SpezialForschungsBereich F 32 0

!i

S

Karl-Franzens Universitat Graz
Technische Universitat Graz
Medizinische Universitat Graz

Medical University of Graz

TU

Grazm

GPU Parallelization for
Unstructured Sparse Matrix
Problems with OpenMP 4.5 and
OpenACC

S. Rosenberger G. Haase

SEFB-Report No. 2017-010 October 2017

A-8010 GRAZ, HEINRICHSTRASSE 36, AUSTRIA

Supported by the
Austrian Science Fund (FWF)

lll I Der Wissenschaftsfonds.

SFB sponsors:
e Austrian Science Fund (FWF)

e University of Graz

Graz University of Technology
e Medical University of Graz

e Government of Styria

City of Graz

% Das Land
Steiermark

Stadt m Wissenschaft

GPU Parallelization for Unstructured Sparse
Matrix Problems with OpenMP 4.5 and
OpenACC

Stefan Rosenberger and Gundolf Haase

University of Graz, 8010 Graz, Austria,
stefan.rosenbergerQuni-graz.at,
WWW home page: https://mathematik.uni-graz.at/en/

Abstract. The effective use of parallelized hardware is an important
goal of today’s computer developments. Nvidia GPUs are an important
footing in this context. While CUDA implemented algorithms focus on
detailed optimized usage of GPU elements the pragma directive paral-
lelization targets GPU computation for a broader community.

In this paper we focus on the implementation of OpenACC and OpenMP
4.5 parallelization for Nvidia GPUs for a sparse matrix solver on unstruc-
tured discretizations. We show similarities between these methods and
current performance differences. We focus also on the possibilities to
force pragma directive parallelized GPU code to a specific vectorization.
Finally we demonstrate the performance of these methods in a complex
structured C++ implementation of the CG and the GMRES method
with an algebraic multigrid as preconditioner.

Keywords: OpenMP 4.5, OpenACC, C++, Nvidia GPU, Multigrid

1 Introduction

Pragma directive parallelization has the goal to be platform independent for
shared memory systems. Two applications, OpenACC and OpenMP 4.5, are cur-
rently available to be used on an Nvidia GPU via pragma directives. OpenACC
is provided by PGI and is well prepared for a broad community. On the other
hand, to use OpenMP 4.5 for an Nvidia GPU the user can face some critical
problems already at the installation step. We summarized our installation in [§],
and therefore let us remark in advance that the performance analysis in this pa-
per is for sure limited to a small community with insight to GPU parallelization
via pragma directives or via CUDA.

In this paper we focus on a parallel solver [7] for unstructured sparse matrices
extracted from the advanced simulation tool for cardiovascular simulation CARP
(Cardiac Arrhythmia Research Package [6]). We introduce our solver elements
and a coalescing strategy for the matrix vector product (SELL-C-o) in section
2. In section 3 we compare the used pragma clauses of OpenACC and OpenMP
4.5. Further we show in the sections 4 and 5 the parallelization of the scalar

product and the matrix vector product for a device.

In section 6 we show the implementation of a self designed coalescing strategy
as SELL-C-o with OpenACC and OpenMP, and in section 7 we show how the
directive parallelization performs for the conjugate gradient and the GMRES
method.

Finally we will focus on current implementation problems of OpenMP 4.5 for
Nvidia GPUs in section 8.

2 Solver Elements

We performed an OpenACC parallelized solver for sparse matrix systems that
achieves the performance of an elaborate CUDA implementation in [9]. This
parallelization serves as a starting point for our OpenMP parallelization.

We consider a system of equations

Au=f (1)

wherein A is a quadratic stiffness matrix. The matrix A is sparse, unstructured
and it is assumed to be positive definite, i.e., (Au,u) >0 Vu ¢ ker(A).

In the none symmetric case we use the generalized minimal residual (GMRES)
method to solve equation (1) and in the symmetric case we apply the conjugate
gradient (CG) method. Regarding details to CG and GMRES methods we refer
the interested reader to [10].

Our implementation provides two preconditioners for Krylov methods (GMRES
and CG), a Jacobi relaxation and an algebraic multigrid (AMG). Since we con-
sider the parallelization of our preconditioners in detail, we want to summarize
briefly the applied operators.®

2.1 'Weighted Jacobi Relaxation

One simple preconditioner for (1) is the Jacobi method. The weighted Jacobi
method computes the iteration

’U,(k+1) = u(k) +LUD71 (f - Au(k)) k= 07172a Y G 1 (2)

wherein D = diag(A), u(®) = 0. If iteration (2) is used as solver for eqn. (1)
then w = 1 is the best choice. Using iteration (2) as smoother in Alg. 1 requires
an under relaxation, i.e., 0 < w < 1. In a 1D textbook example the optimal
smoothing parameter is w = % [10, p. 431]. We use w = 1 for the parabolic sub
problems in CARP where only the Jacobi iteration is used as preconditioner and
we use w = 0.9 whenever this iteration is used as multigrid smoother for our
3D unstructured discretizations on the elliptic sub problems.

1 One can find a very similar description in [9], in order to create a contiguously
structured paper, we repeat parts of the description at this point.

2.2 Multigrid

Each Jacobi iteration (2) updates the solution vector u only locally and therefore
the number of iterations for solving (1) increases with the number of unknowns.
A constant number of iterations can be achieved by combining the Jacobi it-
erations on the original discretization with Jacobi iterations on various coarser
discretizations (or operators) which is the basic idea of multigrid (MG).

We start to describe the components of the MG method on a two grid method,
see also [2]. In order to distinguish between fine and coarse grid (discretization),
we denote operators and elements on the coarse grid with index ¢ and on the
fine grid with index f, e.g., {2y contains all indices belonging to the fine grid and
similarly f2. stores only those indices related to the coarse grid. As a consequence
we re-write eqn. (1) as the fine equation

Apup=ff or > aijguip="fiy Vi€ (3)
JER;

and corresponding for the two grid method the coarse equation as

Ac Ue = fc or Z Aij, cUj, c = fi,c Vi € Qc- (4)
JESN:

In order to derive a correct coarse set 2. := 24\ X'y we define the complementary
indices Xy C 2¢, Xy # 0, ie., those indices that belong exclusively to the
fine grid. The intergrid transfer is performed by the interpolation (prolongation)
operator Igc and the restriction operator I5. Finally, the coarse matrix A, is
constructed via the Galerkin approach

Ap =15 Ap I (5)

Using several iterations of (2) as smoother on the fine grid and a di-
rect solver for the coarse system with operator (5) describes already
the components for the two-grid method which is visualised in Fig. 1.

A recursive application of the two Pre-smooth Post-smooth

grid method, i.e., interpreting (2. Q o
as indices of the (intermediate) fine
grid, leads to the multigrid method
in Fig. 2. Furthermore, we present
the basic multigrid V-cycle as algo-
rithm 1. Applying multigrid directly
to equation (1) is done via the call
MG(1, f1, A1,u1) on the finest dis-
cretization level with index 1 with
some initial guess for u; (might be 0). Solve on coarse
Fig.1: V-Cycle

fine grid Q4

U1 g g
J& 3
|)2
E| u2 @
coarse grid 23
Azuz = f3
Fig. 2: Multigrid (3 levels)
function MG(¥, fe, Ae, ue)
if | < max_level then
Up 1= Up + wDe_1 (fe — Ague) v pre-smoothing iterations
fos1 = If“(fl — Agug) restrict defect
Upy1 =0 initialize coarse grid correction
MG(€+ 1, fex1, Avt1, Ues1) apply MG to coarse grid correction system
ug =g + Iy g ueq add interpolated correction
Up 1= Up + wD[l (fe — Agug) v post-smoothing iterations
else
| Arue = fo solve the coarse system directly
end

Algorithm 1: Multigrid function for the V-cycle.

2.3 Algebraic Multigrid (AMG)

The classical geometric multigrid in the previous section assumes that the whole
grid hierarchy is given a priori. This is not realistic in applications when 10° to
108 tetrahedrons are necessary to describe the computational domain. In these
cases the coarser index sets (241, the intergrid transfer operators I, f 41 and If“
and the coarse operators Ay 1 have to be generated before Alg. 1 can be applied.
This setup step for AMG will be performed on the CPU and its parallelization is
not in the scope of this paper. Regarding details of the AMG setup we forward
the interested reader to [2, chap. 8] and one parallelization approach of the AMG
setup can be found in [4].

2.4 Coalescing Strategies

Coalescing strategies are essential to use a GPU effectively. We have chosen the
SELL-C-0 (ELLPACK) and reduced SELL-C-o (reduced ELLPACK) strategies
for our application.

Figure 3 shows the difference between CRS matrix data alignment and SELL-C-o
data alignment.

Matrix pattern CRS matrix SELL-C-o 5

vl

vl

Fig. 3: SELL-C-o data alignment

The CRS matrix consist 3 vectors for the none zero elements of the matrix:

— the column (col = {0,5,10,0,1,1,2,4,7,13,16,...}))

— the elements (ele consist the value of the matrix entry, corresponding to the
column index)

— the displacement (dsp = {0, 3,5,11,...}) points to the index in col and ele
of the first element of each row.

information.?

To get from a CRS matrix to a SELL-C-o matrix structure, we expand

the column and elements data such that the matrix has the same number of
elements in every row, and we initialize the additional elements with a value
of 0. Furthermore, we reorder the elements in the arrays such that the value-
caching follows the marked arrows. Wherein vl denotes the vectorization length
on the GPU.
The reduced SELL-C-o strategy is very similar to the normal SELL-C-0 method.
The only difference is that we bound the length of each matrix row to the
maximal number of non zero elements per vectorized block of the matrix®. We
refer the interested reader to [5] for more on wide simd units for the matrix
vector product.

3 Parallelization via Pragma

Pragma directive parallelization has the huge advantage that code can be easily
transferred to several different platforms. We consider the parallelization with
OpenMP 4.5 and OpenACC (PGI 17.5). The conceptual idea is the same for
both methods, even if the syntax has several differences (c.f. [1]). We want to
summarize shortly some directives used in our further analysis.

2 We show the corresponding values for our example matrix, and we use 0 as first
index (C++ style).

3 e.g. this means in figure 3 that the first and second v1-block would have a length of
6, the third a length of 3 and the forth a length of 4

During our code development we observed a huge dependency on the chosen
directive clauses for both methods. The easiest way to execute a device method
via pragma is

OpenACC

#pragma acc kernels #pragma omp target

One can simply plugin those pragmas in front of the a kernel to create a device
parallelization. We observe that OpenACC creates device kernels, which can be
considered as an acceleration (compared to a CPU). We have shown in [9] how
to improve an OpenACC parallelization. On the other hand, OpenMP is not
prepared to parallize an arbitrary kernel effectively on a GPU with a straight
forward approach.*

It is advisable for both methods to give specific directives to the compiler, how
one want to parallize (respectively vectorize) the scope.

OpenACC
#pragma acc parallel loop #pragma omp target parallel for simd
#pragma acc loop seq #pragma omp ordered

Note that OpenACC allows nested parallelization via #pragma acc parallel
loop, but OpenMP is not prepared to create a complex parallelization in a teams
construct. The compiler output (-Minfo) of OpenACC shows that PGI tests the
source code on race-conditions, respectively loop-dependencies®. For OpenMP it
is required that the user understands the shared memory parallelization.

For both concepts is it advisable to define vectorization informations via direc-
tives to control the vectorization and threads of the kernels.

OpenACC
vector_length(---) thread_limit(---)
num_gangs (- - -) num_teams (- -)

Note that we do not observe an advantage by using num_threads(---) directives
for OpenMP (we analyse this behaviour in section 8).

One of the most important operations to use a device is the implemented data
handling method. Both methods (OpenMP and OpenACC) provide keywords
for the pragma directives to create the required kernel data for every device
array.

4 We observe a performance loss up to a factor of 100 compared to a CPU. c.f. [§]
5 Note: One can create a race condition with OpenACC, if the user forces the compiler
to a specific parallelization.

OpenACC
copyin(---) map(to: ---)
copyout (- --) map (from: ---)
copy(---) map(tofrom: ---)

Note, that this directives can be used to communicate between host and device,
but since we use a complexr C++ structure for our solver, we have to create deep
copies on the device.

3.1 Deep Copy with Pragma Directives

We use a self written vector class toolbox_vector to handle our data arrays.

Listing 1.1: toolbox_vector class declaration

template <class T> class toolbox_vector {
public:
private:

T* _data;

size_t _size;

TR W~

};

The data type T for a device array is in our application set as int or double.
With pragma directive GPU parallelization one can communicate very easy be-
tween host and device. We show how we create a device array with pragma
directives in listings 1.2 and 1.3..

Listing 1.2: Create Device Array with OpenACC

1 template<class T>
2 void toolbox_vector<T>::void todev () {
3 #pragma acc enter data pcopyin(_datal[O0:_size])
4
Listing 1.3: Create Device Array with OpenMP 4.5 for GPUs
1 template<class T>
2 void toolbox_vector<T>::void todev() {
3 const T *data = _data;
4 #pragma omp target enter data map(to:datal[0:_sizel)
5

We want to take special attention on the private member _data of the
toolbox_vector class. For OpenMP we have to define the pointer data in the
same scope as the #pragma omp ... data directive (line 2 in listing 1.3). Ope-
nACC on the contrary can resolve the address of the private member _data, but
note that the dereference operation with OpenACC in C++ structures can lead
to run-time errors in complex structured codes®.

5 Wherein we use PGI 17.5 compiler.

4 Scalar Product on GPUs with Pragma Directives

An elementary kernel for mathematical applications is the scalar product. We
show how we parallize this arithmetics on the GPU.

Listing 1.4: Scalar Product with OpenACC

1 void scalar_product(const toolbox_vector <double> &_x,

2 const toolbox_vector<double> &_y,

3 double &_s) {
4 double s = 0.0;

5 const double *const __restrict x = _x.data();

6 const double *const __restrict y = _y.data();

7 const int xs = _x.size();

8

9 #pragma acc parallel loop vector_length(vl) pcopyin(x[0:xs],y[0:xs])
10 for (int i=0; i<xs; i++) {

11 s += x[il*y[i];

12 }

13 s = s3

14 }

Note, that OpenACC uses unified memory for scalar values. OpenMP on the
contrary needs the map clause map(tofrom: s) to copy the value s between
host and device.

Listing 1.5: Scalar Product with OpenMP 4.5 for GPUs

1 void scalar_product(const toolbox_vector<double> &_x,

2 const toolbox_vector<double> &_y,

3 double &_s) {
4 double s = 0.0;

5 const double *const __restrict x = _x.data();

6 const double *const __restrict y = _y.data();

7 const int xs = _x.size();

8

9 #pragma omp target teams distribute parallel for simd map(tofrom: s)
10 reduction (+:s)

11 for (int i=0; i<xs; i++) {

12 s += x[il*y[i];

13 }

14 _s = s;

15 }

4.1 Kernel Performance for the Scalar Product

Let us compare the two different parallelization strategies. For this purpose we
calculate the result of a scalar product of two vectors with 862,515 elements
on a GeForce GTX 1060. We used NVIDIA Visual Profiler 8.0 to analyse our
performance. Out of this, we found immediately that OpenACC creates 2 device
kernels.” On the other hand, OpenMP 4.5 only one kernel. Out of 1000 function
calls, we get the following table (note that we use the standard deviation for
our calculation):

7 A reader which is familiar with CUDA would realise that one kernel is required for
the vectorized calculation and the second for the reduction step.

OpenACC

Calculation time 129us £ 31us 701pus £ 115us

Copy data Host - Device 2002 6002
Registers (first/second kernel) 13 /12 70

Grid Size (first/second kernel) [6739,1,1] / [1,1,1] [30,8,1]

Block Size (first/second kernel) [128,1,1] / [256,1,1] [30,1,1]

We observe for both methods a large runtime variation. This turns out
of GPU intern operations (e.g. cooling, alignment). The error reduction of the
measured time is not the aim of this paper, but we want to note that one can
reduce the error by calling the function with a time delay.

A closer look to the performance table of NVIDIA Visual Profiler 8.0 shows
that not only the better efficiency of an independent reduction step leads to
an advantage of OpenACC, also overhead operation such as copy operations
and kernel launch calls need much less time with OpenACC. We tried to
create a vectorization by ourselves for OpenMP. Since we have only limited
possibilities to control threads on the device (c.f. section 8) it is currently not
possible to create an effective scalar product which can keep pace with CUDA
implementations.

Furthermore we want to take special attention to the number of copy operations
between host and device. We need to copy 2 vectors to the device for the
scalar product, which are the only user defined data operations. OpenACC uses
unified memory for scalar values, and copies automatically the result s to and
from the device (2 times for each function call). This operations sums up to
2002 calls.

OpenMP creates 4 more copy operations (each one copies 8 byte to the device)
for each function call®. We want to emphasize that the copy operations are an
important overhead, but they do not dominate the overall calculation time in
this comparison.

5 CRS Matrix Vector multiplication on GPUs with
Pragma Directives

The matrix vector multiplication is one of the most important kernels for our
solver. Therefore we want to show how we implement this kernel on the host and
on the GPU with OpenACC and OpenMP 4.5. We use the CRS format for our
solver, and therefore we get the matrix-vector multiplication on the host as

8 If one want to find the reason for this, one can consider the assembler code of
OpenMP. But this is not the aim of this paper.

10

Listing 1.6: CRS matrix-vector multiplicaion host

1 int i, s;

2 #pragma omp parallel for private(i, s) schedule(guided, 2)
3 for (i=0; i<sv; ++i) {

4 const int *const __restrict p_col = col+dspl[il;

5 const double *const __restrict p_ele = ele+dsplil;

6 double v[i] = 0.0;

7 for (int j=0; j<dspli+1]l-dsplil; ++j) {

8 v[i]l += p_ele[jl*ulp_col[jl];

9 }

10 }

wherein ele, dsp and col are pointers to vectors of the CRS matrix and sv
denotes the degrees of freedom.”

To calculate the same kernel on the GPU with OpenMP or OpenACC one can
use pragma directives as in listings 1.7 and 1.8.

Listing 1.7: CRS matrix-vector multiplicaion with OpenACC

#pragma acc parallel loop independent vector_length(vl) pcopyin(...)
for (int i=0; i<sv; ++i) {

const int *const __restrict p_col = col+dspl[il;

const double *const __restrict p_ele = ele+dspl[il;

const int rsize = dspl[i + 1]-dsplil;

double s = 0.0;
#pragma acc loop seq

for (int j=0; j<rsize; ++j) {

s += p_ele[jl*ulp_col[jl];

=
QOO Uk WN -

}

v[i] = s;

=
N =
o

Listing 1.8: CRS matrix-vector multiplicaion with OpenMP 4.5 for GPUs

1 #pragma omp target teams distribute parallel for simd default (none)
2 num_teams (nt)

3 for (int i=0; i<sv; ++i) {

4 const int *const __restrict p_col = col+dspl[il;

5 const double *const __restrict p_ele = ele+dspl[il;
6 const int rsize = dspl[i + 1]1-dspl[il;

7 double s = 0.0;

8 #pragma omp reduction(+:s)

9 for (int j=0; j<rsize; ++j) {

10 s += p_ele[jl*ulp_col[jl];

11 }

12 v[i] = s;

The GPU parallelization is similar for OpenACC and OpenMP 4.5, one can sim-
ply plug in parallelization pragmas. Note that we use for our whole application
keywords like const and __restrict in an exemplary extent. Furthermore, we
took special attention on the choice of num_teams(nt). The interested reader
can find our development note online at [8] as Note 17.11 wherein we show the
results of or implementation tests.

9 We use for OpenACC the value vl to define the number of threads. We focus in
section 8.1 on the thread definition for OpenMP 4.5.

11

5.1 Kernel Performance for the CRS Matrix Vector Product

In this section we compare the GPU kernels for the matrix vector multiplication.
For this purpose we use a numerical test examples originating from the cardio-
vascular simulation package CARP [3]. In particular we use a stiffness matrix
from an elliptic problem with 862,515 degrees of freedom. We consider again
1000 function calls to compare the two different strategies.

OpenACC

Calculation time 3.03 ms = 0.05 ms 7.77 ms =+ 0.12 ms

Copy data Host - Device 11 6011
Registers / Thread 32 70
Grid Size [6739,1,1] [10,1,1]

Block Size [128,1,1] [32,28,1]

Similar as for the scalar product (c.f. section 4) we find that OpenMP requires
much more copy operations, but this overhead is not the dominating factor (~ 7%
of the calculation time). We find also that OpenACC needs much less registers,
and uses grids and blocks more efficient than OpenMP on the device.

6 SELL-C-o0 Matrix Vector multiplication on GPUs with
Pragma Directives

Similar as for the CRS matrix vector multiplication (c.f. 5) we show the paral-
lelization with SELL-C-o strategy.

The idea to parallelize the matrix-vector product with SELL-C-o and CUDA
is, that the compiler starts for every block a stride (in figure 3 marked with
vl), and every thread gets one row of the matrix (ml is the maximal number
of non zero elements per row). One can create kernels with the same properties
with OpenACC by defining parallel scopes with #pragma acc, wherein we use
the seq clause for the innermost loop, to prevent the compiler from creating a
reduction at this stage.

Listing 1.9: SELL-C-0 matrix-vector multiplicaion with OpenACC

1 #pragma acc parallel loop pcopyin(...)

2 for (int i=0; i<sv; i+=vl) {

3 const int stride = ix*ml;

4 const int k_max = (ml+i<sv)?(ml+i):sv;
5 #pragma acc loop independent

6 for (int k=i; k<k_max; ++k) {

7 double s = 0.0;

8 #pragma acc loop seq

9 for (int j=0; j<ml; ++j) {

10 const int index = stride+k-i+j*vl;
11 s += ele[index] * ulcol([index]];
12 b

13 v[kk] = s;

12

14 }
15 }

We also used ELLPACK strategy with OpenMP 4.5, see listing 1.10.

Listing 1.10: SELL-C-0 matrix-vector multiplicaion with OpenMP 4.5 for GPUs

1 #pragma omp target teams distribute default(none) num_teams (10000)
2 for (int i=0; i<sv; i+=vl) {

3 const int stride = i*ml;

4 const int k_max = (ml+i<sv)?(ml+i):sv;

5 #pragma omp parallel for simd

6 for (int k=i; k<k_max; ++k) {

7 double s = 0.0;

8 #pragma omp reduction(+:s)

9 for (int j=0; j<ml; ++j) {

10 const int index = stride+k-i+j*vl;
11 s += ele[index] #* ulcol[index]];
12 ¥

13 vIkk]l = s;

14 }

15

We also initialized the kernel such that we can take advantage of streams and
threads with OpenMP 4.5. We will present the most effective parallelization we
found!?.

6.1 Kernel Performance for the SELL-C-o0 Matrix Vector Product

We use the same matrix as in section 5 with 862,515 degrees of freedom, and
similar as in the last sections we calculate 1000 function calls resulting in the
following table.

OpenACC

26.77ms £+ 0.4ms

Calculation time 2.23ms + 0.03ms
Copy data Host - Device 9 6009
Registers / Thread 32 70
Grid Size [6739,1,1] [30,1,1]

Block Size [128,1,1] [32,28,1]

We observe a huge difference between OpenACC and OpenMP. A self
written coalescing strategy (as SELL-C-0) is useful for OpenACC. The compiler
can create a more efficient device kernel. On the other hand, for OpenMP we
find a decreasing performance (compared to the CRS matrix vector product) on
the device. OpenMP does not realize the self written vectorization, and creates
a two dimensional device array (Block Size), which is definitely a disadvantage

10 We want to refer the interested reader again to [8] wherein we show our test results
with different parallelization strategies.

13

on the GPU. We observe (similar as for the scalar product in section 4) that we
can not force the compiler to use a specific number of threads that corresponds
to our vectorization (c.f. section 8).

7 Solver Performance with Pragma Directives

As mentioned in our solver description (section 2) we use the conjugate gradient
method for symmetric problems of (1), the GMRES method is used in the non-
symmetric case. We performed a well implemented OpenACC solver (as shown
in [9]) which is competitive with a well performing CUDA implementation of
the same solver. Now we extend our solver for OpenMP 4.5 on GPUs, and we
present the performance differences between OpenACC and OpenMP for one
solving step.

7.1 CG and GMRES with Jacobi Preconditioner

The Jacobi method is the simplest preconditioner available for both parallelized
solve strategies (CG and GMRES). We use the same problem matrix as in the
previous sections with 862515 degrees of freedom, unstructured, positive definite
and symmetric and call the solve function 10 times.

Furthermore, the stopping criterion ¢ < 107° is applied with respect to the
relative error. We measured the following timings:

Solve time device CG with Jacobi preconditioner

OpenACC

CRS fromat 1.58s £ 0.01s 4.82s + 0.08s

SELL-C-o 1.33s + 0.01s

11.27s £ 0.12s

reduced SELL-C-o 0.94s + 0.008s 9.38s + 0.07s

Solve time device GMRES with Jacobi preconditioner
OpenACC

CRS fromat 8.73s + 0.07s 44.62s + 0.58s

SELL-C-o 8.55s + 0.08s 60.62s £ 3.27s

reduced SELL-C-o 8.46s £+ 0.08s 56.94s + 1.53s

We observe that OpenACC performs well on the GPU for every solve strategy*!.

1 The influence of SELL-C-o is much lower for GMRES compared to the individual
matrix kernels (c.f. sections 5 and 6). This happens because we need 198 GMRES it-
erations to solve the problem, and the matrix vector product becomes less important
for more iterations.

14

On the other hand, we observe for OpenMP the same behaviour as for the matrix
vector product (c.f. section 6). OpenMP does not realize the coalescing strategy,
and therefore we observe a performance loss on the GPU for ELLPACK matrices.
Moreover the kernel overhead (c.f. copy operations in sections 4, 5 and 6) becomes
more important for a high iteration number.

7.2 CG and GMRES with AMG Preconditioner

Now we compare the performance for our solver with a more complex precondi-
tioner, the algebraic multigrid. We keep the same settings for the solver as we
did for the Jacobi preconditioner in 7.1. We find the following performances:

Solve time device CG with AMG preconditioner
OpenACC

CRS fromat 0.396s + 0.011s 1.61s £ 0.17s

SELL-C-o 0.322s + 0.008s

2.93s £+ 0.03s

reduced SELL-C-o 0.221s 4+ 0.01s 2.29s + 0.02s

Solve time device GMRES with AMG preconditioner

OpenACC

CRS fromat 0.380s & 0.011s 1.19s & 0.04s

SELL-C-o 0.318s + 0.009s

2.57s £ 0.03s

2.16s £ 0.02s

reduced SELL-C-o 0.230s & 0.011s

We find again that OpenACC is well prepared to be used on a Nvidia GPU, and
the bounded possibilities to use OpenMP 4.5 lead to a performance loss.

7.3 Performance Analysis of one solve step

Since we have also an OpenMP parallelization on the host for our solver, we also
measured our performance there. We run the code on an Intel(R) Core(TM)

15

i7-7700 CPU 3.60GHz (#4 Cores, #8 Threads) for our program.
Solve Time Host with AMG preconditioner

1 Thread 1.89s £+ 0.20s 1.87s £ 0.18s

2 Thread 1.29s 4 0.02s 1.14s 4 0.05s
4 Thread 1.09s £+ 0.02s 0.95s + 0.01s
6 Thread 0.95s 4+ 0.01s 0.98s + 0.01s

8 Thread 0.95s 4 0.02s 0.99s £+ 0.02s

Unfortunately, we observe that our OpenMP 4.5 parallelization for a NVIDIA
device is slower than a host parallelization. Nevertheless, it is possible to use the
GPU with OpenMP pragmas.

We observe for OpenMP 4.5 on a Nvidia GPU a similar behaviour for the whole
solver, as we found for the individual kernels (matrix vector product, scalar
product). The performance with OpenMP is currently only in the range of a
CPU core.

8 Runtime Problems with OpenMP on NVIDIA GPUs

8.1 No Explicit Definition of the Number of Threads on the Device

In order to optimize our algorithms, we considered the influence of different
pragma clauses on the parallelization. In particular, since we observe a huge
performance loss for SELL-C-o strategies, we have been looking for optimisation
potential. For this purpose we considered a very simple device kernel in listing
1.11 to read out the device properties of the parallelization.

Listing 1.11: Threads test with OpenMP 4.5 for GPUs

int size = nthreads;
double vall[sizel;
memset (val, 0, sizeof(val));

int nt_device=0, nt_host=0;
#pragma omp target parallel for map(tofrom: nt_device, val[O:sizel)
for (int i=0; i<size; ++i){

nt_device = omp_get_num_threads();

val[i]l = omp_get_thread_num();

O~ Uk WN—

10 }
11 #pragma omp parallel

13 nt_host = omp_get_num_threads();
14)

The specific analysis of the thread behaviour gave some unexpected results.
We observe that the kernel in listing 1.11 uses only 8 threads on the de-
vice. To raise the number of threads on the host, a user can use the clause

16

num_threads (nthreads), the function omp_set_num_threads (nthreads) or the
environment variable export OMP_NUM_THREADS=nthreads. All three methods
influence only the number of threads on the host, one can not define the num-
ber of threads on the device with this commands.

One can influence the number of device threads with the clauses
num_teams (nteams) and thread limit(nthreads), but unfortunately we can
not define a fix number of threads on the device. We found, that OpenMP cre-
ates maximal 28 threads on the device (in case that we set num_teams (nteams)
low). But unfortunately, this depends therefore very strong on the number of
required teams. For a different amount of teams, we observe a different amount
of used threads. In particular if we apply the AMG algorithm, with different
kernel lengths then we observe a huge loss of performance (c.f. section 7.2)).

8.2 Overhead for Every Device Kernel

We saw for all our device routines that OpenMP creates a kernel overhead in
form of copy operations (c.f. tables in sections 4.1, 5.1, 6.1). This overhead is
not the lion’s share of the runtime, nevertheless, as we have shown in [9], with
OpenACC the users can get rid of this overhead by applying an exemplary use
of const declarations, which is not possible for OpenMP 4.5.

9 Conclusion and Future Work

We have shown that OpenMP 4.5 is able to handle a complex C+-+ structure
on an Nvidia device. But the liaison between host and device is yet not ready
for an inexperienced user. During our development steps we saw also that a
wrong application of OpenMP clauses can lead easily to a performance loss of
10000%*2.

The major problem for our application is for sure the limited possibilities to
control the number of threads on the device, which has the clear consequence
that a user of OpenMP can not create self implemented coalescing strategies for
an effective usage of the device.

Nevertheless, we want to emphasize that OpenMP provides the possibility to
be used for a GPU only since version 4.0. Therefore, we are looking hopefully
into the future, and hope (in some sense we expect) for great progress in the
development of OpenMP.

In a future work, we will compare the performance of OpenACC and OpenMP
with respect to code portability.

References

1. Beyer, J.: OpenACC 2.0 versus OpenMP 4.0 device constructs (2017), http://on-
demand.gputechconf.com/gtc/2013/webinar /gtc-express-webinar-openacc-vs-
openmp.pdf, online; accessed 07-09-2017

2 One can find corresponding measuring results in our Note 17.11 online at [8]

10.

17

. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. STAM,

Philadelphia (2000)

CARP: Cardiac Arrhytmia Research Package (2017), https://carp.medunigraz.at/,
online; accessed 05-09-2017

Haase, G., Kuhn, M., Reitzinger, S.: Parallel AMG on Distributed Mem-
ory Computers. SIAM SISC 24(2), 410-427 (2002), http://dx.doi.org/10.1137/
S1064827501386237

Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A Unified Sparse
Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication on
Modern Processors with Wide SIMD Units. STAM SISC 36(5), C401-C423 (2014)
Kunisch, K., Stollberger, R.: SFB Research Center, Mathematical Optimization
and Applications in Biomedical Sciences (2017), http://imsc.uni-graz.at/mobis/,
online; accessed 31-07-2017

Liebmann, M.: Parallel toolbox web page (2017), http://paralleltoolbox.
sourceforge.net/, online; accessed 09-08-2017

Rosenberger, S.: Note 17-11; First Steps with OpenMP 4.5 on Ubuntu and Nvidia
GPU’s (2017), http://imsc.uni-graz.at/rosenberger/Arbeiten/Notel7-11.pdf, on-
line; accessed 15-09-2017

Rosenberger, S., Haase, G.: Effective OpenACC Parallelization for Sparse Matrix
Problems. (2017), https://imsc.uni-graz.at/mobis/publications/SFB-Report-2017-
008.pdf, SFB-Report No. 2017-008

Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

