Using active contours for yeast cell segmentation

Kristian Bredies, Heimo Wolinski

Status seminar SFB Mobis
5. November 2008
Outline

1. Problem description
 - Understanding the yeast metabolism
 - Confocal fluorescence microscopy
 - Extracting quantifiable information

2. Yeast cell segmentation
 - Image characteristics
 - An active contour algorithm
 - Extra ingredients

3. Results

4. Summary and outlook
Using active contours for yeast cell segmentation

Outline

1. Problem description
 - Understanding the yeast metabolism
 - Confocal fluorescence microscopy
 - Extracting quantifiable information

2. Yeast cell segmentation
 - Image characteristics
 - An active contour algorithm
 - Extra ingredients

3. Results

4. Summary and outlook
Using active contours for yeast cell segmentation

Understanding the yeast metabolism

- Yeast is one of the simplest eukaryotes
- Serves as a model organism
- Grows fast → easy to produce statistically relevant data
- Genes can easily be manipulated
 → useful for functional analysis of proteins
Examining the yeast metabolism

- Green fluorescence protein (GFP)
- GFP is inserted into gene sequence \rightarrow marker
- Gene expression \rightarrow respective protein is fluorescent
- Track fluorescence via microscopy

New technique: Laser confocal microscopy \rightarrow high quality 3D-images
Using active contours for yeast cell segmentation

Extracting quantifiable information

Given:
- Fluorescence image
- Transmission image
 (non-invasive measurement)
Using active contours for yeast cell segmentation

Extracting quantifiable information

Given:
- Fluorescence image
- Transmission image (non-invasive measurement)

Sought: Characteristics of fluorescent material
- Volume per cell
- Localization within cell
- Shape information
- ...
Using active contours for yeast cell segmentation

Extracting quantifiable information

Given:
- Fluorescence image
- Transmission image (non-invasive measurement)

Sought: Characteristics of fluorescent material
- Volume per cell
- Localization within cell
- Shape information
- ...

Needed: Cell segmentation method
Using active contours for yeast cell segmentation

Outline

1 Problem description
 - Understanding the yeast metabolism
 - Confocal fluorescence microscopy
 - Extracting quantifiable information

2 Yeast cell segmentation
 - Image characteristics
 - An active contour algorithm
 - Extra ingredients

3 Results

4 Summary and outlook
Using active contours for yeast cell segmentation

Image characteristics

- Densely populated with cells, non-uniform background
- Cells separated by dark or bright ridges
- Complex structures inside the cells
- Different cell sizes and mother/daughter cells (buds)
- Different types of clutter
Using active contours for yeast cell segmentation

Tracing the contour of a cell

Subtask: Segment a single cell
Idea: Minimize energy for a parametrization
\(\gamma : S^1 \rightarrow \mathbb{R}^2 \)

Active contour model: ("Snakes")

\[
\min_{\gamma} \int_{S^1} G(\gamma(t)) \, dt + \alpha \int_{S^1} |\gamma'(t)|^2 \, dt + \beta \int_{S^1} |\gamma''(t)|^2 \, dt
\]

Kass, Witkin, Terzopoulos ['87]

\(G \) "rewards" cell boundaries in \(I \), e.g.

\[
G(x) = \lambda^2 + |\nabla I(x)|^2
\]
Using active contours for yeast cell segmentation

Tracing the contour of a cell

Subtask: Segment a single cell
Idea: Minimize energy for a parametrization
\[\gamma : S^1 \rightarrow \mathbb{R}^2 \]

Active contour model: ("Snakes")

\[\min_{\gamma} \int_{S^1} G(\gamma(t)) \, dt + \alpha \int_{S^1} |\gamma'(t)|^2 \, dt + \beta \int_{S^1} |\gamma''(t)|^2 \, dt \]

- **External energy**
- **Internal energy**

*Kass, Witkin, Terzopoulos ['87]"
Using active contours for yeast cell segmentation

Tracing the contour of a cell

Subtask: Segment a single cell

Idea: Minimize energy for a parametrization

\[\gamma : S^1 \to \mathbb{R}^2 \]

Active contour model: ("Snakes")

\[
\min_{\gamma} \int_{S^1} G(\gamma(t)) \, dt + \alpha \int_{S^1} |\gamma'(t)|^2 \, dt + \beta \int_{S^1} |\gamma''(t)|^2 \, dt
\]

- External energy
- Internal energy

Kass, Witkin, Terzopoulos ['87]

- \(G \) "rewards" cell boundaries in \(I \),

\[
G(x) = \frac{\lambda^2}{\lambda^2 + |\nabla I(x)|^2}
\]

K. Bredies 9 / 18
Using active contours for yeast cell segmentation

Limitations of the classical model

Algorithm:
Start with a contour and do functional descent
Using active contours for yeast cell segmentation

Limitations of the classical model

Algorithm:
Start with a contour and do functional descent

Problems:

1. Approach the boundary from outside
 - More than one cell could be caught
 - Hangs at interior structures

2. Approach the boundary from inside
 - Likely to segment a single cell
 - Internal energy forces contour to a point
Limitations of the classical model

Algorithm:
Start with a contour and do functional descent

Problems:
1. Approach the boundary from outside
 - More than one cell could be caught
 - Hangs at interior structures
2. Approach the boundary from inside
 - Likely to segment a single cell
 - Internal energy forces contour to a point

Remedy:
Add an “inflating force” to the model
Introducing a volume term

Idea: Reward greater volumes

Divergence theorem:

\[
\text{Vol}(\Omega') = \frac{1}{2} \int_{S^1} \gamma(t) \cdot \gamma'(t) \perp \, dt
\]
Introducing a volume term

Idea: Reward greater volumes

Divergence theorem: \[\text{Vol}(\Omega') = \frac{1}{2} \int_{S^1} \mathbf{\gamma}(t) \cdot \mathbf{\gamma}'(t)^\perp \, dt \]

Inflating snakes:

\[
\min_{\mathbf{\gamma}} \int_{S^1} G(\mathbf{\gamma}(t)) + \alpha |\mathbf{\gamma}'(t)|^2 \, dt - \left(\frac{\beta}{2} \int_{S^1} \mathbf{\gamma}(t) \cdot \mathbf{\gamma}'(t)^\perp \, dt \right)^p
\]

\[0 < p < 1 \]
Using active contours for yeast cell segmentation

Introducing a volume term

Idea: Reward greater volumes

Divergence theorem:

$$\text{Vol}(\Omega') = \frac{1}{2} \int_{S^1} \gamma(t) \cdot \gamma'(t)^\perp \, dt$$

Inflating snakes:

$$\min_{\gamma} \int_{S^1} G(\gamma(t)) + \alpha |\gamma'(t)|^2 \, dt - \left(\frac{\beta}{2} \int_{S^1} \gamma(t) \cdot \gamma'(t)^\perp \, dt \right)^p$$

$$0 < p < 1$$

- **p-th power:** Volume terms grows slower than $\|\gamma'\|_2^2 \sim$ still regularizing
- Self-intersecting parametrizations forbidden (no problem in practice)
- Connections to the “balloons” of Cohen ['91]
Using active contours for yeast cell segmentation

Introducing a volume term

Idea: Reward greater volumes

Divergence theorem: \(\text{Vol}(\Omega') = \frac{1}{2} \int_{S^1} \gamma(t) \cdot \gamma'(t) \parallel_{\perp} \, dt \)

Inflating snakes:

\[
\min_{\gamma} \int_{S^1} G(\gamma(t)) + \alpha |\gamma'(t)|^2 \, dt - \left(\frac{\beta}{2} \int_{S^1} \gamma(t) \cdot \gamma'(t) \parallel_{\perp} \, dt \right)^p
\]

\(0 < p < 1 \)

- \(p \)-th power: Volume terms grows slower than \(\|\gamma'\|_2^2 \) \(\sim \) still regularizing
- Self-intersecting parametrizations forbidden (no problem in practice)
- Connections to the “balloons” of Cohen ['91]
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image \(\mapsto \) TV regularization or nonlinear degenerate lifting
- Find constant regions (background)
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image $\sim TV$ regularization or nonlinear degenerate lifting
- Find constant regions (background)
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image \rightarrow TV regularization or nonlinear degenerate lifting
- Find constant regions (background)

“Seeding”:
- Find points where to inflate snakes (≥ 1 per cell)
- Heuristic algorithm based on local maxima of smoothed edge data
- Cluster local maxima \rightarrow seeding points
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image \leadsto TV regularization or nonlinear degenerate lifting
- Find constant regions (background)

“Seeding”:
- Find points where to inflate snakes (≥ 1 per cell)
- Heuristic algorithm based on local maxima of smoothed edge data
- Cluster local maxima \leadsto seeding points
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image \leadsto TV regularization or nonlinear degenerate lifting
- Find constant regions (background)

“Seeding”:
- Find points where to inflate snakes (≥ 1 per cell)
- Heuristic algorithm based on local maxima of smoothed edge data
- Cluster local maxima \leadsto seeding points
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image \leadsto TV regularization or nonlinear degenerate lifting
- Find constant regions (background)

“Seeding”:
- Find points where to inflate snakes (≥ 1 per cell)
- Heuristic algorithm based on local maxima of smoothed edge data
- Cluster local maxima \leadsto seeding points
Extra ingredients

Preprocessing:
- Normalize and smooth image \leadsto TV regularization or nonlinear degenerate lifting
- Find constant regions (background)

“Seeding”:
- Find points where to inflate snakes (≥ 1 per cell)
- Heuristic algorithm based on local maxima of smoothed edge data
- Cluster local maxima \leadsto seeding points
Using active contours for yeast cell segmentation

Extra ingredients

Preprocessing:
- Normalize and smooth image \Rightarrow TV regularization or nonlinear degenerate lifting
- Find constant regions (background)

“Seeding”:
- Find points where to inflate snakes (≥ 1 per cell)
- Heuristic algorithm based on local maxima of smoothed edge data
- Cluster local maxima \Rightarrow seeding points

Postprocessing:
- Detect overlapping cells \Rightarrow discard/join
Outline

1. Problem description
 - Understanding the yeast metabolism
 - Confocal fluorescence microscopy
 - Extracting quantifiable information

2. Yeast cell segmentation
 - Image characteristics
 - An active contour algorithm
 - Extra ingredients

3. Results

4. Summary and outlook
Using active contours for yeast cell segmentation

Example: Evolution of a snake

Gradient descent on cell with complicated structure:
Using active contours for yeast cell segmentation

Segmentation of a whole dataset

![transmission image](image1.png) ![segmented image](image2.png)
Using active contours for yeast cell segmentation

Segmentation of a whole dataset

transmission image

segmented image
Using active contours for yeast cell segmentation

Detailed discussion

Features:

- Many cells are segmented accurately
- Works for cells with complicated inner structure
- Catches also non-circular shapes
Detailed discussion

Features:
- Many cells are segmented accurately
- Works for cells with complicated inner structure
- Catches also non-circular shapes

Problems:
- Some cells are missed
- Cell-like interior structures are not captured right
- Sometimes background is falsely classified as cell
Using active contours for yeast cell segmentation

Outline

1. Problem description
 - Understanding the yeast metabolism
 - Confocal fluorescence microscopy
 - Extracting quantifiable information

2. Yeast cell segmentation
 - Image characteristics
 - An active contour algorithm
 - Extra ingredients

3. Results

4. Summary and outlook
Using active contours for yeast cell segmentation

Summary and outlook

- A modified snake model is suitable for the segmentation of a single yeast cell
- Can be integrated into a processing pipeline to segment whole images
- According to the microscopists, the results are good
- A single set of parameters work for many images
- Still: Some components can be improved, e.g. seeding or background detection
- In the moment, the algorithm is very slow (\(\sim 30 \) minutes)
- Eventually, the segmentation has to be combined with the processing of the fluorescence data