determining the concentration c of mag-
netic particles inside a body from the measurements v`, ` = 1, ..., L, MPI gives rise to
a range of further parameter identification problems of entirely different nature. In
this work, we are not addressing the imaging process itself, but consider an inverse
problem that is essential for the calibration process. Here, calibration refers to de-
termining the system function s`, which serves as an integral kernel in the imaging
process. The system function includes all system parameters of the tomograph and
encodes the physical behaviour of the magnetic material in the cores of the magnetic
particles inside a temporally changing external magnetic field. Experiments show
that a simple model for the magnetization based on the assumption that the particles
are in their equilibrium state at all times is insufficient for the imaging, see, e.g., [72].
A model-based approach with an enhanced physical model has been so far omitted
due to the complexity of the involved physics and, the system function is usually
measured in a time-consuming calibration process [73, 74].

In this work, we address the inverse problem of calibrating an MPI system for a
given set of standard calibration concentrations ck, k = 1, ..., K, for which we measure
the corresponding signals and obtain the data vk`(t), k = 1, ..., K, ` = 1, ..., L. Here
we assume that the coil sensitivity pR

` as well as the transfer function ã` are known.
This, together with the fact that m is supposed to satisfy the LLG equation

(5.21)–(5.23), is used to determine the system function (5.4). Actually, since pR is
known, the inverse problem under consideration here consists of reconstructing m
from (5.13), (5.21)–(5.23). As the initial boundary value problem (5.21)–(5.23) has
a unique solution m for given α̂1, α̂2, it actually suffices to determine these two
parameters. This is the point of view that we take when using a classical reduced
formulation of the calibration problem

F (α̂) = y (5.24)

with the data yk` = vk` and the forward operator

F : D(F )(⊆ X )→ Y , α̂ = (α̂1, α̂2) 7→ K ∂

∂t
S(α̂) (5.25)
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containing the parameter-to-state map

S : X → Ũ (5.26)

that maps the parameters α̂ into the solution m := S(α̂) of the LLG initial boundary
value problem (5.21)–(5.23). The linear operator K is the integral operator defined
by the kernels Kk` k = 1, ..., K, ` = 1, ..., L, i.e.,

Kk`u =

∫ T

0

∫
Ω

Kk`(t, τ,x) · u(x, τ) dτ dx . (5.27)

Here, the preimage and image spaces are defined by

X = R2, Y = L2(0, T )KL, (5.28)

and the state space Ũ will be chosen appropriately below, see Section 5.4.2.
Alternatively, we also consider the all-at-once formulation of the inverse problem

as a simultaneous system
F(m, α̂) = y := (0, y)T (5.29)

for the state m and the parameters α̂, with the forward operator

F(m, α̂) =

(
F0(m, α̂)(
Fk`(m, α̂)

)
k=1,...,K , `=1,...,L

)
where

F0(m, α̂1, α̂2) =: α̂1mt −∆m− α̂2m×mt − |∇m|2m− hext + (m · hext)m

and
Fk`(m, α̂1, α̂2) = Kk,`mt

with Kk,` as in (5.27). Here F maps between U × X and W × Y with X , Y as in
(5.28), and U , W appropriately chosen function spaces, see Section 5.4.1.

Iterative methods for solving inverse problems usually require the linearization
F ′(α̂) of the forward operator F and its adjoint F ′(α̂)∗ (and likewise for F) in the
given Hilbert space setting.

For example, consider Landwebers’ iteration cf., e.g., [84, 49] defined by a gradient
decent method for the least squares functional ‖F (α̂)− y‖2

Y as

α̂n+1 = α̂n − µnF ′(α̂n)∗(F (α̂n)− y)

with an appropriately chosen step size µn. Alternatively, one can split the forward
operator into a system by considering it row wise Fk(α̂) = yk with Fk = (Fkl)`=1...L or
column wise F`(α̂) = y` with F` = (Fkl)k=1,...,K , or even element wise Fkl(α̂) = ykl, and
cyclically iterating over these equations with gradient descent steps in a Kaczmarz
version of the Landweber iteration cf., e.g., [46, 45]. The same can be done with
the respective all-at-once versions [57]. These methods extend to Banach spaces as
well by using duality mappings, cf., e.g., [104], however, for the sake of simplicity of
exposition and implementation, we will concentrate on a Hilbert space setting here;
in particular, all adjoints will be Hilbert space adjoints.
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5.4 Derivatives and adjoints

Motivated by their need in iterative reconstruction methods, we now derive and rig-
orously justify derivatives of the forward operators as well as their adjoints, both in
an all-at-once and in a reduced setting.

Notation wise there will be a slight move from the somewhat physics oriented
paradigm of the previous section to a more mathematically conventional one: For
instance, the subscript ”ext” in the external magnetic field will be skipped and bold-
face notation of x will be not be continued here. Moreover, to avoid confusion with
the dual pairing, we will use the dot notation for the Euclidean inner product.

5.4.1 All-at-once formulation

We split the magnetization additively into its given initial value m0 and the unknown
rest m̂, so that the forward operator reads

F(m̂, α̂1, α̂2) =

 F0(m̂, α̂1, α̂2)(
Fk`(m̂, α̂1, α̂2)

)
k=1,...,K , `=1,...,L



:=


α̂1m̂t −∆N(m0 + m̂)− α̂2(m0 + m̂)× m̂t

−|∇(m0 + m̂)|2(m0 + m̂)− h + ((m0 + m̂) · h)(m0 + m̂)(∫ T
0

∫
Ω

Kk`(t, τ, x) ·mt(x, τ) dx dτ
)
k=1,...,K , `=1,...,L


for given h ∈ L2(0, T ;Lp(Ω;R3)), p ≥ 2, where ∆N : H1(Ω) → H1(Ω)∗ and, using
the same notation, ∆N : H2

N(Ω) → L2(Ω)(⊆ H1(Ω)∗) with H2
N(Ω) = {u ∈ H2(Ω) :

∂νu = 0 on ∂Ω} 1 is equipped with homogeneous Neumann boundary conditions, i.e,
it is defined by

〈−∆Nu, v〉H1(Ω)∗,H1(Ω) = (∇u,∇v)L2(Ω) ∀u, v ∈ H1(Ω)

and thus satisfies

(−∆Nu, v)L2(Ω) =

∫
Ω

∇u · ∇v dx ∀u ∈ H2
N(Ω) , v ∈ H1(Ω) . (5.30)

The forward operator is supposed to act between Hilbert spaces

F : U × R2 →W × L2(0, T )KL

with the linear space

U = {u ∈ L2(0, T ;H2
N(Ω;R3)) ∩H1(0, T ;L2(Ω;R3)) : u(0) = 0}

⊆ C(0, T ;H1(Ω)) ∩Hs(0, T ;H2−2s(Ω))
(5.31)

1Note that as opposed to H1(Ω) functions, H2(Ω) functions do have a Neumann boundary trace

117



5.4. Derivatives and adjoints

for s ∈ [0, 1], where the latter embedding is continuous by, e.g, [100, Lemma 7.3] or
Chapter 1, Theorem 1.2.8 , applied to ∂ui

∂xj
, and interpolation, as well as

W = H1(0, T ;H1(Ω;R3))∗ or, in case p > 2, W = H1(0, T ;L2(Ω;R3))∗ . (5.32)

We equip U with the inner product

(u1,u2)U :=

∫ T

0

∫
Ω

(
(−∆Nu1) · (−∆Nu2) + u1t ·u2t

)
dx dt+

∫
Ω

∇u1(T ) : ∇u2(T ) dx ,

which, in spite of the nontrivial nullspace of the Neumann Laplacian −∆N , defines a
norm equivalent to the usual norm on L2(0, T ;H2(Ω;R3)) ∩H1(0, T ;L2(Ω;R3)) due
to the estimates

‖u‖2
L2(0,T ;L2(Ω)) = −

∫ T

0

∫
Ω

∫ t

0

u(s) dsut(t) dx dt+

∫
Ω

∫ t

0

u(s) dsu(T ) dx

≤
(
T‖ut‖L2(0,T ;L2(Ω)) +

√
T‖u(T )‖L2(Ω)

)
‖u‖L2(0,T ;L2(Ω))

‖u(T )‖L2(Ω) =

∥∥∥∥∫ T

0

ut(t) dt

∥∥∥∥
L2(Ω)

≤
√
T‖ut‖L2(0,T ;L2(Ω)) .

This, together with the definition of the Neumann Laplacian (5.30) and the use of
solutions z, v to the auxiliary problems

zt −∆z = v in (0, T )× Ω
∂νz = 0 on (0, T )× ∂Ω
z(0) = 0 in Ω

,


−vt −∆v = f in (0, T )× Ω

∂νv = 0 on (0, T )× ∂Ω
v(T ) = g in Ω

(5.33)

allows us to derive the identity

(u, z)U =

∫ T

0

∫
Ω

(
∇u : ∇(−∆Nz)− u · ztt

)
dx dt+

∫
Ω

u(T ) ·
(
zt(T )−∆Nz(T )

)
dx

=

∫ T

0

∫
Ω

(
∇u : ∇(v − zt)− u · (vt + ∆Nzt)

)
dx dt+

∫
Ω

u(T ) · v(T ) dx

=

∫ T

0

∫
Ω

u ·
(
−∆Nv − vt

)
dx dt+

∫
Ω

u(T ) · v(T ) dx

=

∫ T

0

∫
Ω

u · f dx dt+

∫
Ω

u(T ) · g dx ,

(5.34)
which will be needed later on for deriving the adjoint.

On W = H1(0, T ;H1(Ω;R3))∗ we use the inner product

(w1,w2)W :=

∫ T

0

∫
Ω

(
I1[∇(−∆N + id)−1w1](t) : I1[∇(−∆N + id)−1w2](t)

+ I1[(−∆N + id)−1w1](t) · I1[(−∆N + id)−1w2](t) dx dt
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with the isomorphism −∆N +id : H1(Ω)→ (H1(Ω))∗ and the time integral operators

I1[w](t) :=

∫ t

0

w(s) ds− 1

T

∫ T

0

(T − s)w(s) ds ,

I2[w](t) := −
∫ t

0

(t− s)w(s) ds+
t

T

∫ T

0

(T − s)w(s) ds ,

so that I2[w]t(t) = −I1[w](t), I1[w]t(t) = −I2[w]tt(t) = w(t) and I2[w](0) = I2[w](T ) =
0, hence ∫ T

0

I1[w1](t) I1[w2](t) dt =

∫ T

0

I2[w1](t)w2(t) dt,

so that in case w2 ∈ L2(0, T ;L2(Ω;R3)),

(w1,w2)W =

∫ T

0

∫
Ω

(
I2[∇(−∆N + id)−1w1](t) : [∇(−∆N + id)−1w2](t)

+ I2[(−∆N + id)−1w1](t) · [(−∆N + id)−1w2](t) dx dt

=

∫ T

0

∫
Ω

I2[(−∆N + id)−1w1](t) ·w2(t) dx dt .

(5.35)

In case p > 2 in the assumption on h, we can set W = H1(0, T ;L2(Ω;R3))∗ and use
the simpler inner product

(w1,w2)W :=

∫ T

0

∫
Ω

I1[w1](t) · I1[w2](t) dx dt ,

which in case w2 ∈ L2(0, T ;L2(Ω;R3)) satisfies

(w1,w2)W =

∫ T

0

∫
Ω

I2[w1](t) ·w2(t) dx dt .

Well-definedness of the forward operator

Indeed it can be verified that F maps between the function spaces introduced above,
cf. (5.31), (5.32). For the linear (with respect to m̂) parts α̂1m̂t, −∆Nm̂, and∫ T

0

∫
Ω

Kk`(t, τ, x) · mt(x, τ) dx dτ of F, this is obvious and for the nonlinear terms
α̂2(m0+m̂)×m̂t, |∇(m0+m̂)|2(m0+m̂), ((m0+m̂)·h)(m0+m̂) we use the following
estimates (5.36), (5.37), (5.38), (5.39), (5.40), (5.41), holding for any u,w, z ∈ U . For
the term α̂2(m0 + m̂)× m̂t, we estimate

‖u×wt‖H1(0,T ;H1(Ω;R3))∗

≤ ‖u×wt‖L2(0,T ;(H1(Ω;R3))∗)

≤ CΩ
H1→L3‖u×wt‖L2(0,T ;L3/2(Ω;R3))

≤ CΩ
H1→L3‖u‖C(0,T ;L6(Ω;R3))‖wt‖L2(0,T ;L2(Ω;R3))

≤ CΩ
H1→L3CΩ

H1→L6‖u‖C(0,T ;H1(Ω;R3))‖wt‖L2(0,T ;L2(Ω;R3)) ,

(5.36)
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where we have used duality and continuity of the embeddings H1(0, T ;H1(Ω;R3)) ↪→
L2(0, T ;H1(Ω;R3)) ↪→ L2(0, T ;L3(Ω)) in the first and second estimate, and Hölder’s
inequality with exponent 4 in the third estimate;
For the term |∇(m0 + m̂)|2(m0 + m̂), we use

‖(∇u : ∇w)z‖H1(0,T ;H1(Ω;R3))∗

≤ C
(0,T )

H1→L∞‖(∇u : ∇w)z‖L1(0,T ;(H1(Ω;R3))∗)

≤ C
(0,T )

H1→L∞C
Ω
H1→L6‖(∇u : ∇w)z‖L1(0,T ;L6/5(Ω;R3))

≤ C
(0,T )

H1→L∞C
Ω
H1→L6

‖∇u‖L2(0,T ;L6(Ω;R3))‖∇w‖L2(0,T ;L6(Ω;R3))‖z‖C(0,T ;L2(Ω;R3))

≤ C
(0,T )

H1→L∞C
Ω
H1→L6

‖u‖L2(0,T ;H2(Ω;R3))‖w‖L2(0,T ;H2(Ω;R3))‖z‖C(0,T ;H1(Ω;R3)) ,

(5.37)

again using duality and the embeddings H1(0, T ;H1(Ω;R3)) ↪→ L∞(0, T ;H1(Ω)) ↪→
L∞(0, T ;L6(Ω));
For the term ((m0 + m̂) · h)(m0 + m̂), we estimate

‖(u · h)z‖H1(0,T ;H1(Ω;R3))∗

≤ CΩ
H1→L6‖(u · h)z‖L2(0,T ;L6/5(Ω;R3))

≤ CΩ
H1→L6‖u‖C(0,T ;L6(Ω;R3))‖z‖C(0,T ;L6(Ω;R3))‖h‖L2(0,T ;L2(Ω;R3))

≤ (CΩ
H1→L6 ;R3)‖u‖C(0,T ;H1(Ω;R3))‖z‖C(0,T ;H1(Ω;R3))‖h‖L2(0,T ;L2(Ω;R3))

(5.38)

by duality and the embedding H1(0, T ;H1(Ω;R3)) ↪→ L2(0, T ;L6(Ω)), as well as
Hölder’s inequality.

In case p > 2, F maps into the somewhat stronger spaceW = H1(0, T ;L2(Ω;R3))∗,
due to the estimates

‖u×wt‖H1(0,T ;L2(Ω;R3))∗

≤ C
(0,T )

H1→L∞‖u×wt‖L1(0,T ;L2(Ω;R3))

≤ C
(0,T )

H1→L∞‖u‖L2(0,T ;L∞(Ω;R3))‖wt‖L2(0,T ;L2(Ω;R3))

≤ C
(0,T )

H1→L∞C
Ω
H2→L∞‖u‖L2(0,T ;H2(Ω;R3))‖wt‖L2(0,T ;L2(Ω;R3)) ,

(5.39)

as well as

‖(∇u : ∇w)z‖H1(0,T ;L2(Ω;R3))∗

≤ C
(0,T )

H1→L∞‖(∇u : ∇w)z‖L1(0,T ;L2(Ω;R3))

≤ C
(0,T )

H1→L∞‖∇u‖L2(0,T ;L6(Ω;R3))‖∇w‖L2(0,T ;L6(Ω;R3))‖z‖C(0,T ;L6(Ω;R3))

≤ C
(0,T )

H1→L∞(CΩ
H1→L6 ;R3)‖u‖L2(0,T ;H2(Ω;R3))

‖w‖L2(0,T ;H2(Ω;R3))‖z‖C(0,T ;H1(Ω;R3)) ,

(5.40)
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and

‖(u · h)z‖H1(0,T ;L2(Ω;R3))∗

≤ C
(0,T )

H1→L∞‖(u · h)z‖L1(0,T ;L2(Ω;R3))

≤ C
(0,T )

H1→L∞‖u‖L4(0,T ;Lp∗∗ (Ω;R3))‖z‖L4(0,T ;Lp∗∗ (Ω;R3))‖h‖L2(0,T ;Lp(Ω;R3))

≤ C
(0,T )

H1→L∞(C
(0,T )

H1/4,L4)2(CΩ
H3/2,Lp∗∗ )

2

‖u‖H1/4(0,T ;H3/2(Ω;R3))‖z‖H1/4(0,T ;H3/2(Ω;R3))‖h‖L2(0,T ;Lp(Ω;R3)) ,

(5.41)

for p∗∗ = 2p
p−2

<∞, which can be bounded by the U norm of u and z, using interpo-

lation with s = 1
4

in (5.31).

Differentiability of the forward operator

Formally, the derivative of F is given by

F′(m̂, α̂1, α̂2)(u, β1, β2)

=



β1m̂t − β2(m0 + m̂)× m̂t

+α̂1ut −∆Nu− α̂2u× m̂t − α̂2(m0 + m̂)× ut
−2(∇(m0 + m̂) : ∇u)(m0 + m̂)− |∇(m0 + m̂)|2u
+((m0 + m̂) · h)u + (u · h)(m0 + m̂)(∫ T

0

∫
Ω

Kk`(t, τ, x) · ut(x, τ) dx dτ
)
k=1,...,K , `=1,...,L


=

(
∂F0

∂m̂
(m̂, α̂) ∂F0

∂α̂1
(m̂, α̂) ∂F0

∂α̂2
(m̂, α̂)

(∂Fk`
∂m̂

(m̂, α̂))k=1,...,K,`=1,...,L 0 0

) u
β1

β2


where ∂F0

∂m̂
(m̂, α̂) : U → W , ∂F0

∂α̂1
(m̂, α̂) : R→W , ∂F0

∂α̂2
(m̂, α̂) : R→W ,

(∂Fk`
∂m̂

(m̂, α̂))k=1,...,K,`=1,...,L : U → L2(0, T )KL. Fréchet differentiability follows from
the fact that in

F(m̂ + u, α̂1 + β1, α̂2 + β2)− F(m̂, α̂1, α̂2)− F′(m̂, α̂1, α̂2)(u, β1, β2)

all linear terms cancel out and the nonlinear ones are given by (abbreviating m =
m0 + m̂)

(α̂1 + β1)(mt + ut)− α̂1mt − α̂1ut − β1mt = β1ut

(α̂2 + β2)(m + u)× (mt + ut)− α̂2m×mt − β2m×mt − α̂2u×mt − α̂2m× ut

= α̂2u× ut + β2m× ut + β2u×mt + β2u× ut

|∇m +∇u|2(m + u)− |∇m|2m− 2(∇m : ∇u)m− |∇m|2u
= |∇u|2(m + u) + 2(∇m : ∇u)u

((m + u) · h)(m + u)− (m · h)m− (u · h)m− (m · h)u = (u · h)u ,

hence, using again (5.36)–(5.38) can be estimated by some constant times ‖u‖2
U +

β2
1 + β2

2 .
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Adjoints

Starting with the adjoint of ∂F0

∂m̂
(m̂, α̂), for any u ∈ U , y ∈ L2(0, T ;L2(Ω)), we have,

using the definition of −∆N , i.e., (5.30),∫ T

0

∫
Ω

(
∂F0

∂m̂
(m̂, α̂)u) · y dx dt

=

∫ T

0

∫
Ω

(
α̂1ut · y +∇u : ∇y − α̂2(u× m̂t) · y − α̂2((m0 + m̂)× ut) · y

− 2(∇(m0 + m̂) : ∇u) ((m0 + m̂) · y)− |∇(m0 + m̂)|2 (u · y)

+ ((m0 + m̂) · h) (u · y) + (u · h) ((m0 + m̂) · y)
)
dx dt

=

∫ T

0

∫
Ω

u ·
(
−α̂1yt + (−∆y)− α̂2m̂t × y + α̂2yt × (m0 + m̂) + α̂2y × m̂t

− 2((m0 + m̂) · y) (−∆N(m0 + m̂)) + 2((∇(m0 + m̂)T (∇y)) (m0 + m̂)

+ 2((∇(m0 + m̂)T (∇(m0 + m̂))) y − |∇(m0 + m̂)|2y

+ ((m0 + m̂) · h) y + ((m0 + m̂) · y) h
)
dx dt

+

∫
Ω

u(T ) ·
(
α̂1y(T )− α̂2y(T )× (m0 + m̂(T ))

)
dx

=:

∫ T

0

∫
Ω

u · fy dx dt+

∫
Ω

u(T ) · gy
T dx , (5.42)

where we have integrated by parts with respect to time and used the vector identities

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b) .

Matching the integrals over Ω × (0, T ) and Ω × {T}, respectively, and taking into
account the homogeneous Neumann boundary conditions implied by the definition of
−∆N , (5.30), as well as the identities (5.34), (5.35), we find that ∂F0

∂m̂
(m̂, α̂)∗y =: z is

the solution of (5.33) with f = fy, g = gy
T , where in case W = H1(0, T ;H1(Ω;R3))∗,

y = I2[ỹ], with ỹ(t) solving{
−∆ỹ(t) + ỹ(t) = w(t) in Ω

∂ν ỹ = 0 on ∂Ω

for each t ∈ (0, T ), or in case W = H1(0, T ;L2(Ω;R3))∗, just y = I2[w].
With the same y, after pointwise projection onto the mutually orthogonal vectors

m̂t(x, t) and (m0(x) + m̂(x, t)) × m̂t(x, t) and integration over space and time, we
also get the adjoints of ∂F0

∂α̂1
(m̂, α̂), ∂F0

∂α̂2
(m̂, α̂)

∂F0

∂α̂1

(m̂, α̂)∗w =

∫ T

0

∫
Ω

m̂t·y dx dt ,
∂F0

∂α̂2

(m̂, α̂)∗w = −
∫ T

0

∫
Ω

((m0+m̂)×m̂t)·y dx dt .
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Finally, the fact that for u ∈ U , y ∈ L2(0, T )KL

((
∂Fk`
∂m̂

(m̂, α̂))k=1,...,K,`=1,...,Lu, y)L2(0,T )KL

=
K∑
k=1

L∑
`=1

∫ T

0

((
∂Fk`
∂m̂

(m̂, α̂))k=1,...,K,`=1,...,Lu)k`(t)yk`(t) dt

=
K∑
k=1

L∑
`=1

∫ T

0

∫ T

0

∫
Ω

Kk`(t, τ, x) · ut(x, τ) dx dτyk`(t) dt

=
K∑
k=1

L∑
`=1

∫ T

0

(
−
∫ T

0

∫
Ω

∂

∂τ
Kk`(t, τ, x) · u(x, τ) dx dτ

+

∫
Ω

Kk`(t, T, x) · u(x, T ) dx
)
yk`(t) dt ,

(5.43)

where we have integrated by parts with respect to time, implies that due to (5.34),
(∂Fk`
∂m̂

(m̂, α̂))∗k=1,...,K,`=1,...,Lw = z is obtained by solving another auxiliary problem
(5.33) with

f(x, τ) = −
∫ T

0

K∑
k=1

L∑
`=1

∂

∂τ
Kk`(t, τ, x)yk`(t) dt, g(x) =

∫ T

0

K∑
k=1

L∑
`=1

Kk`(t, T, x)yk`(t) dt.

(5.44)

Remark 5.4.1. In case of a Landweber-Kaczmarz method iterating cyclically over
the equations defined by F0,Fk`, k = 1, ..., K, ` = 1, ..., L, adjoints of derivatives of F0

remain unchanged while adjoints of ∂Fk`
∂m̂

(m̂, α̂))k=1,...,K,`=1,...,L are defined as in (5.43),
(5.44) by just skipping the sums over k and ` there.

5.4.2 Reduced formulation

We rely on the formulation (5.24) with F defined by (5.25), (5.26), (5.27). Due to
the estimate

‖Kk`mt‖2
L2(0,T ) ≤ T‖ã`‖2

L2(0,T )‖ckpR` ‖2
L2(Ω,R3)‖m‖2

H1(0,T ;L2(Ω,R3)),

if ã` ∈ L2(0, T ), ckp
R
` ∈ L2(Ω,R3) we can choose the state space in the reduced setting

as

Ũ = H1(0, T ;L2(Ω,R3)), (5.45)

which is different from the one in the all-at-once setting.
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Adjoint equation

From (5.25) the derivative of the forward operation takes the form

F ′(α̂)β = Kut, (5.46)

where u solves the linearized LLG equation

α̂1ut − α̂2m× ut − α̂2u×mt −∆u− 2(∇u : ∇m)m

+ u(−|∇m|2 + (m · h)) + (u · h)m = −β1mt + β2m×mt in (0, T )× Ω

∂νu = 0 on (0, T )× ∂Ω

u(0) = 0 in Ω,

and m is the solution to (5.21)-(5.23). This equation can be obtained by formally
taking directional derivatives (in the direction of u) in all terms of the LLG equation
(5.21)–(5.23), or alternatively by subtracting the defining boundary value problems
for S(m + εu) and S(m), dividing by ε and then letting ε tend to zero.

The Hilbert space adjoint of F ′(α̂)

F ′(α̂)∗ : L2(0, T )KL → R2

satisfies, for each z ∈ L2(0, T )KL,

(F ′(α̂)∗z, β)R2

= (z, F ′(α̂)β)L2(0,T )KL

=
K∑
k=1

L∑
`=1

∫ T

0

zk`(t)

∫ T

0

∫
Ω

(−µ0)ã`(t− τ)ck(x)pR` (x) · uτ (τ, x)dx dτ dt

=
K∑
k=1

L∑
`=1

∫ T

0

zk`(t)

(
−
∫ T

0

∫
Ω

(−µ0)ã` τ (t− τ)ck(x)pR` (x) · u(τ, x) dx dτ

+

∫
Ω

(−µ0)ã`(t− T )ck(x)pR` (x) · u(T, x) dx

)
dt

=

∫ T

0

∫
Ω

u(τ, x) ·
K∑
k=1

L∑
`=1

∫ T

0

(−µ0)ã` t(t− τ)zk`(t) ck(x)pR` (x) dt dx dτ

+

∫
Ω

u(T, x) ·
K∑
k=1

L∑
`=1

∫ T

0

(−µ0)ã`(t)zk`(t) ck(x)pR` (x) dt dx

=: (u, K̃z)L2(0,T ;L2(Ω,R3)) + (u(T ), K̃T z)L2(Ω,R3) (5.47)

as the transfer function ã is periodic with period T , and the continuous embedding
H(0, T ) ↪→ C[0, T ] allows us to evaluate u(t = T ).
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Observing∫ T

0

∫
Ω

−α̂1q
z
t · u dx dt =

∫ T

0

∫
Ω

α̂1ut · qz dx−
∫

Ω

α̂1q
z(T ) · u(T ) dx ,∫ T

0

∫
Ω

−α̂2(m× qz)t · u dx dt

=

∫ T

0

∫
Ω

−α̂2(m× ut) · qz dx dt−
∫

Ω

α̂2(m× qz)(T ) · u(T ) dx ,∫ T

0

∫
Ω

α̂2(qz ×mt) · u dx dt =

∫ T

0

∫
Ω

−α̂2(u×mt) · qz dx dt ,∫ T

0

∫
Ω

−∆qz · u dx dt =

∫ T

0

∫
Ω

−qz ·∆u dx dt−
∫ T

0

∫
∂Ω

∂νq
z · u dx dt ,∫ T

0

∫
Ω

qz(−|∇m|2 + (m · h)) · u dx dt =

∫ T

0

∫
Ω

(
u(−|∇m|2 + (m · h))

)
· qz dx dt ,∫ T

0

∫
Ω

(qz ·m) h · u dx dt =

∫ T

0

∫
Ω

(u · h)m · qz dx dt ,∫ T

0

∫
Ω

2(m · qz)∆m · u dx dt

= −
∫ T

0

∫
Ω

2(∇m : ∇u)(m · qz) dx dt

+ 2

∫ T

0

∫
Ω

−u · ((∇m)>∇m)qz − u · ((∇m)>∇qz)m dx dt ,

we see that, if qz solves the adjoint equation

− α̂1q
z
t − α̂2m× qzt − 2α̂2mt × qz −∆qz

+ 2
(
(∇m)>∇m

)
qz + 2

(
(∇m)>∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h + 2∆m) = K̃z in (0, T )× Ω (5.48)

∂νq
z = 0 on (0, T )× ∂Ω (5.49)

α̂1q
z(T ) + α̂2(m× qz)(T ) = K̃T z in Ω (5.50)

then with (5.47), we have

(F ′(α̂)∗z, β)R2 = (u, K̃z)L2(0,T ;L2(Ω,R3)) + (u(T ), K̃T z)L(Ω,R3)

=

∫ T

0

∫
Ω

(−β1mt + β2m×mt) · qz dx dt

= (β1, β2) ·
(∫ T

0

∫
Ω

−mt · qz dx dt,
∫ T

0

∫
Ω

(m×mt) · qz dx dt
)
,
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which implies the Hilbert space adjoint F ′(α̂)∗ : Y → R2

F ′(α̂)∗z =

(∫ T

0

∫
Ω

−mt · qz dx dt,
∫ T

0

∫
Ω

(m×mt) · qz dx dt
)
, (5.51)

provided that the adjoint state qz exists and belongs to sufficiently smooth space (see
Subsection 5.4.2 below).

The end condition (5.50) is equivalent to α̂1 −α̂2m3(T ) α̂2m2(T )
α̂2m3(T ) α̂1 −α̂2m1(T )
−α̂2m2(T ) α̂2m1(T ) α̂1

qz(T ) =: M α̂
T qz(T ) = K̃T z,

where mi(T ), i = 1, 2, 3, denotes the i-th component of m(T ). The matrix M α̂
T with

det(M α̂
T ) = |α̂1(α̂2

1 + α̂2
2)| is invertible if α̂1 > 0, which fits into the condition for

existence of the solution to the LLG equation. Hence, we are able to rewrite the
adjoint equation in the following form

− α̂1q
z
t − α̂2m× qzt − 2α̂2mt × qz −∆qz

+ 2
(
(∇m)>∇m

)
qz + 2

(
(∇m)>∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h + 2∆m) = K̃z in (0, T )× Ω (5.52)

∂νq
z = 0 on (0, T )× ∂Ω (5.53)

qz(T ) = (M α̂
T )−1K̃T z in Ω. (5.54)

Remark 5.4.2. Formula (5.51) inspires a Kaczmarz scheme relying on restricting
the observation operator to time subintervals for every fixed k, `, namely, we segment
(0, T ) into several subintervals (tj, tj+1) with the break points 0 = t0 < . . . < tn−1 = T

F j
k` : D(F )(⊆ X )→ Yj, α̂ 7→ yj := Kk`

∂

∂t
S(α̂)|(tj ,tj+1) (5.55)

with

Yj = L2(tj, tj+1)KL j = 0 . . . n− 1 , (5.56)

hence

yjk`(t) =

∫ tj+1

tj

∫
Ω

−µ0ã`(t− τ)ck(x)pR` (x) ·mτ (x, τ)dxdτ. (5.57)

Here we distinguish superscript j for time subinterval index and subscripts k, ` for
the index of different receive coils and concentrations.
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For zj ∈ Yj,

(K̃zj)(x, t) =
K∑
k=1

L∑
`=1

−µ0ck(x)pR` (x)

∫ tj+1

tj
ã` τ (τ − t)zjk`(τ) dτ t ∈ (0, T ) ,

(K̃T z
j)(x) =

K∑
k=1

L∑
`=1

−µ0ck(x)pR` (x)

∫ tj+1

tj
ã`(τ)zjk`(τ) dτ

yield the same Hilbert space adjoint F j′(α̂)∗ : Yj → R2 as in formula (5.51), and the
adjoint state qz

j
still needs to be solved on the whole time line [0, T ]

− α̂1q
zj

t − α̂2m× qz
j

t − 2α̂2mt × qz
j −∆qz

j

+ 2
(
(∇m)>∇m

)
qz

j

+ 2
(

(∇m)>∇qz
j
)

m

+ (−|∇m|2 + (m · h))qz
j

+ (m · qzj)(h + 2∆m) = K̃zj in (0, T )× Ω (5.58)

∂νq
zj = 0 on (0, T )× ∂Ω (5.59)

qz
j

(T ) = (M α̂
T )−1K̃T z

j in Ω. (5.60)

Besides this, the conventional Kaczmarz method resulting from the collection of
observation operatorsKk` with k = 1 . . . K, ` = 1 . . . L as in (5.13) is always applicable

Fk` : D(F )(⊆ X )→ Yk`, α̂ 7→ yk` := Kk`
∂

∂t
(S(α̂)) (5.61)

with

Yk` = L2(0, T ) k = 1 . . . K, ` = 1 . . . (5.62)

Thus F ′k`(α̂)∗ can be seen as (5.51), where the adjoint state qzk` solves (5.52)-(5.54)
with corresponding data

K̃k`z(x, t) = −µ0ck(x)pR` (x)

∫ T

0

ã` τ (τ − t)z(τ) dτ t ∈ (0, T ) ,

K̃T k`z(x) = −µ0ck(x)pR` (x)

∫ T

0

ã`(τ)z(τ) dτ

for each z ∈ Yk`.

Solvability of the adjoint equation

First of all, we derive a bound for qz. To begin with, we set τ = T − t to convert
(5.52)-(5.54) into an initial boundary value problem then test (5.52) with qzt∫

Ω

α̂1q
z
t (t) · qzt (t) dx = α̂1‖qzt (t)‖2

L2(Ω,R3) ,
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∫
Ω

α̂2(m(t)× qzt (t)) · qzt (t) dx = 0 ,∫
Ω

α̂2(mt(t)× qz(t)) · qzt (t) dx ≤ |α̂2|‖mt(t)‖L3(Ω,R3)‖qz(t)‖L6(Ω,R3)‖qzt (t)‖L2(Ω,R3) ,∫
Ω

−∆qz(t) · qzt (t) dx =
1

2

d

dt
‖∇qz(t)‖2

L2(Ω,R3) ,∫
Ω

(
((∇m(t))>∇m(t))qz(t)

)
· qzt (t) dx

≤ (CΩ
H1→L6)2‖∇m‖2

L∞(0,T ;H1(Ω,R3))‖qz(t)‖L6(Ω,R3)‖qzt (t)‖L2(Ω,R3) ,∫
Ω

(
((∇m(t))>∇qz(t))m(t)

)
· qzt (t) dx

≤ CΩ
H2→L∞‖∇m(t)‖H2(Ω,R3)‖∇qz(t)‖L2(Ω,R3)‖qzt (t)‖L2(Ω,R3) ,∫

Ω

(−|∇m(t)|2 + (m(t) · h))qz(t) · qzt (t) dx

≤
(

(CΩ
H1→L6)2‖∇m‖2

L∞(0,T ;H1(Ω,R3)) + ‖h(t)‖L3(Ω,R3)

)
‖qz(t)‖L6(Ω,R3)‖qzt (t)‖L2(Ω,R3) ,∫

Ω

(m(t) · qz(t)) h(t) · qzt (t) dx ≤ ‖h(t)‖L3(Ω,R3)‖qz(t)‖L6(Ω,R3)‖qzt (t)‖L2(Ω,R3) ,∫
Ω

(m(t) · qz(t))∆m(t) · qzt (t) dx

≤ CΩ
H1→L3‖∆m(t)‖H1(Ω,R3))‖qz(t)‖L6(Ω,R3)‖qzt (t)‖L2(Ω,R3) ,∫

Ω

K̃z(t) · qzt (t) dx ≤ ‖K̃z(t)‖L2(Ω,R3)‖qzt (t)‖L2(Ω,R3) .

Above, we employ the fact that the solution m to the LLG equation has |m| = 1
and continuity of the embeddingsH1(Ω,R3) ↪→ L6(Ω,R3) ↪→ L3(Ω,R3), H2(Ω,R3) ↪→
L∞(Ω,R3) through the constants CΩ

H1→L6 , CΩ
H1→L3 and CΩ

H2→L∞ , respectively.
Employing Young’s inequality we deduce , for each t ≤ T and ε > 0 sufficiently small,

1

2

d

dt
‖∇qz(t)‖2

L2(Ω,R3) + (α̂1 − ε)‖qzt (t)‖2
L2(Ω,R3)

≤
[(
‖∇m‖4

L∞(0,T ;H1(Ω,R3)) + ‖∇m(t)‖2
H2(Ω,R3) + ‖mt(t)‖2

L3(Ω,R3) + ‖h(t)‖2
L3(Ω,R3)

)
.‖qz(t)‖2

H1(Ω,R3) + ‖K̃z(t)‖2
L2(Ω,R3)

]
C

4ε
. (5.63)

The generic constant C might take different values whenever it appears.
To have the full H1−norm on the left hand side of this estimate, we apply

the transformation q̃z(t) = etqz(t), which yields q̃zt(t) = et(qz(t) + qzt (t)). Af-
ter testing by qzt , the term

∫
Ω

qz(t) · qzt (t) dx = 1
2
d
dt
‖qz(t)‖2

L2(Ω,R3) will contribute

to 1
2
d
dt
‖∇qz(t)‖2

L2(Ω,R3) forming the full H1−norm on the left hand side. Alterna-
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tively, one can add qz to both sides of (5.52) and evaluate the right hand side with∫
Ω

qz(t) · qzt (t) dx ≤ 1
4ε
‖qz(t)‖2

H1(Ω,R3) + ε‖qzt (t)‖2
L2(Ω,R3).

Integrating over (0, t), we get

1

2
‖qz(t)‖2

H1(Ω,R3) + (α̂1 − ε)‖qzt‖2
L2(0,t;L2(Ω,R3))

≤
[ ∫ t

0

(
‖∇m‖4

L∞(0,T ;H1(Ω,R3)) + ‖∇m(τ)‖2
H2(Ω,R3) + ‖mt(τ)‖2

L3(Ω,R3) + ‖h(τ)‖2
L3(Ω,R3)

)
.‖qz(τ)‖2

H1(Ω,R3) dτ + ‖K̃z‖2
L2(0,T ;L2(Ω,R3)) + ‖(M α̂

T )−1K̃T z‖2
H1(Ω,R3)

]
C

4ε

with the evaluation for the terms ‖K̃z‖L2(0,T ;L2(Ω,R3)) and ‖(M α̂
T )−1K̃T z‖2

H1(Ω,R3) (not
causing any misunderstanding, we omit here the subscripts k, ` for indices of concen-
trations and coil sensitivities)

‖K̃z(t)‖2
L2(Ω,R3) ≤ C‖cpR‖2

L2(Ω,R3)‖ã‖2
H1(0,T )‖z‖2

L2(0,T )

≤ C ã,c,pR‖z‖2
L2(0,T ) ,

|(M α̂
T )−1K̃T z‖2

H1(Ω,R3)

≤ C α̂‖z‖2
L2(0,T )‖ã‖2

L2(0,T )

.
(
‖cpR‖2

H1(Ω,R3) + ‖cpmi(T )‖2
H1(Ω,R3) + ‖cpRmj(T )mk(T )‖2

H1(Ω,R3)

)
≤ C α̂0,ρ,ã‖z‖2

L2(0,T )

(
‖cpR‖2

H1(Ω,R3) + ‖cpR‖2
L6(Ω,R3)‖∇m(T )‖2

L3(Ω,R3)

)
≤ C ã‖z‖2

L2(0,T )

(
‖cpR‖2

H1(Ω,R3) + (CΩ
H1→L6CΩ

H1→L3)2‖cpR‖2
H1(Ω,R3)‖∇m‖2

L∞(0,T ;H1(Ω,R3))

)
≤ C ã,c,pR‖z‖2

L2(0,T )‖∇m‖2
L∞(0,T ;H1(Ω,R3))

with some i, j, k = 1, 2, 3. This estimate holds for cpR ∈ H1(Ω,R3) thus requires some
smoothness of the concentration c, while the coil sensitivity pR is usually smooth in
practice.

Then applying Grönwall’s inequality yields

‖qz‖L∞(0,T ;H1(Ω,R3))

≤ C exp
(
‖∇m‖2

L∞(0,T ;H1(Ω,R3)) + ‖∇m‖L2(0,T ;H2(Ω,R3)) + ‖mt‖L2(0,T ;L3(Ω,R3))

+ ‖h‖L2(0,T ;L3(Ω,R3))

)
.
(
‖K̃z‖L2(0,T ;L2(Ω,R3)) + ‖(M α̂

T )−1K̃T z‖H1(Ω,R3)

)
≤ C ã,c,pR

(
‖∇m‖L∞(0,T ;H1(Ω,R3))∩L2(0,T ;H2(Ω,R3)), ‖mt‖L2(0,T ;L3(Ω,R3)), ‖h‖L2(0,T ;L3(Ω,R3))

)
.‖z‖L2(0,T ).
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Integrating (5.63) on (0, T ), we also get

‖qzt‖L2(0,T ;L2(Ω,R3))

≤ C ã,c,pR
(
‖∇m‖L∞(0,T ;H1(Ω,R3))∩L2(0,T ;H2(Ω,R3)), ‖mt‖L2(0,T ;L3(Ω,R3)), ‖h‖L2(0,T ;L3(Ω,R3))

)
.‖z‖L2(0,T ).

Altogether, we obtain

‖qz‖L∞(0,T ;H1(Ω,R3)) + ‖qzt‖L2(0,T ;L2(Ω,R3)) (5.64)

≤ C ã,c,pR
(
‖∇m‖L∞(0,T ;H1(Ω,R3))∩L2(0,T ;H2(Ω,R3)), ‖mt‖L2(0,T ;L3(Ω,R3)), ‖h‖L2(0,T ;L3(Ω,R3))

)
.‖z‖L2(0,T ).

This result applied to the Galerkin approximation implies existence of the solution
to the adjoint equation. Uniqueness also follows from (5.64).

Regularity of the solution to the LLG equation

In (5.64), first of all we need the solution to the LLG equation m ∈ L∞(0, T ;H2(Ω,R3))
∩L2(0, T ;H3(Ω,R3)). This could be referred from the regularity result in [43, Lemma
2.3] for m0 ∈ H2(Ω,R3) with small ‖∇m0‖L2(Ω,R3). The remaining task is verifying
that the estimate still holds in case h is present, i.e., the right hand side of (5.21)
contains the additional the term Projm⊥h.

Following the line of the proof in [43, Lemma 2.3], we take the second space
derivative of Projm⊥h then test it by ∆m∫

Ω

∆h(t) ·∆m(t) dx

≤

{
‖∆h(t)‖L2(Ω,R3)‖∆m(t)‖L2(Ω,R3) if h ∈ L2(0, T ;H2(Ω,R3))

‖∇h(t)‖L2(Ω,R3)‖∇3m(t)‖L2(Ω,R3) if h ∈ L2(0, T ;H1(Ω,R3)), ∂νh = 0 on ∂Ω
,

∫
Ω

∆((m(t) · h(t))m(t)) ·∆m(t) dx

≤


C‖h(t)‖H2(Ω,R3)

(
1 + 6‖∇m(t)‖H1(Ω,R3) + 2‖∇m(t)‖H2(Ω,R3)‖∇m‖L∞(0,T ;L2(Ω,R3))

)
.‖∆m(t)‖L2(Ω,R3) if h ∈ L2(0, T ;H2(Ω,R3))

C‖h(t)‖H1(Ω,R3)

(
1 + 2‖∇m(t)‖L3(Ω,R3)

)
‖∇3m(t)‖L2(Ω,R3)

if h ∈ L2(0, T ;H1(Ω,R3)), ∂νh = 0 on ∂Ω

with C just depending on the constants in the embeddings H1(Ω,R3) ↪→ L6(Ω,R3) ↪→
L3(Ω,R3). Then we can proceed similarly to the proof of [43, Lemma 2.3] with
applying Yong’s inequality, Gronwall’s inequality and time integration to arrive at

‖∇m‖L∞(0,T ;H1(Ω,R3))∩L2(0,T ;H2(Ω,R3))

≤
(
‖∇m0‖H1(Ω,R3) + ‖h‖

)
C(‖∇m0‖H1(Ω,R3), ‖h‖), (5.65)
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where ‖h‖ is evaluated in L2(0, T ;H1(Ω,R3)) or L2(0, T ;H2(Ω,R3)) as in the two
cases mentioned above.

It remains to prove mt ∈ L2(0, T ;H1(Ω,R3)) ↪→ L2(0, T ;L3(Ω,R3)) to validate
(5.64). For this purpose, instead of working with (5.21) we test (5.18) by −∆mt∫

Ω

mt(t) · (−∆mt(t)) dx = ‖∇mt(t)‖2
L2(Ω,R3) ,∫

Ω

−α1∆m(t) · (−∆mt(t)) dx =
α1

2

d

dt
‖∆m(t)‖2

L2(Ω,R3) ,∫
Ω

−α1|∇m(t)|2m(t) · (−∆mt(t)) dx = −α1

∫
Ω

∇
(
|∇m(t)|2m(t)

)
: ∇mt(t) dx

≤ α1

(
2CΩ

H1→L6CΩ
H1→L3‖∇m‖L∞(0,T ;H1(Ω,R3))‖∆m(t)‖H1(Ω,R3)

+ (CΩ
H1→L6)3‖∇m‖3

L∞(0,T ;H1(Ω,R3))

)
‖∇mt(t)‖L2(Ω,R3) ,∫

Ω

−α1(h(t)− (m(t) · h(t))m(t)) · (−∆mt(t)) dx

= −α1

∫
Ω

∇(h(t)− (m(t) · h(t))m(t)) : ∇mt(t) dx

≤ 2α1

(
‖∇h(t)‖L2(Ω,R3) + CΩ

H1→L6‖h(t)‖L3(Ω,R3)‖∇m‖L∞(0,T ;H1(Ω,R3))

)
‖∇mt(t)‖L2(Ω,R3) ,∫

Ω

−α2(m(t)×∆m(t)) · (−∆mt(t)) dx =

∫
Ω

−α2∇(m(t)×∆m(t)) : ∇mt(t) dx

≤ |α2|
(
CΩ
H1→L6CΩ

H1→L3‖∇m‖L∞(0,T ;H1(Ω,R3))‖∆m(t)‖H1(Ω,R3)

+ ‖∇3m(t)‖L2(Ω,R3)

)
‖∇mt(t)‖L2(Ω,R3) ,∫

Ω

−α2(m(t)× h(t)) · (−∆mt(t)) dx =

∫
Ω

−α2∇(m(t)× h(t)) : (∇mt(t)) dx

≤ |α2|
(
CΩ
H1→L6‖h(t)‖L3(Ω,R3)‖∇m‖L∞(0,T ;H1(Ω,R3)) + ‖∇h(t)‖L2(Ω,R3)

)
‖∇mt(t)‖L2(Ω,R3).

Integrating over (0, T ) then employing Hölder’s inequality, Young’s inequality and
(5.65), it follows that

(1− ε)‖∇mt‖L2(0,T ;L2(Ω,R3))

≤ C

4ε

(
‖∇m‖L∞(0,T ;H1(Ω,R3))‖∇m‖L2(0,T ;H2(Ω,R3)) + ‖∇m‖3

L∞(0,T ;H1(Ω,R3))

+ ‖∇m‖L2(0,T ;H2(Ω,R3)) + ‖h‖L2(0,T ;H1(Ω,R3))‖∇m‖L∞(0,T ;H1(Ω,R3)) + ‖h‖L2(0,T ;H1(Ω,R3))

)
≤
(
‖∇m0‖H1(Ω,R3) + ‖h‖

)
C(‖∇m0‖H1(Ω,R3), ‖h‖). (5.66)

Also ‖mt‖L2(0,T ;L2(Ω,R3)) < C
(
‖∇m0‖L2(Ω,R3) + ‖h‖L2(0,T ;L2(Ω,R3))

)
according to [76]

with taking into account the present of h, we arrive at

‖mt‖L2(0,T ;H1(Ω,R3)) ≤
(
‖∇m0‖H1(Ω,R3) + ‖h‖

)
C(‖∇m0‖H1(Ω,R3), ‖h‖), (5.67)
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where ‖h‖ is evaluated in L2(0, T ;H1(Ω,R3)) or L2(0, T ;H2(Ω,R3)).
In conclusion, the fact that m ∈ L∞(0, T ;H2(Ω,R3)) ∩ L2(0, T ;H3(Ω,R3)) ∩

H1(0, T ;H1(Ω,R3)) for m0 ∈ H2(Ω,R3) with small ‖∇m0‖L2(Ω,R3), and
h ∈ L2(0, T ;H1(Ω,R3)), ∂νh = 0 on ∂Ω or h ∈ L2(0, T ;H2(Ω,R3)) guarantee unique
existence of the adjoint state qz ∈ L∞(0, T ;H1(Ω,R3)) ∩ H1(0, T ;L2(Ω,R3)). And
this regularity of qz ensures the adjoint F ′(α̂)∗ in (5.51) to be well-defined.

Remark 5.4.3.

• The LLG equation (5.21)-(5.23) is uniquely solvable for α̂1 > 0 and arbitrary
α̂2. Therefore, the regularization problem should be locally solved within the
ball Bρ(α̂0) of center α̂0 with α̂0

1 > 0 and radius ρ < α̂0
1.

• [43, Lemma 2.3] requires smallness ‖∇m0‖L2(Ω,R3) ≤ λ, and this smallness de-

pends on α̂ through the relation CI
(
λ2 + 2λ+ α̂2

α̂1
λ
)
< 1 with CI depending

on the constants in the interpolation inequalities.

Altogether, we arrive at

D(F ) =

{
α̂ = (α̂1, α̂2) ∈ Bρ(α̂0) : 0 < α̂0

1, ρ < α̂0
1, C

I

(
λ2 + 2λ+

α̂2

α̂1

λ

)
< 1

}
.

(5.68)

Differentiability of the forward operator

Since the observation operator K is linear, differentiability of F is just the question
of differentiability of S.

Let us rewrite the LLG equation (5.21) in the following form

g̃(α̂,m)−∆m = f̃(m)

and denote

ṽε :=
S(α̂ + εβ)− S(α̂)

ε
− u =:

n−m

ε
− u =: vε − u.

Considering the system of equations

g̃(α̂ + εβ,n) −∆n = f̃(n),

g̃(α̂,m) −∆m = f̃(m),

g̃′m(α̂,m)u + g̃′α̂(α̂,m)β −∆u = f̃ ′m(m)u
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with the same boundary and initial data for each, we see that ṽε solves

g̃′m(α̂,m)ṽε −∆ṽε − f̃ ′m(m)ṽε

=
f̃(n)− f̃(m)

ε
− f̃ ′m(m)vε − g̃(α̂ + εβ,n)− g̃(α̂,m)

ε
(5.69)

+ g̃′m(α̂,m)vε + g̃′α̂(α̂,m)β in (0, T )× Ω

∂νṽ
ε = 0 on [0, T ]× ∂Ω (5.70)

ṽε(0) = 0 in Ω, (5.71)

explicitly

α̂1ṽ
ε
t − α̂2m× ṽεt − α̂2ṽ

ε ×mt −∆ṽε

− 2(∇ṽε : ∇m)m + ṽε(−|∇m|2 + (m · h)) + (ṽε · h)m

=
1

ε

(
|∇n|2n + Projn⊥h− |∇m|2m− Projm⊥h

)
(5.72)

− 2(∇vε : ∇m)m + vε(−|∇m|2 + (m · h)) + (vε · h)m

− 1

ε
((α̂1 + εβ1)nt − (α̂2 + εβ2)n× nt − α̂1mt + α̂2m×mt)

+ α̂1v
ε
t − α̂2m× vεt − α̂2v

ε ×mt

+ β1mt − β2m×mt in (0, T )× Ω

∂νṽ
ε = 0 on [0, T ]× ∂Ω (5.73)

ṽε(0) = 0 in Ω. (5.74)

Observing the similarity of (5.72)-(5.74) to the adjoint equation (5.52)-(5.54) with
ṽε in place of qz and denoting by bε the right hand side of (5.69) or (5.72), one can
evaluate ‖ṽε‖ using the same technique as in Section 5.4.2. By this way, one achieves,
for each ε ∈ [0, ε̄],

‖ṽε‖L∞(0,T ;H1(Ω,R3))∩H1(0,T ;L2(Ω,R3)) ≤ C‖bε‖L2(0,T ;L2(Ω,R3))

with bε ∈ L2(0, T ;L2(Ω,R3)) also by analogously estimating and employing m,n ∈
L∞(0, T ;H2(Ω,R3)) ∩ L2(0, T ;H3(Ω,R3)) ∩ H1(0, T ;H1(Ω,R3)). We note that the
constant C here is independent of ε.
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Next letting V := L∞(0, T ;H1(Ω,R3)) ∩H1(0, T ;L2(Ω,R3)), we have

‖bε‖L2(0,T ;L2(Ω,R3))

=

∥∥∥∥ f̃(n)− f̃(m)

ε
− f̃ ′m(m)vε − g̃(α̂ + εβ,n)− g̃(α̂,m)

ε

+ g̃′m(α̂,m)vε + g̃′α̂(α̂,m)β

∥∥∥∥
L2(0,T ;L2(Ω,R3))

≤
∥∥∥∥∫ 1

0

((
f̃ ′m(m + λεvε)− f̃ ′m(m)

)
vε −

(
g̃′m(α̂ + λεβ,m + λεvε)− g̃′m(α̂,m)

)
vε

−
(
g̃′α̂(α̂ + λεβ,m + λεvε)− g̃′α̂(α̂,m)

)
β
)
dλ

∥∥∥∥
L2(0,T ;L2(Ω,R3))

≤ 2 sup
λ∈[0,1]
ε∈[0,ε̄]

(
‖f̃ ′m(m + λεvε)‖V→L2(0,T ;L2(Ω,R3))‖vε‖V

+ ‖g̃′m(α̂ + λεβ,m + λεvε)‖V→L2(0,T ;L2(Ω,R3))‖vε‖V
+ ‖g̃′α̂(α̂ + λεβ,m + λεvε)‖R2→L2(0,T ;L2(Ω,R3))|β|

)
.

In order to prove uniform boundedness of the derivatives of f̃ , g̃ w.r.t λ, ε in the
above estimate, we again proceed in similar a manner to Section 5.4.2 since the space
for qz in Section 5.4.2 (c.f. (5.65)) coincides with V here and by the fact that for
m,n ∈ L∞(0, T ;H2(Ω,R3)) ∩ L2(0, T ;H3(Ω,R3)) ∩H1(0, T ;H1(Ω,R3))

max{‖m‖, ‖n‖} ≤ max
{ 1

α̂1

,
1

α̂1 + εβ1

}
C
(
‖m0‖H2(Ω,R3)), ‖h‖L2(0,T ;H2(Ω,R3))

)
≤ C

α̂0
1 − ρ

. (5.75)

If ∂νh = 0 on ∂Ω, we just need the ‖.‖L2(0,T ;H1(Ω,R3))-norm for h as claimed in (5.65).
This estimate holds for any ε ∈ [0, ε̄], and the constant C is independent of ε.

To accomplish uniform boundedness for ‖bε‖L2(0,T ;L2(Ω,R3)), we need to show that
‖vε‖V is also uniformly bounded w.r.t ε. It is seen from

g̃(α̂ + εβ,n)−∆n = f̃(n),

g̃(α̂,m) −∆m = f̃(m)
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that vε solves∫ 1

0

g̃′m(α̂ + λεβ,m + λεvε)vε + g̃′α̂(α̂ + λεβ,m + λεvε)β dλ−∆vε

=

∫ 1

0

f̃ ′m(m + λεvε)vε dλ in (0, T )× Ω (5.76)

∂νv
ε = 0 on [0, T ]× ∂Ω (5.77)

vε(0) = 0 in Ω. (5.78)

Noting that M := m + λεvε = λn + (1 − λ)m has ‖M‖ ≤ C
α̂0

1−ρ
, ∀λ ∈ [0, 1] with

C being independent of ε, and g̃ is first order in α̂, we can rewrite (5.76) into the
following linear equation

G̃(α̂ + λεβ,M)vε −∆vε + F̃ (M)vε = B̃(M)β. (5.79)

Following the line of the proof in Section 5.4.2, boundedness of the terms −∆, F̃ (M),
B̃(M) are straightforward, while the main term in G̃(α̂ + λεβ,M) producing the
single square norm of vεt, after being tested by vεt is∫ 1

0

(α̂1 + λεβ1)

∫
Ω

vεt(t) · vεt(t) dx dλ = ‖vεt(t)‖2
L2(Ω,R3)

(
α̂1 +

εβ1

2

)
≥ ‖vεt(t)‖2

L2(Ω,R3)(α̂
0
1 − ρ).

According to this, one gets, for all ε ∈ [0, ε̄],

‖vε‖V ≤ C|β|‖B̃(M)‖R2→L2(0,T ;L(Ω,R3)) ≤ |β|C (5.80)

with C depending only on m0,h, α̂
0, ρ.

Since bε → 0 pointwise and ‖bε‖L2(0,T ;L2(Ω,R3)) ≤ C for all ε ∈ [0, ε̄], applying
Lebesgue’s Dominated Convergence Theorem yields convergence of ‖bε‖L2(0,T ;L2(Ω,R3)),
thus of ‖ṽε‖V , to zero. Fréchet differentiability of the forward operator in the reduced
setting is therefore proved.

Conclusion and outlook

In this chapter, we outlined the mathematical model of MPI which led us to the
LLG equation describing the magnetic particle interaction on a microscale level. For
calibrating the MPI device it is necessary to compute the system function which
mathematically can be interpreted as an inverse parameter identification problem for
an initial value problem based on the LLG equation. To this end we deduced a de-
tailed analysis of the forward model, i.e., the operator mapping the coefficients to the
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5.4. Derivatives and adjoints

solution of the PDE as well as of underlying inverse problem. The inverse problem
itself was investigated for an all-at-once and a reduced approach. The analysis in-
cludes representations of the adjoint operators and Fréchet derivatives. These results
are necessary for a subsequent numerical computation of the system function in a ro-
bust manner, what will be subject of future research. Even beyond this, the analysis
might be useful for the development of solution methods for any inverse problems
that are connected to the LLG equation.

Concerning the model, the following directions are of our interest:
One might include further energy contributions to the effective magnetic field,

e.g., the anisotropy, which is modeled as the additive term (m · n)n for a given
anisotropy direction n ∈ S2. We expect a change in the form of the adjoint equation
in the reduced setting, while in the all-at-once one, the procedure to compute the
adjoints stays untouched except that the anisotropy term will contribute to fy in the
expression (5.42).

We plan to extend to the case of time-dependent particle density. In this situation,
we replace c(x) by c(x, t) in all formulas, and where the kernel K is differentiated in
time (as a result of integration-by-parts), we need to differentiate c as well.
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Chapter 6

Numerical reconstruction in MPI

In this chapter, we present a numerical study for the theory introduced in Chapter 5,
including approximation of solutions to the LLG equation and reconstruction of the
involved physical parameters for given measured MPI data.

The chapter is outlined as follows: Section 6.1 discusses the iterative Landweber
and Landweber-Kaczmarz schemes for the reconstruction problem in all-at-once and
reduced versions. This leads to an LLG solver relying on the all-at-once approach,
which offers an efficient computation scheme for solving the nonlinear LLG equation
and will be utilized in the reduced setting. Section 6.2 provides several synthetic
examples, also physically meaningful simulations followed by comparisons between
the two versions to visualize as well as analyze the proposed algorithm.

6.1 Algorithm

Let us first of all refer to Chapter 1, Section 1.1.3 for the definition of the Landweber
and Landweber-Kaczmarz regularization methods. We now make explicit the steps
comprised in each of these methods in the all-at-once version as well as its counterpart
reduced version. For the all-at-once setting, the algorithm relies on Section 5.4.1, and
for the reduced setting, it results from Section 5.4.2, both sections are in Chapter 5.

6.1.1 All-at-once Landweber

Start from (m̂, α̂1, α̂2)j=0 = (m−m0, α̂1, α̂2)j=0, run

S.1. Set argument to adjoint equations

Let m̂ := m̂j, α̂1 := α̂1 j, α̂2 := α̂2 j
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Compute

w = α̂1m̂t −∆N(m0 + m̂)− α̂2(m0 + m̂)× m̂t

− |∇(m0 + m̂)|2(m0 + m̂)− h + ((m0 + m̂) · h)(m0 + m̂)

r(t) =

(∫ T

0

∫
Ω

Kk`(x, t, τ)mt(x, τ) dx dτ

)
k=1,...,K,`=1,...,L

− yδ(t).

Check: Stopping rule according to discrepancy principle.

S.2. Compute the adjoints

A. Compute z = ∂F0

∂m̂
(m̂, α̂)∗w

A.1. Input: w
Solve

−∆ỹ(t) + ỹ(t) = w(t) in Ω

∂ν ỹ = 0 on ∂Ω.

Output: ỹ

A.2. Input: ỹ
Compute

y(t) = I2[ỹ](t) = −
∫ t

0

(t− s)ỹ(s) ds+
t

T

∫ T

0

(T − s)ỹ(s) ds.

Output: y

A.3. Input: y
Compute

fy = −α̂1yt + (−∆Ny)− α̂2m̂t × y + α̂2yt × (m0 + m̂) + α̂2y × m̂t

− 2((m0 + m̂) · y) (−∆N(m0 + m̂))

+ 2((∇(m0 + m̂)T (∇y)) (m0 + m̂)

+ 2((∇(m0 + m̂)T (∇(m0 + m̂))) y − |∇(m0 + m̂)|2y
+ ((m0 + m̂) · h) y + ((m0 + m̂) · y) h

gy
T = α̂1y(T )− α̂2y(T )× (m0 + m̂(T )).

Output: fy,gy
T

A.4. Input: fy,gy
T

Solve

−vt −∆v = fy in (0, T )× Ω

∂νv = 0 on (0, T )× ∂Ω

v(T ) = gy
T in Ω.

Output: v
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A.5. Input: v
Solve

zt −∆z = v in (0, T )× Ω

∂νz = 0 on (0, T )× ∂Ω

z(0) = 0 in Ω.

Output: z

B. Compute s =
(
∂Fk`
∂m̂

(m̂, α̂)k=1,...,K,`=1,...,L

)∗
r

B.1. Input: r from Step S.1.
Compute

f r(x, τ) = −
∫ T

0

K∑
k=1

L∑
`=1

∂

∂τ
Kk`(t, τ, x)rk`(t) dt

gr(x) =

∫ T

0

K∑
k=1

L∑
`=1

Kk`(t, T, x)rk`(t) dt

with
Kk`(t, τ, x) := −µ0ã`(t− τ)ck(x)pR

` (x).

Output: fr,gr

B.2. Step A.4. with input: fr,gr

B.3. Step A.5. with output: s

C. Compute β1 = ∂F0

∂α̂1
(m̂, α̂)∗w

C.1. Input: y from Step A.2.
Compute

β1 =

∫ T

0

∫
Ω

m̂t · y dx dt

Output: β1

D. Compute β2 = ∂F0

∂α̂2
(m̂, α̂)∗w

D.1. Input: y from Step A.2.
Compute

β2 = −
∫ T

0

∫
Ω

((m0 + m̂)× m̂t) · y dx dt .

Output: β2
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S.3. Update m̂, α̂1, α̂2

m̂j+1 = m̂j − µ(z + s) (6.1)

α̂1 j+1 = α̂1 j − µβ1 (6.2)

α̂2 j+1 = α̂2 j − µβ2. (6.3)

In the implementation, one can consider each of the vector fields as a three-
dimensional matrix, i.e., Figure 6.1. Steps A.1., A.2., A.4., A.5. then operate on each
time-space slice, meanwhile Step A.3. needs to be calculated among 3D-matrices.

space

time

Figure 6.1: Matrix representation for a vector field in the all-at-once setting.

Remark 6.1.1. In case of having given parameters α̂1, α̂2, one can omit Steps B., C.,
D. and Steps (6.2)-(6.3) in S.3.to obtain a numerical solution to m. This procedure
can be seen as a LLG solver.

As far as a numerical solution of LLG is concerned, numerous investigations have
been recently published. Bartels and Prohl in 2008 [8] considered a p-harmonic heat
flow with 1 < p < ∞ and established a numerical implementation strategy based
on solving a nonlinear system per time step. These authors integrated a fixed-point
method with stopping criterion (to handle the nonlinear system) into a lowest order
conforming finite element method. The work of Alouges et. al. in 2008 [2] described
a new implicit finite element scheme, which avoids solving nonlinear systems. This
θ-scheme introduces the new term v := mt to form a linear equation in v. At each
time step n, θ ∈ [0, 1] involves∇(mn+θkvn) in the variation formula (hence implicit),
where k is the time step size. After solving vn by an implicit finite element scheme,
m at the next time step (n + 1) is updated by mn+1 := mn+kvn

|mn+kvn| . Inspired by the

θ-scheme, Baňas et. al. in 2014 [6] studied the more general model including the
magnetostriction effect instead of the magnetostatic simplification. The phenomenon
is governed by a coupled problem of a LLG equation and a second time-dependent
PDE representing the magnetostrictive contribution. The authors later dealt with
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6.1. Algorithm

the full Maxwell-LLG equation in [5] and proposed a fully decoupled scheme. In
2014, Alouges et. al. [3] upgraded the original first order θ-scheme with replacing the
tangential update for m by a higher approximation via Projm⊥ and mtt, creating a
new (almost) order two θ-scheme. The algorithm initializes with differentiating with
respect to time the LLG equation then ends up with a variation formula linear in v.
The approximation in space is still of order one (P 1 Lagrange finite elements), and
the convergence of the scheme does not hold for higher order elements.

Independently of these existing works, our algorithm is attractive from a practical
point of view since we also require to solve only linear PDEs per iteration step. Our
contribution as well as the advantage of the method can be summarized as follows

• Unlike the mentioned novel schemes, that find m at each time point per iteration
step, our scheme solves m at all time instances per iteration. The loop in our
scheme is dedicated to the Landweber(-Kaczmarz) iteration, which improve the
whole m([0, T ] × Ω) gradually. This shall grant access to space-time adaptive
discretization.

• In each step, only three separate and conventional linear PDEs, i.e. A.1., A.4.
and A.5. are required to be solved. Our method, therefore, does not need to
derive new theory for proving unique existence and convergence of finite element
solutions, which are the main results in most of the current literature.

• Also with this reason, the suggested method is favorable in implementation
since one can make use of existing standard finite difference or finite element
codes.

• We also remark that our method is able to be upgraded to higher order through

– higher order standard FD/FE for solving the conventional PDEs in A.1.,
A.4., A.5. (feasible).

– higher order numerical approximation for the integrals and derivatives in
A.2., A.3. (feasible).

– higher convergence rate of the Landweber. This fact depends on how
smooth the exact solution is (source condition) [62, Section 2.3]. And this
turns out to be smoothness of m0 and h, which is feasible if one proceeds
similarly to the proof of regularity of m in the reduced setting (c.f., Chapter
5, formulas (5.65), (5.67)).

• Although not being presented here, our method can be extended to the case
when the anisotropy π(m) is involved in the effective field, under certain con-
ditions on π. This is due to the fact that after calculating F′(m̂, α̂1, α̂2)∗w,
only the term π′(m̂)∗w is added to fy in Step A.3., while all other steps remain
unchanged.
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• As the examples illustrated in this chapter are in simple one-dimensional do-
main, a finite difference discretization is well adapted. On the other hand,
there is no reason preventing the proposed method to be implemented by finite
elements to better suit complex geometries.

• Concerning memory requirement, in each of the Landweber iterations if using an
implicit Euler time stepping scheme, the proposed method demands a storage
for computing the cross product of two matrices of size nx×3 (number of space
grids × number of components) or multiplication a matrix of size nx×nx (finite
difference matrices or stiffness matrix) with a vector of nx elements. This yields
similarity in the memory requirement with the other existing schemes.

However

• As a nature of a nonlinear inverse problem, our scheme is able to solve it just
locally, i.e., a sufficiently good initial guess needs to be known.

• Concerning memory requirement, our algorithm demands more memory than
the others as the whole m([0, T ] × Ω) needs to be allocated in RAM for each
Landweber iteration.

6.1.2 Reduced Landweber

Start from α̂j=0 = (α̂1, α̂2)j=0, run

S.1. Compute the state m := S(α̂j) according to the LLG equation

S.2. Set argument to the adjoint equation
Compute

r(t) =

(∫ T

0

∫
Ω

Kk`(x, t, τ)mτ (x, τ) dx dτ

)
k=1,...,K,`=1,...,L

− yδ(t).

Check: Stopping rule according to discrepancy principle.

S.3. Compute the adjoint state qz = F ′(α̂)∗r according to

− α̂1q
z
t − α̂2m× qzt − 2α̂2mt × qz −∆qz

+ 2
(
(∇m)>∇m

)
qz + 2

(
(∇m)>∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h + 2∆m) = K̃r in (0, T )× Ω (6.4)

∂νq
z = 0 on (0, T )× ∂Ω (6.5)

α̂1q
z(T ) + α̂2(m× qz)(T ) = K̃T r in Ω (6.6)
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with

(K̃r)(x, t) =
K∑
k=1

L∑
`=1

−µ0ck(x)pR` (x)

∫ T

0

ã` τ (τ − t)rk`(τ) dτ t ∈ (0, T )

(K̃T r)(x) =
K∑
k=1

L∑
`=1

−µ0ck(x)pR` (x)

∫ T

0

ã`(τ)rk`(τ) dτ.

S.4. Update α̂1, α̂2

α̂1 j+1 = α̂1 j − µ
∫ T

0

∫
Ω

−mt · qz dx dt (6.7)

α̂2 j+1 = α̂2 j − µ
∫ T

0

∫
Ω

(m×mt) · qz dx dt. (6.8)

In contrast to the all-at-once setting, which solves the conventional PDEs on time-
space slices, the PDE in the adjoint equation (Step S.3.) of the reduced one involves
cross product and modulus, it, therefore, interacts between three components. Figure
6.2 is an example for assigning a vector field to a matrix when dealing with imple-
menting the reduced version. One might reshape the matrix in Figure 6.2 into one
vector of nx× 3× nt elements.

For Step S.2. here, one can employ the LLG solver introduced in Remark 6.1.1.
In order to search for m, the program needs an initial guess, which can be chosen as
the initial state m0. Then the computed mj of the Landweber iteration j, besides
being the input to the next steps S.3.-S.4. in the stream, on the other hand, plays
the role of an initial guess for S.2. in the next iteration (j + 1).

The reduced setting is supposed to run more slowly than the all-at-once one, if
using the same step size, as each of the Landweber iteration calls a LLG solver leading
to another inner loop.

space

time

3 componentsx1

3 componentsxn

Figure 6.2: Matrix representation for a vector field in the reduced setting.
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Besides the Landweber method, we consider also the Landweber-Kaczmarz method,
which is especially attractive for problems with large datasets or high dimensional
model operator; that our MPI problem with signals from several concentration sam-
ples and multiple receive coils in calibration is one typical example. In particular,
Kaczmarz method does not need to finish operating the whole system of KL equa-
tions, instead it just successively sweeps through each of those equations in each
iteration. Motivated by this idea, we propose two independent Kaczmarz schemes,
namely, we either segment the time line into several subintervals or use one single
data measured from one concentration sample and one receive coil in each iteration.
The algorithms for those schemes are detailed in the following remarks.

Remark 6.1.2. Kaczmarz based on time segmenting

Start from α̂j=0 = (α̂1, α̂2)j=0, run

S.1. Compute the state m := S(α̂j) according to the LLG equation

S.2. Set argument to adjoint equation
Compute

r(t) =

(∫ tj+1

tj

∫
Ω

Kk`(x, t, τ)mτ (x, τ) dx dτ

)
k=1,...,K,`=1,...,L

− yδ(t)χ[tj ,tj+1](t)

with tj =

⌊
j

n

⌋
, 0 = t0 < . . . < tn−1 = T .

Check: Stopping rule according to discrepancy principle.

S.3. Compute the adjoint state qz = F ′(α̂)∗r according to (6.4)-(6.6) with

(K̃r)(x, t) =
K∑
k=1

L∑
`=1

−µ0ck(x)pR` (x)

∫ tj+1

tj
ã` τ (τ − t)rk`(τ) dτ t ∈ (0, T )

(K̃T r)(x) =
K∑
k=1

L∑
`=1

−µ0ck(x)pR` (x)

∫ tj+1

tj
ã`(τ)rk`(τ) dτ.

S.4. Update α̂1, α̂2 as (6.7)-(6.8).

Remark 6.1.3. Kaczmarz based on data selection

Start from α̂j=0 = (α̂1, α̂2)j=0, run

S.1. Compute the state m := S(α̂j) according to the LLG equation
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S.2. Set argument to adjoint equation
Compute

r(t) =

∫ T

0

∫
Ω

Kk`(x, t, τ)mτ (x, τ) dx dτ − yδk`(t)

with k, ` satisfying k` =

⌊
j

KL

⌋
.

Check: Stopping rule according to discrepancy principle.

S.3. Compute the adjoint state qz = F ′(α̂)∗r according to (6.4)-(6.6) with

(K̃r)(x, t) = −µ0ck(x)pR` (x)

∫ T

0

ã` τ (τ − t)r(τ) dτ t ∈ (0, T )

(K̃T r)(x) = −µ0ck(x)pR` (x)

∫ T

0

ã`(τ)r(τ) dτ.

S.4. Update α̂1, α̂2 as (6.7)-(6.8).

6.2 Numerical experiments

6.2.1 LLG solver

When using the algorithm in Remark 6.1.1 as an LLG solver, there is no noise involved
in the process as the exact data (y = 0) is known. Hence, the algorithm should be
run with as large number of iterations as possible in order to reach an acceptable
accuracy for the reconstructed m̂.

In the following, we shall numerically test this algorithm using the finite difference
method for Steps A.1., A.3.-A.5.. In particular, central difference quotients were
employed to approximate time and space derivatives. Numerical integration in Step
A.2. runs with the trapezoidal rule. For computing the respective L2-norms, we use
also the trapezoidal rule. For time discretization, the interval [0, 0.2] is partitioned
into 51 time steps, and for the space domain [0, 2π], we impose a discretization of 101
grid points. The method in use is Landweber.

We now analyze the numerical performance of the LLG solver by means of three
test cases specified in Table 6.1. Test 1 with the corresponding parameter set is indeed
a true solution to the LLG equation. Test 2, however, does not completely yield the
original LLG equation since in the LLG model, m0 is supposed to have constant length
over Ω. For the same reason, initial data in Test 3 although fulfilling the requirement
of constant length (|m0(x)| = 2), does not have a homogeneous Neumann boundary.
Nevertheless, those test cases still reflect the the all-at-once model with unknown
m̂, while m0 being considered as just an additive term, thus are still recognized as
meaningful examples helping to increase diversity of the experiments.
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Figures 6.3, 6.5 and 6.7 display the results in time and space of the reconstructed
states together with comparisons to the true ones. In Figure 6.4, the initial error
in L2(0, T, L2(Ω,R3))-norm measuring the distance between m and mexact from 40%
declines to 0.4% after 3050 iterations. Considering the test cases 2 and 3 presented
in Figures 6.6 and 6.8. Starting from 11% and 22% the errors drop to 0.2% and 1.1%
after 5350 and 1850 iterations, respectively. In those tests, we create initial guesses
for m̂, thus m, by perturbing the exact ones by different amounts to closely inspect
the convergence of the method. In practice, one can choose the initial guess for the
LLG solver as m0, which means just (0, 0, 0) in Test 1 and (0, 0, 1) in the latter two.

Relying on monotonicity of the residual sequence, we implement an adaptive
Landweber step size scheme in order to search for an appropriate one (Figures 6.4,
6.6, 6.8, left). In particular, in each iteration, a residual comparison with the previous
step takes place. If the current residual shows a decrease, the current step size µ is
accepted, otherwise it is bisected. The iterations are terminated after reaching a level
in smallness of the step size, alternatively speaking, the residual is not able to get
significantly smaller. One can stop the iterations earlier by checking smallness of step
size together with residual tolerance. The runtime reports: 289 seconds, 512 seconds
and 205 seconds respectively for 3 tests.

Table 6.1: Test cases and run parameters

Test 1 2 3

α̂1 1 2 1

α̂2 -1 0 0

h
2

5
(0, 3, 4) −(cos(x), cos(x), 0) (0,0,0)

mexact

1

5
(0, 3, 4) (cos(x), cos(x), et) (sin(x), cos(x), et)

m0

1

5
(0, 3, 4) (cos(x), cos(x), 1) (sin(x), cos(x), 1)

m̂exact (0,0,0) (0,0,et − 1) (0,0,et − 1)

Initial guess m̂ −5t(1, 1, 1) −5t cos(x)(1, 1, 1) −
sin(30t)

5
(1, 1, 1)

Step size µ 150 75 300

# iterations 3050 5350 680
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Table 6.2: Common physical parameters.

Parameter Value Unit

Magnetic permeability µ0 4π × 10−7 H m−1

Sat. magnetization Ms 474 000 J m3T−1

Gyromagnetic ratio γ 1.75×1011 rad s−1

Damping parameter αD 0.1

Exchange constant A 0 J m−1

Field of view Ω [-0.006, 0.006] m

Max observation time T 0.03×10−3 s

External field strength |h| 10−5 T
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Figure 6.3: Test 1. Top: reconstructed m. Bottom: m−mexact. Left to right: each
component.
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Figure 6.4: Test 1. Left: step size µ. Right: ‖mk−mex‖
‖mex‖
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Figure 6.5: Test 2. Top: reconstructed m. Bottom: m−mexact. Left to right: each
component.
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Figure 6.6: Test 2. Left: step size µ. Right: ‖mk−mex‖
‖mex‖
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Figure 6.7: Test 3. Top: reconstructed m. Bottom: m−mexact. Left to right: each
component.
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Figure 6.8: Test 3. Left: step size µ. Right: ‖mk−mex‖
‖mex‖
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6.2.2 LLG solver with physical parameters

In this section, we perform some simulations with real physical parameters. Table
6.2 gives an overview on common parameters, that can be found, e.g., in [71, 5]. The
length of the magnetic moment vector m is specified by mS = Ms , also α̂1 and α̂2 are
different by a factor of mS. For better numerical computing, we shall do the following
scaling for the LLG equation.

Let m := m
mS
, α̃1 := mSα̃1, i.e.,

α̃1 :=
γαD

1 + α2
D

> 0, α̃2 :=
γ

1 + α2
D

> 0

and let

α̂1 =
α̃1

α̃2
1 + α̃2

2

, α̂2 =
α̃2

α̃2
1 + α̃2

2

, h = µ0mSHext,

we obtain the LLG equation for m with |m| = 1

α̂1mt − α̂2m×mt − 2AmS∆m = 2AmS|∇m|2m + h− (m · h)m in [0, T ]× Ω

∂νm = 0 on [0, T ]× ∂Ω

m(t = 0) = m0, |m0| = 1 in Ω.

In Figure 6.9, the left columns display three states of the applied magnetic field h,
namely, one static field in e3-direction and two other time-dependent fields. Starting
from an initial state (homogeneous in space), the magnetization vector m (right
columns) follows the trajectory of h with a delay known as the relaxation effect.
The length of m is not fully preserved, but it is obviously not far from the unit
length. Figure 6.10 displays the progression of magnetization m when the static field
in e3-direction is applied to a space-inhomogeneous initial state m0 (top 6 plots) and
another m0 distributed randomly in space (bottom 6 plots).
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6.2. Numerical experiments

Figure 6.9: Left: applied field h. Middle: initial state m0. Right: trajectory of m(t).

152
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Figure 6.10: Magnetization m at time different time instances.
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6.2. Numerical experiments

6.2.3 Reconstruction in all-at-once and reduced settings

In this section, we compare the reconstruction outcome from all-at-once and reduced
settings in case of exact measured data. Staying with the implementation method
from Section 6.2.1, we carry out the Landweber approximation for Test 2 in Table 6.1.
For the measurement process, we define the observation operator via: µ0 = 1, ãl =
1, ck = 1,pR` = (1, 1, 1). And the initial guess for the state is minit = m0.

Figures 6.11 and 6.12 respectively present the reconstructed state in the all-at-
once setting and in the reduced setting. The all-at-once Landweber ran with 350, 000
iterations and Landweber step size µ = 1, while the reduced one ran with 250 itera-
tions of step size µ = 1. The reconstructed parameters α̂1, α̂2 are depicted in Figures
6.13, 6.14 (left), where both settings confirm the results at acceptable error level.

In the all-at-once setting, the Landweber approximation is applied to both state m
and parameter α̂. In the reduced setting, only the parameter is approximated, while
the state is solved exactly with the help of the parameter-to-state map. Hence, the
reduced version require more Landweber iterations to reach an acceptable tolerance
compared to the reduced one. Despite the lower number of Landweber iterations, the
reduced setting, on the other hand, executes another amount of internal loops each
time it calls the LLG solver. Figure 6.14 (right) views the number of internal loops
in 250 reduced Landweber iterations. The sum of the internal loops is 11095.

With the same step size µ = 1, the runtime reports: 79,000 seconds for 350,000
all-at-once iterations and 90,000 seconds for 250 reduced iterations. The reduced
Landweber can be sped up by using a larger step size µ = 10, which is feasible in
the this setting; however, not feasible in the all-at-once one. Indeed, the step sizes
in the two settings are not correlated since they are chosen subject to the criterion
µ ∈

(
0, 1
‖F ′(x)‖2

]
,∀x ∈ Bρ(x0), and according to the problem formulation, the forward

operators, thus their derivatives, are different in each setting.
In Figure 6.15, the left plot displays the observation residual ‖Kmt − y‖L2(0,T ) of

each iteration in the reduced version. The middle and right plots display together
the observation residual, the LLG residual and the `2-norm total residual in the all-
at-once version. The LLG residual is measured in the H1(0, T,H1(Ω,R3))∗-norm.

We now examine the reconstruction for Test 3, Table 6.1 in case of noisy data.
We perturb the exact measured voltage with 10%, 5% and 3% random noise. Also,
instead of initializing the algorithm at m0, we choose a perturbed version of it, namely,
minit = m0−0.1 sin(20t). The stopping rule is according to the discrepancy principle.
Table 6.3 respectively reports the number iterations (#it), the LLG residual (rllg),
the observation residual (ronb) and the reconstruction error (eα1 , eα2) in both settings.
The LLG residuals in the reduced setting are typically smaller than that in the all-
at-once one, since there the states are solved exactly.
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6.2. Numerical experiments

Figure 6.11: All-at-once setting. Top: reconstructed m. Bottom: m −mexact. Left
to right: each component.

Figure 6.12: Reduced setting. Top: reconstructed m. Bottom: m −mexact. Left to
right: each component.

155



6.2. Numerical experiments

0 1 2 3

105

0

2

4

6
 app 

1

 ext  
1

 app 
2

 ext  
2

0 50 100 150 200 250
-1

0

1

2

3

4

5

6

7

 app 
1

 ext  
1

 app 
2

 ext  
2

Figure 6.13: All-at-once setting. Left: reconstructed parameter. Right: zoom of first
250 iterations.
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Figure 6.14: Reduced setting. Left: reconstructed parameter. Right: number of
internal loops in each Landweber iteration.
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Figure 6.15: Residual. Left: reduced setting. Middle: all-at-once setting, first 250
iterations. Right: zoom of middle.
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Table 6.3: Reconstruction with noisy data.

AAO RED

δ #it rllg robs eα1 eα2 #it rllg robs eα1 eα2

10% 259 0.0022 0.0619 0.292 0.090 49 3× 10−6 0.0703 0.030 0.034

5% 401 0.0011 0.0309 0.125 0.072 49 3× 10−6 0.0321 0.040 0.033

3% 564 0.0007 0.0186 0.040 0.062 49 3× 10−6 0.0200 0.044 0.033

Conclusion and outlook

In Chapter 5, it has been discussed that the map from the external magnetic field h to
the magnetic moment vector m is essential to construct the particle distribution from
the induced signals. This nonlinear map is described by the Landau-Lifshitz-Gilbert
equation, which is realized to better yield the magnetization phenomenon since it
takes in to account the relaxation effect. This chapter investigates the numerical ap-
proximation to the magnetic moment vector m as well as the reconstructed physical
parameters α1, α2 through the LLG equation and measured signals. The numerical
results show that our method is robust. Moreover, the computational schemes are
practically preferable as all the steps involve solving only linear PDEs, also we pro-
vide multiple choices to the users: an all-at-once version and a reduced version. This
work indicates a potential in helping to accelerate the concentration reconstruction
algorithms in the next stage.

The next steps could be:

• Implement the proposed algorithm in higher dimensional field of view

• Apply the output system function (via the computed m) to the final process:
MPI reconstruction of the particle concentration.
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Conclusion

The work in this thesis is primarily devoted to the analysis of inverse problems for
parameter identification in time-dependent partial differential equations. Along with
this, computational experiments supplement the analysis in order to show how the
theory can be realized numerically. The key contributions of this research are:

• We parallelly formulated the inverse problem involving abstract evolution sys-
tems over a finite time line in two different settings: a classical reduced version
and a new all-at-once version. The new approach avoids the construction of the
parameter-to-state map, which is a conditional nonlinear map and in some cases
unachievable. An avoidance of solving such nonlinear equations makes the all-
at-once setting very efficient in practice by enabling treatment of a larger class
of problems as well as facilitating and accelerating numerical computations. In
addition, by parallelly working in two settings we achieved new results in the
classical reduced version.

• The tangential cone condition and locally uniform boundedness of the derivative
of the forward operator are two essential conditions, which shall grant access to
the iterative regularization theory. We established these conditions in a rigorous
way in the reduced setting as well as in its counterpart the all-at-once setting for
some general classes of examples, also for targeted concrete practical examples.

• Eventually, we efficaciously applied the above theory to a very new promising
application: Magnetic Particle Imaging.

In the connection of what has been obtained, we refer to the outlook in each of
the chapters 2, 3, 5, 6 where we state several potential directions for future research.
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Notation conventions

Physical quantities in MPI

m the magnetic moment vector

Heff the effective magnetic field

hext, h the external magnetic field

B the magnetic flux density

E the electric field

µ0 the permeability in vacuum

MS the saturation magnetization

A the exchange stiffness constant

αD the damping parameter

γ the gyromagnetic constant

v the voltage induced in the receive coil

pR the coil sensitivity

ã the transfer function, e.g, the band pass filter

c the particle concentration

D the particle core diameter

Vc the particle core volume

Sets

Ω a bounded, Lipschitz domain in Rd

Ω the closure of Ω

∂Ω the boundary of Ω

D(F ) the domain of a mapping F

R(F ) the range of a mapping F
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Notation conventions

N (F ) the null space of a mapping F

X⊥ the orthogonal complement of a vector space X

Function spaces

Lp(Ω) the Lebesgue space of p-integrable functions f

equipped by the norm ‖f‖Lp(Ω) =
(∫

Ω
|f(x)|p dx

) 1
p

L∞(Ω) the Lebesgue space of essentially bounded functions f

equipped by the norm ‖f‖L∞(Ω) = ess supx∈Ω |f(x)|
W k,p(Ω) the Sobolev space of functions, whose weak derivatives

up to k-th order belong to Lp(Ω), see p. 7

W k,∞(Ω) the Sobolev space of functions, whose weak derivatives

up to k-th are essentially bounded, see p. 7

Hk(Ω) W k,2(Ω)

Hk
0 (Ω) the Hilbert space Hk(Ω), whose trace on ∂Ω vanishes

H−1(Ω) the dual space to H1
0 (Ω)

V ∗ the dual space to V

Lp(0, T ;V ) space of measurable functions u : [0, T ]→ V , see p. 8

C(0, T ;V ) space of continuous functions u : [0, T ]→ V , see p. 8

W 1,p,q(0, T ;V ) the Sobolev-Bochner space, see p. 8

L(V1, V2) the Banach space of linear continuous mappings

A : V1 → V2 normed by ‖A‖L(V1,V2) = sup‖v‖V1
≤1 ‖Av‖V2

Operators

u̇ the first order time derivative of u

ü the second order time derivative of u

∆ the spatial Laplace operator

∆N the spatial Laplace operator incorporating

Neumann boundary condition (see p. 117):

〈−∆Nu, v〉H1(Ω)∗,H1(Ω) = (∇u,∇v)L2(Ω) ∀u, v ∈ H1(Ω)

∇ the spatial gradient operator

F ? the Hilbert space adjoint of F

F ∗ the Banach space adjoint of F
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Notation conventions

F ′ the Gâteaux or Fréchet derivative of F

‖ · ‖X a norm in Banach space X

| · |X a seminorm in Banach space X

| · | the modulus in Rd

(·, ·) the inner product on Hilbert spaces

〈·, ·〉V,V ∗ the paring between dual spaces V, V ∗

× the cross product

↪→ a continuous embedding

id the identity operator

a � b a ≥ b with strict inequality if b = 0

~a ·~b the Euclidean inner product between vectors ~a,~b

A : B the Frobenius inner product between matrices A,B

∇ · ~v the divergence of vector field ~v

brc the largest integer lower or equal to r

Constants

C a generic positive constant

CX,Y , C
Ω
X,Y norm of the continuous embedding X(Ω) ↪→ Y (Ω), see p. 7

CPF the constant in the Poincaré-Friedrichs inequality:

∀u ∈ W 1,p
0 (Ω), 1 ≤ p ≤ ∞ : ‖u‖Lp(Ω) ≤ CPF‖∇u‖Lp(Ω)

p∗ p∗ = p
p−1

, the dual index of p ∈ [1,∞]

Notation for regularization

BXρ (x) the closed ball of radius ρ around x in X

F † the Moore-Penrose generalized inverse of operator F

x† the minimal-norm solution

(Rα, α) a regularization method

yδ a noisy version of y

x0 an initial guess

k∗ a stopping index

ctc, ctcc the constant in the tangential cone condition.
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Index

adjoint
equation, 35, 72, 124, 127
operator, 25, 35, 122, 126

algorithm, 38, 137

condition
source, 88
tangential cone, 5, 54, 63, 69
variational source, 88

continuous
local Lipschitz, 23, 42, 68
Sobolev embedding, 7, 43, 64, 89
Sobolev-Bochner embedding, 8,

118
convergence theorem, 6

derivative
Fréchet, 13, 24, 35, 121, 132
Gâteaux, 12, 23, 33

discrepancy principle, 4
dual

index, 64
paring, 10, 20
problem, 72

equation
Ginzburg-Landau, Allen-Cahn,

Zel’dovich, 18
quasilinear, 59
semilinear, 41
sensitivity, 33

formulation

all-at-once, 22, 62, 117
reduced, 31, 67, 123

Galerkin approximation, 10, 130
Gelfand triple, 9, 19, 71

ill-posed, 2
inequality

Grönwall, 14, 129
Hölder, 42, 89, 131
Young, 128, 131

inverse problem, 1
isomorphism, 19, 119

LLG
equation, 108, 114
solver, 140, 145, 151

mapping
Carathéodory, 9
contraction, 12, 75, 79, 84
convex, 32
Nemytskii, 9
parameter-to-state, 51, 68
pseudomonotone, 10, 51
semi-coercive, 11, 32, 53

Moore-Penrose generalized inverse, 3
MPI

observation operator, 110
particle concentration, 101
particle magnetization, 101
system function, 106, 110
applied magnetic field, 105
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Index

calibration process, 115
measured signal, 106

observation
discrete, 30, 46
full, 63

problem
bilinear, 64
diffusion identification, 58
initial-value, 9
potential identification, 58
source identification, 41, 59

regularity, 11, 50, 130
regularization

Kaczmarz, 4, 29
Landweber, 4
strategy, 3

semigroup, 72, 82
solution

least-square, 2
minimal-norm, 2

space
Banach, 7
Bochner, 8
Hilbert, 7, 22
Sobolev, 7

system
noisy, 21
space-state, 19
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[6] L. Baňas, M. Page, D. Praetorius, and J. Rochat, A decoupled and un-
conditionally convergent linear FEM integrator for the Landau-Lifshitz-Gilbert
equation with magnetostriction, IMA Journal of Numerical Analysis, 34 (2014),
pp. 1361–1385.

[7] H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Pa-
rameter Systems, Birkhauser, Boston, Basel, Berlin, 1989.

[8] S. Bartels and A. Prohl, Convergence of an implicit finite element method
for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 44 (2006),
pp. 1405–1419.

[9] , Convergence of an implicit, constraint preserving finite element discretiza-
tion of p-harmonic heat flow into spheres, Numerische Mathematik, 109 (2008),
pp. 489—-507.

166



Bibliography

[10] A. Battermann and M. Heinkenschloss, Preconditioners for Karush-
Kuhn-Tucker matrices arising in the optimal control of distributed systems, in
Control and Estimation of Distributed Parameter Systems: International Con-
ference in Vorau, Austria, July 14-20, 1996, W. Desch, F. Kappel, and K. Ku-
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eds., Birkhäuser, 2001, pp. 1–18.

[12] J. Baumeister, B. Kaltenbacher, and A. Leitão, On Levenberg-
Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed
equations, Inverse Problems and Imaging, 4 (2010), pp. 335—-350.

[13] R. Boiger, J. Hasenauer, S. Hross, and B. Kaltenbacher, Integration
based profile likelihood calculation for PDE constrained parameter estimation
problems, Inverse Problems, 32 (2016). Art. ID 125009.

[14] L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002),
pp. R99–R136.

[15] L. Bronsard and B. Stoth, The Ginzburg-Landau equations of supercon-
ductivity and the one-phase Stefan problem, Ann. Inst. Henri Poincaré, 15, No.
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and Fitzhugh-Nagumo systems, Computational Methods in Applied Mathemat-
ics, 13 (2013), pp. 415–442.

167



Bibliography

[21] , Second order and stability analysis for optimal sparse control of the
Fitzhugh-Nagumo equation, SIAM J. Control Optim., 53 (2015), pp. 2168–2202.

[22] , Optimal control of a class of reaction diffusion equations, Computational
Optimization and Applications, 70 (2018), pp. 677–707.

[23] G. Chavent and K. Kunisch, On weakly nonlinear inverse problems, SIAM
J. Appl. Math., 56 (1996), pp. 542–572.

[24] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering
Theory, Springer New York, 2013.

[25] L. R. Croft, P. W. Goodwill, and S. M. Conolly, Relaxation in x-space
magnetic particle imaging, IEEE transactions on medical imaging, 31 (2012),
pp. 2335–2342.

[26] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials,
John Wiley & Sons, 2011.

[27] W. Demtroeder, Experimentalphysik 2, Springer Berlin Heidelberg, 2013.

[28] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Victoria
University of Technology, Melbourne City MC, 2002.

[29] F. Dunker and T. Hohage, On parameter identification in stochastic differ-
ential equations by penalized maximum likelihood, Inverse Problems, 30 (2014),
p. 095001 (20 pages). arXiv:1404.0651 [stat.CO].

[30] T. Dunst, M. Klein, A. Prohl, and A. Schäfer, Optimal control in
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