

Domain Decomposition Based Solvers for the Simulation of Arteries

Kinematics, Modelling, Numerics

G. A. Holzapfel, O. Steinbach and C. M. Augustin

Institute of Computational Mathematics Graz University of Technology

SFB: Mathematical Optimization and Applications in Biomedical Sciences

Outline

Histology and Mechanical Behavior of Arterial Walls

Model of an Arterial Wall

Variation, Discretization and Linearization

Outlook and References

Outline

Histology and Mechanical Behavior of Arterial Walls

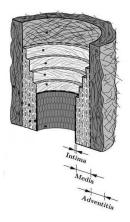
Model of an Arterial Wall

Variation, Discretization and Linearizatior

Outlook and References

Arterial Histology

Arteries are vessels that transport blood from the heart to the organs.



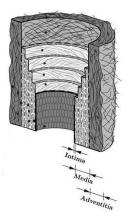
intima (innermost layer)

primarily a single layer of endothelial cells

Figure: Holzapfel (2000)

Arterial Histology

Arteries are vessels that transport blood from the heart to the organs.



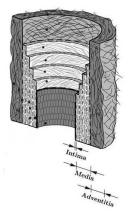
intima (innermost layer)

- primarily a single layer of endothelial cells media (middle layer)
 - complex 3D network of muscle cells, and elastin and collagen fibrils
 - two main fiber directions

Figure: Holzapfel (2000)

Arterial Histology

Arteries are vessels that transport blood from the heart to the organs.



intima (innermost layer)

- primarily a single layer of endothelial cells media (middle layer)
 - complex 3D network of muscle cells, and elastin and collagen fibrils
 - two main fiber directions

adventitia (outermost layer)

- histological ground substance and thick bundles of collagen fibrils
- collagen fibers highly dispersed
- gets stiff at higher levels of pressure

Figure: Holzapfel (2000)

Mechanical Behavior of Arterial Walls

Incompressibility

- ▶ no change of volume within the physiological range of deformation
- arteries may be regarded as incompressible materials

Mechanical Behavior of Arterial Walls

Incompressibility

- no change of volume within the physiological range of deformation
- arteries may be regarded as incompressible materials

Pre-Stretches

- a segment of vessel shortens on removal from the body
 ⇒ there exists a in vivo pre-stretch in longitudinal direction
- ▶ a load-free arterial ring contains residual stresses
 - \Rightarrow it opens when cut in a radial direction

Material Behavior of Arterial Walls

Material behavior

- elastic for proximal arteries
- viscoelastic (pseudoelastic) for distral arteries
- healthy arteries are highly deformable composite structures
- show a non-linear stress-strain response (neo-Hookean solid)

Material Behavior of Arterial Walls

Material behavior

- elastic for proximal arteries
- viscoelastic (pseudoelastic) for distral arteries
- healthy arteries are highly deformable composite structures
- show a non-linear stress-strain response (neo-Hookean solid)

Collagen fibers

- lead to stiffening effect at higher pressures
- lead to anisotropic mechanical behavior of arteries
- are not able to support compressive stresses
- active in extension and inactive in compression

Outline

Histology and Mechanical Behavior of Arterial Walls

Model of an Arterial Wall

Variation, Discretization and Linearization

Outlook and References

Cauchy's Equation of Motion

Consider the strong formulation of the boundary value problem: Find $u \in C^2(\Omega) \cap C^1(\Omega \cup \Gamma_N) \cap C(\overline{\Omega})$ such that

$$\rho \frac{\partial^{2} u}{\partial t^{2}} - \operatorname{div} \sigma = f(x) \qquad \forall x \in \Omega, t > 0 ,$$

$$\sigma = \rho \mathbf{I} + \overline{\sigma} \qquad \forall x \in \Omega, t > 0 ,$$

$$u(x) = u_{D}(x) \qquad \forall x \in \Gamma_{D}, t > 0 ,$$

$$\frac{\partial u}{\partial N} = \sigma n = t_{N}(x) \qquad \forall x \in \Gamma_{N}, t > 0 ,$$

$$u = u_{0}, \frac{\partial u}{\partial t} = v_{0} \qquad \forall x \in \Omega, t = 0 .$$

is satisfied with $\Gamma = \partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$.

Constitutive Equation

Preliminaries

- ▶ Deformation gradient $\mathbf{F} = D_{\mathbf{x}}\varphi$ and the Jacobian $J = \det \mathbf{F}$
- ▶ Strain Tensors C, b, E, ε are constructed by F, e.g. $C = F^TF$
- \blacktriangleright Stress Tensors σ , **S** follow a specific constitutive law
- ► Elasticity Tensor ℂ is a tensor of 4th order

Constitutive Equation

Preliminaries

- ▶ Deformation gradient $\mathbf{F} = D_x \varphi$ and the Jacobian $J = \det \mathbf{F}$
- ▶ Strain Tensors C, b, E, ε are constructed by F, e.g. $C = F^TF$
- \triangleright Stress Tensors σ , **S** follow a specific constitutive law
- ▶ Elasticity Tensor C is a tensor of 4th order

Constitutive Equation

from the Laws of Thermodynamics the following constitutive equations may be derived:

$$\sigma = 2J^{-1}\mathbf{F}\frac{\partial \Psi(\mathbf{C})}{\partial \mathbf{C}}\mathbf{F}^{\mathrm{T}}, \quad \mathbf{S} = 2\frac{\partial \Psi(\mathbf{C})}{\partial \mathbf{C}}, \quad \mathbb{C} = \frac{\partial \mathbf{S}}{\partial \mathbf{C}}$$

with the Helmholtz free-energy function Ψ .

Helmholtz free-energy Function

- used to describe the hyperelastic stress response of arterial walls
- ▶ it is splitted into a volumetric, an isotropic and an anisotropic part:

$$\Psi = U(J) + \overline{\Psi}_{\mathrm{iso}} + \overline{\Psi}_{\mathrm{aniso}}$$

Helmholtz free-energy Function

- used to describe the hyperelastic stress response of arterial walls
- ▶ it is splitted into a volumetric, an isotropic and an anisotropic part:

$$\Psi = U(J) + \overline{\Psi}_{\mathrm{iso}} + \overline{\Psi}_{\mathrm{aniso}}$$

Neo-Hookean Model, isotropic response

$$\overline{\Psi}_{\mathrm{iso}}(\overline{I}_1) = \frac{c}{2}(\overline{I}_1 - 3) \;, \quad \overline{I}_1 = \mathsf{tr}(\overline{\mathbf{C}}) \;.$$

Helmholtz free-energy Function

- used to describe the hyperelastic stress response of arterial walls
- it is splitted into a volumetric, an isotropic and an anisotropic part:

$$\Psi = U(J) + \overline{\Psi}_{\mathrm{iso}} + \overline{\Psi}_{\mathrm{aniso}}$$

Neo-Hookean Model, isotropic response

$$\overline{\Psi}_{\mathrm{iso}}(\overline{I}_1) = \frac{c}{2}(\overline{I}_1 - 3) , \quad \overline{I}_1 = \mathrm{tr}(\overline{\mathbf{C}}) .$$

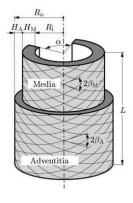
Holzapfel Model (Holzapfel 2000), anisotropic response

$$\overline{\Psi}_{\mathrm{aniso}}(\overline{I}_4, \overline{I}_6) = \frac{k_1}{2k_2} \sum_{i=4.6} \left\{ \exp[k_2(\overline{I}_i - 1)^2] - 1 \right\} , \quad \overline{I}_i = \mathrm{tr}(\overline{\mathbf{C}}^{\mathrm{T}} \mathbf{A}_i) ,$$

where \mathbf{A}_i represent the two fiber directions in the anisotropic material.

Summary of the Model

From $\Psi = U(J) + \overline{\Psi}_{\rm iso} + \overline{\Psi}_{\rm aniso}$ and the constitutive equation



$$\sigma = 2J^{-1}\mathbf{F}\frac{\partial\Psi(\mathbf{C})}{\partial\mathbf{C}}\mathbf{F}^{\mathrm{T}}$$

we may calculate the specific form of σ :

$$\sigma = p\mathbf{I} + \underbrace{c \operatorname{dev}(\overline{\mathbf{b}}) + \frac{k_1}{2k_2} \psi(\overline{I}_4, \overline{I}_6)}_{\overline{\sigma}}$$

$$p = \frac{\partial U(J)}{\partial J}$$
 with e.g. $U(J) = \frac{\kappa}{2}(J-1)^2$

where the parameters have to satisfy

$$\kappa, c, k_1, k_2 > 0$$
.

Figure: Holzapfel (2003)

Outline

Histology and Mechanical Behavior of Arterial Walls

Model of an Arterial Wall

Variation, Discretization and Linearization

Outlook and References

Variational Formulation

From the Cauchy's equation of motion

$$ho rac{\partial^2 u}{\partial t^2} - \operatorname{div}(p \mathbf{I} + \overline{\sigma}) = f(x) \;, \quad p = \kappa (J(u) - 1) \;, \quad J = \det D_x u$$

we obtain the following variational problem: Find u such that

$$\int_{\Omega} \rho \frac{\partial^{2} u}{\partial t^{2}} \cdot v \, dx + \int_{\Omega} \rho \operatorname{div} v \, dx + \int_{\Omega} \overline{\sigma}(u) : \varepsilon(v) \, dx = \langle F, v \rangle$$
$$- \int_{\Omega} \kappa (J(u)) - 1) \, q \, dx + \int_{\Omega} \rho \cdot q \, dx = 0$$

for $u, v \in H^1(\Omega), \ p, q \in L_2(\Omega)$ and $\varepsilon = 1/2$ (grad $v + (\operatorname{grad} v)^T$).

Discretization

The current domain Ω is subdivided in isoparametric finite elements (tetrahedra, quadrilaterals)

$$\overline{\Omega}_h = \bigcup_{r \in \tau_h} \overline{T}^{(r)}$$

where τ_h is the set containing the element numbers.

$$u_h = \sum_{j \in \omega_h} u_j(t) \varphi_j(x) , \quad p_h = \sum_{k \in \tau_h} p_k(t) \psi_k(x)$$

with

- $\triangleright \omega_h$: the set of node numbers
- $\varphi_j(\xi_1, \xi_2, \xi_3)$: the isoparametric shape function associated with node j assumed to be trilinear
- $\blacktriangleright \psi_k$ piecewise constant

Discretization of Cauchy's Equation

The discretized version of the leading equations reads

$$-\int_{\Omega} \rho \frac{\partial^2 u_h}{\partial t^2} \cdot v_h \, \mathrm{d}x + \int_{\Omega} p_h \, \mathrm{div} \, v_h \, \mathrm{d}x + \int_{\Omega} \overline{\sigma}(u_h) : \varepsilon(v_h) \, \mathrm{d}x = \langle F, v_h \rangle$$
$$-\int_{\Omega} \kappa(J(u_h)) - 1) \, q_h \, \mathrm{d}x + \int_{\Omega} p_h \, q_h \, \mathrm{d}x = 0$$

This leads to a system of the form

$$\mathbf{M}\ddot{u}(t) + \mathbf{A}(u, p, t) = F^{\mathrm{ext}}(t)$$
, $p = \kappa(J(u_h) - 1)$

The term $\mathbf{A}(u, p, t)$ is highly nonlinear in u.

Discretization of the pressure equation

- use the same constant interpolation function over a given element
- do not have to satisfy continuity across the element boundaries

Discretization of J

$$J = det(F), \ J = J(u)$$

The variational formulation in the reference configuration yields:

$$\int_{\Omega_0} (J - J(u)) q \, \mathrm{d}X = 0$$

for all test functions q. J is discretized by

$$J_h = \sum_{k \in au_h} J_k \psi_k \;, \quad \psi_k(x) = egin{cases} 1 & ext{if } x \in \mathcal{T}^{(k)} \\ 0 & ext{else} \end{cases} \;,$$

and $q(x) = \psi_i(x)$ piecewise constant.

Discretization of the pressure equation

Inserting the discretized version of J, considering just one element $T_0^{(k)}$, yields:

$$\int_{T_0^{(k)}} \left(J_k - J(u) \right) \, \mathrm{d}X = 0$$

Since J_k does not depend on X this leads to

$$J_k = \frac{1}{V^{(k)}} \int_{T_0^{(k)}} J(u) \, \mathrm{d}X = \frac{1}{V^{(k)}} \int_{T^{(k)}} \, \mathrm{d}x = \frac{v^{(k)}}{V^{(k)}} \; .$$

where $v^{(k)}$ is the volume of the element in the current configuration and $V^{(k)}$ the volume in the reference configuration.

Discretization of the pressure equation

The discretized version of the pressure equation

$$-\int_{\Omega} \kappa(J(u)) - 1) q dx + \int_{\Omega} p q dx = 0$$

in just one finite element is

$$-\int_{T^{(k)}}\kappa(J_k-1)\,\mathrm{d}x+\int_{T^{(k)}}p_k\,\mathrm{d}x=0.$$

This yields

$$p_k = \kappa(J_k - 1) = \kappa \left(\frac{v^{(k)}}{V^{(k)}} - 1\right).$$

Linearization

Nonlinear BVP

$$\mathbf{R}(u,t) = \mathbf{M}\ddot{u}(t) + \mathbf{A}(u,t) - F^{\mathrm{ext}}(t) = 0$$

Newton-Method

$$\mathbf{R}'(u^{(k)})\Delta u = r^{(k)} = -\mathbf{R}(u^{(k)}), \quad u^{(k+1)} = u^{(k)} + \Delta u$$

 $\mathbf{R}'(u,t)$ is the derivative in direction of the increment Δu :

$$\mathbf{R}'(u,t) = \mathbf{A}'(u,t) = D_{\Delta u} \left(\int_{\Omega} (p_h \mathbf{I} + \overline{\sigma}(u_h)) : \varepsilon(v_h) \, \mathrm{d}x \right)$$

Chain rule and some tensor manipulations yield

$$\int\limits_{\Omega} \left(\operatorname{grad} v_h : \operatorname{grad} \Delta u_h (p_h \mathbf{I} + \overline{\sigma}_h) + D_{\Delta u} p_h \mathbf{I} : \varepsilon_h \right.$$
$$+ \varepsilon_h : \left[(\mathbf{I} \otimes \mathbf{I} - 2\mathbb{I}) p_h + \overline{c}_h \right] : \Delta \varepsilon_h \right) \, \mathrm{d}x$$

Stiffness Matrix

Denoting the tensor of forth order by \mathbb{D}_h yields

$$\int\limits_{\Omega} \left(\operatorname{grad} v_h : \operatorname{grad} \Delta u_h(\sigma_h) + D_{\Delta u} p_h \mathbf{I} : \varepsilon_h + \varepsilon_h : \mathbb{D}_h : \Delta \varepsilon_h \right) \, \mathrm{d}x$$

This may be simplified to the total stiffness matrix for a typical element $T^{(r)}$

$$\mathbf{K}^{(r)} = \sum_{i,i \in \omega_r} \left(\mathbf{K}^{\mathrm{geo}}_{ij} + \mathbf{K}^{\mathrm{pre}}_{ij} + \mathbf{K}^{\mathrm{mat}}_{ij} \right).$$

The construction of the global stiffness matrix follows the standard assembly procedure of element stiffness matrices:

$$\mathbf{K}(u) = \sum_{r \in \tau_k} \mathbf{A}_r^{\mathrm{T}} \mathbf{K}^{(r)} \mathbf{A}_r$$

with \mathbf{A}_r the connectivity matrices.

Summary

Nonlinear model

one possibility: Newton method

Discretization

- large number of degrees of freedom
- fast solvers needed

Anisotropic material with different layers

- ▶ motivates the use of domain decomposition methods
- implicates parallelization
- ► Idea: FETI

Outline

Histology and Mechanical Behavior of Arterial Walls

Model of an Arterial Wall

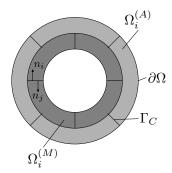
Variation, Discretization and Linearizatior

Outlook and References

Domain Decomposition

Partition into non-overlapping subdomains $\{\Omega_i, 1 \leq i \leq p\}$

$$\overline{\Omega} = \bigcup_{i=1}^{p} \overline{\Omega}_{i} , \quad \Omega_{i} \cap \Omega_{j} = 0 , i \neq j , \quad \Gamma_{C} = \bigcup_{i=1}^{p} \partial \Omega_{i} \setminus \partial \Omega$$



Find the displacement field \mathbf{u} so that

$$ho \ddot{u}_i - \operatorname{div}[p_i \mathbf{I} + \overline{\sigma}(u_i)] = f \quad \text{in } \Omega_i$$
 $u_i = u_j \quad \text{on } \Gamma_{\mathbf{C}}$
 $t_i + t_j = 0 \quad \text{on } \Gamma_{\mathbf{C}}$
with $[p_i \mathbf{I} + \overline{\sigma}(u_i)] n_i = t_i$.

Outlook

Short term goals

- material model in one subdomain
- Dirichlet boundary value problem
- ► FE solvers (FEAP, NGsolve)

Outlook

Short term goals

- material model in one subdomain
- Dirichlet boundary value problem
- ► FE solvers (FEAP, NGsolve)

Mid term goals

Application of FETI-methods to arteries

Outlook

Short term goals

- material model in one subdomain
- Dirichlet boundary value problem
- ▶ FE solvers (FEAP, NGsolve)

Mid term goals

Application of FETI-methods to arteries

Long term goals

- modelling of diseased arteries e.g. atherosclerosis
- modelling of stenting

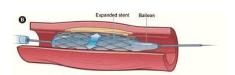


Figure: Expanding a stent

 C. M. Augustin
 Simulation of Arteries
 6. November 2008

 24 / 25

D. Braess.

Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie.

Springer, Berlin-Heidelberg, 1997.

G.A. Holzapfel.

Nonlinear Solid Mechanics. A Continuum Approach for Engineering. John Wiley & Sons Ltd, Chichester, 2000.

G.A. Holzapfel.

Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses.

In G.A. Holzapfel and R.W. Ogden, editors, *Biomechanics of Soft Tissue in Cardiovascular Systems*. Springer, Wien, New York, 2003.

G.A. Holzapfel, T.C. Gasser, and R.W. Ogden.

A new constitutive framework for arterial wall mechanics and a comperative study of material models.

J. Elasticity, 61:1-48, 2000.