Second order numerical solution for optimal control of reaction-diffusion systems in electrophysiology

Chamakuri Nagaiah¹

Subproject: OPTIM
Direction: Prof. Karl Kunisch¹, Prof. Stefan Volkwein¹
Collaboration with HEART group: Dr. Gernot Plank²

¹Institute of Mathematics and Scientific Computing Karl-Franzens University of Graz.

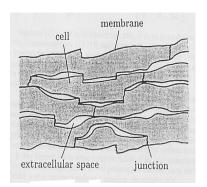
²Institute of Biophysics, Medical University of Graz.

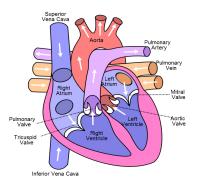
Schloß Röthelstein, November 5-7, 2008.

Outline

- Motivation
- 2 Mathematical model for the electrical activity of the heart
- Optimality system
- Mumerical approach
- Numerical results
- Summary

The electrical activity of the heart





- The cardiac tissue comprises of two anisotropic superimposed media, one intracellular and the other extracellular which occupy the same volume and are separated by the cellular membrane.
- The bioelectric activity of cardiac cells is due to the flow of various ionic currents through the cellular membrane.

The electrical activity of the heart

- The cardiac arrhythmia is any deviation from the normal heart rhythm due to disturbances of the normal sequence of impulse propagation through the heart.
- The bidomain equations are widely used for describing the electrical activity of the cardiac tissue.
- Challenging to find the accurate and efficient numerical solutions.
- Goal: Determine the control response of an electrical field which can be able to drive the system from arrhythmia pattern to a uniform pattern.

Mathematical derivation: Tung 78; Plonsey 89; Henriquez 93; Keener, Panfilov 96

Bidomain model

$$-\nabla \cdot (\bar{\sigma}_{i} + \bar{\sigma}_{e})\nabla \phi_{e} - \nabla \cdot \bar{\sigma}_{i}\nabla V_{m} = I_{e}(x, t) \text{ in } Q_{c} \quad \text{where } Q_{c} = \Omega_{c} \times [0, t_{f}] \quad (1)$$

$$\nabla \cdot \bar{\sigma}_{i}\nabla V_{m} + \nabla \cdot \bar{\sigma}_{i}\nabla \phi_{e} = \beta \left(C_{m}\frac{\partial V_{m}}{\partial t} + I_{ion}(V_{m}, v) - I_{tr}(x, t)\right) \text{ in } Q_{c}$$

$$(2)$$

$$\frac{\partial V}{\partial t} = g(V_m, V) \quad \text{in } Q_c \tag{3}$$

- ullet $\phi_e,\, V_m:\, Q_c
 ightarrow \mathbb{R}$ are the extracellular potential and transmembrane voltage
- $v: Q_c \to \mathbb{R}^n$ represents the ionic current variables
- $I_{ion}(V_m, v)$: the current density flowing through the ionic channels.
- $\bar{\sigma}_i, \ \bar{\sigma}_e: \Omega_c \to \mathbb{R}^{d \times d}$ are respectively the intracellular and extracellular conductivity tensors
- β the surface to volume ratio, C_m the capacitance per unit area, I_{tr} the transmembrane current density stimulus and I_e an extracellular current density stimulus

Membrane model

- Some of the most well-known ionic models.
 - FitzHugh-Nagumo, Aliev-Panfilov, Beeler-Reuter, Luo-Rudy ... etc.

The simplified FitzHugh-Nagumo system (Roger and McCulloch,1994)

$$I_{ion}(V_m, v) = GV_m(1 - \frac{V_m}{v_{th}})(1 - \frac{V_m}{v_p}) + \eta_1 V_m v,$$

$$g(V_m, v) = \eta_2(\frac{V_m}{v_p} - \eta_3 v)$$

- $G, \eta_1, \eta_2, \eta_3$ are positive real coefficients
- v_{th} is a threshold potential and v_p the peak potential.

[P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang, L. Pavarino, 2006]

Optimal control problem

Constrained optimal control problem

$$\begin{cases} & \min \ J(V_m, I_e), \\ & \text{s.t. } e(\phi, V_m, v, I_e) = 0 \quad \text{in } Q_c, \\ & \text{B.C: homogeneous Neumann BC} \end{cases}$$
 (4)

where $e(\phi, V_m, v, I_e)$ represents the PDE constraints.

→ The choice of the cost functional which is suitable to optimize the potentials

$$J(V_m, I_e) = \min \frac{1}{2} \int_0^T \left(\int_{\Omega_{obs}} |V_m|^2 d\Omega_{obs} + \alpha \int_{\Omega_{con}} |I_e|^2 d\Omega_{con} \right) dt$$
 (5)

→ The Lagrangian related to the primal problem is given by

$$\mathcal{L}(\phi_{e}, V_{m}, v, I_{e}, p, q, \zeta) = J(V_{m}, I_{e}) + \langle e(\phi, V_{m}, v, I_{e}), X \rangle$$
(6)

• In computations monodomain equations are used (replace $\sigma_e = \lambda \sigma_i$ in bidomain equations) [Potse et.al. 06; Nielsen et.al. 07].

Mono-domain problem

Primal system:

$$\nabla \cdot \bar{\sigma_i} \nabla V_m = \beta \left(C_m \frac{\partial V_m}{\partial t} + I_{ion}(V_m, v) - I_e(x, t) \right) \quad \text{in } Q_c$$

$$\frac{\partial v}{\partial t} = g(V_m, v) \quad \text{in } Q_c$$

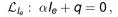
Adjoint system:

$$\begin{array}{l}
-\nabla \cdot \nabla V_m + \nabla \cdot \bar{\sigma}_i \nabla q + \beta (C_m q_t - (I_{ion})_{V_m} q) - g_{V_m} \zeta = 0 \\
-\beta (I_{ion})_v q - \zeta_t - g_v^T (V_m, v) \zeta = 0
\end{array}\right\}$$

Initial and terminal conditions:

$$V_m(0) = V_0, \quad v(0) = V_0, \quad q(T) = 0, \quad \zeta(T) = 0.$$

Optimality condition:



Numerical approach

- Piecewise linear finite element method for the space discretization of the primal and dual problem
- Linearly implicit Runge-Kutta methods (ROS2,ROS3P) for the time dicretization
- In computations the primal problem is solved by decoupling the system as follows,

step-1:
$$\mathbf{v}^{\mathbf{n+1}} = \mathbf{v}^{\mathbf{n}} + \Delta t \mathbf{g}(\mathbf{V}_{\mathbf{m}}^{\mathbf{n}}, \mathbf{v}^{\mathbf{n}})$$
. (7)

step-2:
$$\mathbf{M} \frac{\partial \mathbf{V_m}}{\partial t} = -\frac{1}{\beta C_m} \mathbf{A_i V_m} - \frac{1}{C_m} (\mathbf{I_{ion}}(\mathbf{V_m}, \mathbf{v}) - \mathbf{I_e}).$$
 (8)

- BiCGSTAB method with ILU preconditioner to solve linear system
- Nonlinear conjugate gradient and Newton method method to solve the optimization
- Line search method is based on the strong Wolfe conditions

November 5-7, 2008

NCG algorithm

- 1: primal variables: V_m , v and dual variables: p, q
- 2: choose $I_{tr}^{exi} := I_{tr}^{0}$ and solve once the primal and dual problem. Set $\hat{J}_0 := J(V_{m_0}(I_{e_0}), I_{e_0}), \ \nabla \hat{J}_0 := \nabla J(V_{m_0}(I_{e_0}), I_{e_0})$ and $d_0 := -\nabla \hat{J}_0, \ k \leftarrow 0$
- 3: while $\|\nabla \hat{J}\| > tol$ do
- 4: set $\beta_0 := 0.9$ and compute β_k using back tracking method
- 5: while $\hat{J}(I_{e_k} + \beta_i d_k) \ge \hat{J}(I_{e_k}) + c_1 \beta_i \nabla \hat{J}(I_{e_k})^T d_k$ and $\nabla \hat{J}(I_{e_k} + \beta_i d_k)^T d_k \ge c_2 \left| \nabla \hat{J}(I_{e_k})^T d_k \right|$ do
- 6: solve the primal and dual problem for update the gradient
- 7: set $\beta_i := \beta_i/2$
- 8: end while
- 9: update $I_{e_{k+1}} \leftarrow I_{e_k} + \beta_k d_k$ using modified β_i , evaluate $\nabla \hat{J}_{k+1}$
- 10: evaluate γ_{k+1} (using one of the update) and set
 - $d_{k+1} \leftarrow -\nabla \hat{J}_{k+1} + \gamma_{k+1} d_k, k \leftarrow k+1$
- 11: set $V_m(0) := V_m^0, v(0) := v^0$ and solve the primal problem to obtain $V_m(t), v(t)$
- solve the dual problem for p(t), q(t) using terminal conditions p(T) := 0, q(T) := 0
- 13: end while

Newton method

The computation of the Newton system expressed as

$$\hat{J}''\delta I := (T^*\nabla^2 \mathcal{L}T)\delta I = -\hat{J}'(I_e^n). \tag{9}$$

where

- $\hat{J}'(I_e^n)$ is the gradient of the reduced cost functional $\hat{J}(I_e^n)$
- T(x) is the matrix operator
- δI is a direction

[Hinze and Kunisch 2001]

Newton method

- Compute the $\hat{J}'(I^n)$ obtained by one solve of the primal and dual equations.
- ② Iteratively solve (9). In each step the action of $\hat{J}''(I^n)$ on a direction δI^n has to be evaluated by means of
 - solve the linearized primal equation for V_l , v_l using δI_i^k .

$$\left(\begin{array}{c} \nabla \cdot (\bar{\sigma}_{i} \nabla V_{l}) - \beta \left(C_{m} V_{l_{t}} + \nabla I_{ion}(V_{l}, v_{l})\right) \\ v_{l_{t}} - \nabla g(V_{l}, v_{l}) \end{array}\right) = \left(\begin{array}{c} -\beta \delta^{k} \\ 0 \end{array}\right)$$

• evaluate the (z_1, z_2) as follows.

$$\nabla^{2}\mathcal{L}(V_{l}, v_{l}, \delta I) = \begin{pmatrix} \begin{pmatrix} V_{l} - \beta(I_{lon})_{V_{m}V_{m}}(V_{l})q - \beta\eta_{1}v_{l}q \\ -\beta\eta_{1}V_{l}q \\ \alpha\delta I \end{pmatrix} =: \begin{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \\ \alpha\delta I \end{pmatrix}$$

Newton method

• solve the adjoint equation with (z_1, z_2) as r.h.s as follows.

$$-e_{l_e}^*(e_{(V_m,v)}^{-1})^*\left(\begin{array}{c} z_1\\ z_2 \end{array}\right) = \left(\begin{array}{c} w_1\\ w_2 \end{array}\right)$$

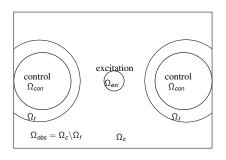
• finally compute the action of $\hat{J}''(I^k)$ on δI_i^k .

$$\hat{J}''(I) = (T^* \nabla^2 \mathcal{L} T) \delta I := -\beta w_1 + \alpha \delta I$$

- An iterative algorithm like a CG method is used.
- Code is implemented using DUNE, a public domain package (see P. Bastian et.al. 2008)

[Kunisch and Nagaiah (in preparation)]

Numerical results



- The computational domain size $\Omega_c = [0, 1] \times [0, 1]$
- The observation domain is $\Omega_{obs} = \Omega_c \backslash \Omega_f$, the excitation domain is Ω_{exi} and the control domain is Ω_{con} .
- The weight of the cost of the control is $\alpha = 10^{-3}$
- The iterations were terminated by $\|\nabla J_k\|_{\infty} \leq 10^{-3}(1+|J_k|)$

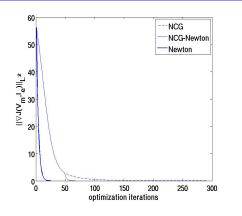
The choice of the cost functional

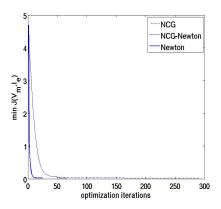
$$J(V_m, I_e) = \min \frac{1}{2} \int_0^T \left(\int_{\Omega_{obs}} |V_m - V_d|^2 d\Omega_{obs} + \alpha \int_{\Omega_{con}} |I_e|^2 d\Omega_{con} \right) dt,$$

where V_d is the desired state.

• The desired trajectory (V_d) of the transmembrane voltage solution is computed using the following initial conditions,

$$\begin{split} V_d(0) &= & \left\{ \begin{array}{l} 105.0 \text{ in } \Omega_{exi} \\ 0 \text{ otherwise} \end{array} \right. \\ v(0) &= & 0 \text{ in } \Omega_c. \\ I_e &= & \left\{ \begin{array}{l} 15 \text{ in } \Omega_{con} \times [0,T] \\ 0 \text{ otherwise.} \end{array} \right. \end{split}$$





	NCG	NCG-Newton	Newton
iterations	291	67 (50+17)	26
CPU time (s)	643.876	375.711	410.726

see [Nagaiah, Kunisch, Plank (in preparation)]

 The choice of the cost functional which is suitable to optimize the potentials

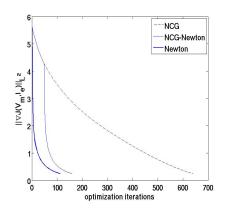
$$J(V_m, I_e) = \min \frac{1}{2} \int_0^T \left(\int_{\Omega_{obs}} |V_m|^2 d\Omega_{obs} + \alpha \int_{\Omega_{co'n}} |I_e|^2 d\Omega_{con} \right) dt$$

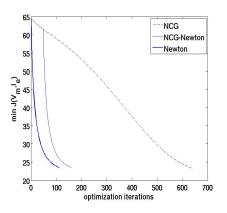
• The initial solution is considered for this test case as follows:

$$V_m(0) = \begin{cases} 105.0 & \text{in } \Omega_{exi} \\ 0 & \text{otherwise} \end{cases}$$

 $v(0) = 0 & \text{in } \Omega_c .$
 $(I_e)_0 = 0 & \text{in } \Omega_{con} \times [0, T] .$

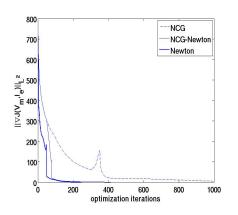
 \rightarrow For T = 1 *msec* of simulation time.

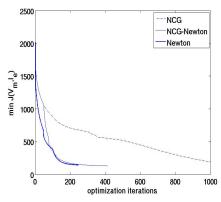




	NCG	NCG-Newton	Newton
iterations	641	160 (50+110)	113
CPU time (s)	1351.4	1545.22	1431.47

 \rightarrow For T = 8 *msec* of simulation time.





	NCG	NCG-Newton	Newton
iterations	1000	414 (50+364)	247
CPU time	4.5575 h	12.1688 <i>h</i>	7.8316 <i>h</i>

movies for the initial state and optimal state solutions.

Summary

- Good results obtained for optimal control of the mono-domain equations.
 - Specifically, with tracking type and minimization of transmembrane voltage.
- Second order methods are faster to converge to the solutions for long time horizons.
- Cost functional involving gradient of transmembrane voltage.
- Mathematical analysis of the optimal control of bidomain equations.

Outlook

- Improve the efficiency of the codes for the primal and adjoint equations by utilizing adaptivity.
- Do longer time horizons with complete simulations of several heart beats.

Movie file

