Open loop synthesis for closed loop control

Kazufumi Ito, North Carolina State University

June 22-26, 2015, FROM OPEN TO CLOSED LOOP CONTROL, Graz, Austria

Closed loop synthesis

- Receding horizon synthesis
- Lagrange manifold method
- Time-splitting method for Hamilton Jacobi equation
- Coordinate decomposition (state dependent) synthesis
- Applications - Delay system and diffusion system
- Open loop synthesis by Sequential Programing method

Receding horizon (closed loop) synthesis Given $x \in X$, Hilbert space space on $[t, t+T]$ we solve for control $u \in U$ (a constraint set):
$\min \int_{t}^{t+T} f^{0}(x(s), u(s)) d s+V(x(t+T))$ over $u \in L^{2}(t, t+T ; U)$
subject to

$$
\frac{d}{d t} x=f(x, u), \quad u(t) \in U
$$

Remarks

(1) For the short horizon it is much easier to find the feedback $\operatorname{map} x \rightarrow u \in L^{2}(t, t+T ; U)$
(2) One can treat the control constraint $u(t) \in U$ much easier.
(3) If we select a good "look-up" cost V we have a good asymptotic ad $t \rightarrow \infty$ [Ito-Kunisch]. For example V is the value function for the infinite horizon problem. Or, if V is a control Liapunov function iin the sense that there exists a Lipschitz feedback law $-K$ such that

$$
f(x,-K(x)) \cdot V_{x}+f^{0}(x,-K(x)) \leq 0
$$

(4) For example $u=-B^{*} x$ (dissipative control, [lto-Kang]) for $f(x, u)=A x+f(x)+B u$ assume that

$$
\left(x,\left(A-B B^{*}\right) x\right)+(f(x), x)+\ell(x) \leq 0, \quad \text { for all } x \in \operatorname{dom}(A)
$$

(5) Test Example, Burgers equation and Navier Stokes equation, damped wave equations.

Lagrange manifold method Consider the optimal control problem

$$
\begin{equation*}
\int_{0}^{T}(\ell(x(t))+h(u(t)) d t+G(x(T)) \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\frac{d}{d t} x(t)=A x+f(x(t))+B u(t), \quad x(0)=x \tag{2}
\end{equation*}
$$

The necessary optimality condition for (1)-(2) is of the form of Two Point Boundary value problem:

$$
\left\{\begin{array}{l}
\frac{d}{d t} x^{*}(t)=A x^{*}(t)+f\left(x^{*}(t)\right)+B u^{*}(t), \quad x^{*}(0)=x \\
-\frac{d}{d t} p(t)=\left(A+f^{\prime}\left(x^{*}\right)\right)^{*} p(t)+\ell^{\prime}\left(x^{*}(t)\right), \quad p(T)=G^{\prime}\left(x^{*}(T)\right) \\
u(t) \in \partial h^{*}\left(-B^{*} p(t)\right) \tag{3}
\end{array}\right.
$$

Given $x \in X$ we define a map $K(x)=p(0) \in X$, which defines the Lagrange manifold for (3).

Thus, for sufficiently large $T>0$ we define a feedback law

$$
u \in \partial h^{*}\left(-B^{*} K(x)\right)
$$

Moreover, it can be shown that

$$
p(0)=V_{x}(0, x)
$$

where the value function V for (1)-(2) is a viscosity solution to the Hamilton Jacobi equation
$\frac{\partial}{\partial t} V+\left(A x+f(x), V_{x}\right)-h^{*}\left(B^{*} V_{x}\right)+\ell(x)=0, \quad V(T, x)=G(x)$
Remarks We need sampling points $x \in \Sigma$ and interpolation method for $K(x)$ - central difference, sparse sampling and interpolation for high dimensions. Extrapolation by the stationary HJ equation.

Exit (Time optimal) problem

$$
\left.\min \int_{0}^{\tau} \ell(x(s))+h(u(s))\right) d s
$$

subject to

$$
\begin{aligned}
& \frac{d}{d t} x(t)=f(x(t), u(t)), \quad x(0)=x, \quad u(t) \in U \\
& C x(\tau)=c
\end{aligned}
$$

The necessary optimality condition is

$$
\left\{\begin{array}{l}
\frac{d}{d t} x^{*}(t)=f\left(x^{*}, u^{*}\right), x(0)=x, \quad C x^{*}(\tau)=c \\
-\frac{d}{d t} p(t)=f_{x}\left(x^{*}, u^{*}\right)^{*} p(t)+\ell^{\prime}\left(x^{*}\right), \quad p(\tau)=C^{*} \mu \\
h(u)-h\left(u^{*}(t)+\left(f_{u}\left(x^{*}, u^{*}\right)\left(u-u^{*}(t)\right), p(t)\right) \geq 0 \quad \text { for all } u \in U\right. \\
1+\left(f\left(x^{*}(\tau), u^{*}(\tau), p(\tau)\right)=0\right.
\end{array}\right.
$$

Time-splitting method Consider $\frac{d}{d t} x=A x+f(x)+B u$ and define

$$
V^{+}(t, x)=V\left(t, S_{\Delta t} x\right), \quad S(t)=e^{A t}, C_{0} \text {-semigroup, }
$$

Update $V(t-\Delta t, x)$ for a local node $x \in \omega$ by the Hamilton Jacobi equation:

$$
\begin{gather*}
\frac{\partial}{\partial t}+f(x) \cdot V_{x}+h^{*}\left(-b^{t} V_{x}\right)+\ell(x)=0 . \tag{4}\\
V(t-\Delta t, x)-V(t, x)=V(t-\Delta t, x)-V^{+}(t, x)+V^{+}(t, x)-V(t, x) \\
\sim V_{x}\left(S_{\Delta t} x-x\right)+f(x) \cdot V_{x}^{+}+h^{*}\left(-b^{t} V_{x}^{+}\right)+\ell(x) .
\end{gather*}
$$

Navier Stokes system

$$
V^{+}(t, x)=V\left(t, T_{\Delta t} S_{\Delta t} x\right)
$$

where $S_{\Delta t}$ is the Stokes solution map and $T_{\Delta t}$ is the transport by convective term. Then, we Update $V(t-\Delta t, x)$ for a local node $x \in \omega$ by the Hamilton Jacobi equation (4).

Delay Control Systems By the time splitting we have

$$
\frac{d}{d t} x \sim A_{\Delta t} x(t-\Delta t)+f(x(t))+B u(t)
$$

where the Yosida approximation $A_{\Delta t}$ is defined by

$$
A_{\Delta t}=\frac{1}{\Delta t}\left(I-(I-\Delta t A)^{-1}\right)
$$

The resulting system is a delay differential equation.
In general we consider the control of delay differential equations. Let $x_{t}(\theta)=x(t+\theta), \theta \in[-r, 0]$ be the history function for the state $x(t) \in R^{n}$.

$$
\begin{align*}
& \frac{d}{d t} x(t)=f\left(x(t), x_{t}, x(t-r)\right)+B u(t) \tag{5}\\
& x(0)=x_{0}, \quad x(\theta)=\phi(\theta), \quad \theta \in(-r, 0)
\end{align*}
$$

where $f=f\left(x, \phi, x_{1}\right): R^{n} \times L^{2}\left(-r, 0 ; R^{n}\right) \times R^{n} \rightarrow R^{n}$ is locally Lipschitz. The optimality condition is given by

$$
\left\{\begin{array}{l}
\frac{d}{d t} x^{*}(t)=f\left(x^{*}(t), x_{t}^{*}, x^{*}(t-r)\right)+B u(t) \\
x(0)=x_{0}, \quad x(\theta)=\phi(\theta), \quad \theta \in(-r, 0) \\
-\frac{d}{d t} \chi(t)=f_{x}^{t} \chi(t)+f_{\phi}^{*} \chi(t+\cdot)+f_{x_{1}}^{t} \chi(t+r)+\ell^{\prime}(x(t)) \tag{6}\\
\chi(T)=G^{\prime}(x(T)) \quad \chi(t)=0, \quad t>T \\
u(t)=-B^{t} \chi(t) .
\end{array}\right.
$$

Coordinate decompostion

$$
\begin{aligned}
& \frac{d}{d t} x_{1}=f\left(x_{1}, x_{2}\right)+B u \\
& \frac{d}{d t} x_{2}=g\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Assume x_{2} is a fixed on horozon $t \in\left(t_{n}, t_{n}+\Delta t\right)$ for the first (control dynamics) equation and thus

$$
x_{1}\left(t_{n}+\Delta t\right) \sim x_{1}^{+}=S_{1}\left(\Delta t, x_{2}\right) x_{1}\left(t_{n}\right)+B u \Delta t
$$

and let

$$
x_{2}^{+}=S_{2}\left(\Delta t, \frac{x_{1}+x_{1}^{+}}{2}\right)
$$

Then we minimize over $u \in U$

$$
\min \quad G_{1}\left(x_{1}^{+}\right)+G\left(x_{2}^{+}\right)+\Delta t|u|^{2}
$$

— We have applied for the Lorenz 3×3 system.

Sequential Programing method

Consider the constrained optimization of the form

$$
\min \quad F(x)+H(u) \text { subject to } E(x, u)=0, \quad u \in \mathcal{C}
$$

We consider a sequence linearized constrained optimization

$$
\min \quad F(x)+H(u) \text { subject to } u \in \mathcal{C}
$$

$$
E_{x}\left(x_{n}, u_{n}\right)\left(x-x_{n}\right)+E_{u}\left(x_{n}, u_{n}\right)\left(u-u_{n}\right)+E\left(x_{n}, u_{n}\right)=0
$$

The necessary optimality is of the saddle point problem form:

$$
\left\{\begin{array}{l}
E_{x}\left(x_{n}, u_{n}\right)\left(\bar{x}-x_{n}\right)+E_{u}\left(x_{n}, u_{n}\right)\left(\bar{u}-u_{n}\right)+E\left(x_{n}, u_{n}\right)=0 . \\
E_{x}\left(x_{n}, u_{n}\right)^{*} \lambda+F^{\prime}(\bar{x})=0 \\
H(u)-H(\bar{u})+\left\langle E_{u}\left(x_{n}, u_{n}\right)(u-\bar{u}), \lambda\right\rangle \geq \text { for all } u \in \mathcal{C}
\end{array}\right.
$$

Fixed point formulation of saddle point problem
Assume $E(x, u)=E_{0}(x)+B u$.

$$
\left\{\begin{array}{l}
x^{+}=x_{n}+\left(E_{0}^{\prime}\left(x_{n}\right)\right)^{-1}\left(B u+E\left(x_{n}\right)\right) \\
\lambda=-\left(E_{0}^{\prime}\left(x_{n}\right)\right)^{-*} F^{\prime}\left(x^{+}\right) \tag{7}\\
u=\Psi(p)=\operatorname{argmin}_{u \in \mathcal{C}}\{H(u)-(u, p)\}, \quad p=-B^{*} \lambda
\end{array}\right.
$$

where $u^{+}=\Psi\left(-B^{*} \lambda\right)$ solves the optimality condition.

$$
H(u)-H\left(u^{+}\right)+\left(B^{*} \lambda, u-u^{+}\right) \geq 0 \text { for all } u \in \mathcal{C} .
$$

Fixed point iterate: for $\alpha \in(0,1]$

- Given $u_{c} \in \mathcal{C}$, determine $\lambda=\lambda\left(u_{c}\right)$ by the first two equations of (7).
- Update $u_{\text {new }}=\alpha \Psi\left(-B^{*} \lambda\right)+(1-\alpha) u$

If $H(u)=\frac{1}{2}(u, R u)$ we have

$$
u^{+}=\operatorname{Proj}_{\mathcal{C}}\left(u^{+}-\alpha R^{-1} B^{*} \lambda\left(u^{+}\right)\right)
$$

We use the nonlinear CG method for the fixed point.

The second order variant is given by min $F(x)+H(u)+\left\langle E(x, u), \lambda_{n}\right\rangle$ subject to $u \in \mathcal{C}$

$$
E_{x}\left(x_{n}, u_{n}\right)\left(x-x_{n}\right)+E_{u}\left(x_{n}, u_{n}\right)\left(u-u_{n}\right)+E\left(x_{n}, u_{n}\right)=0 .
$$

$$
\begin{aligned}
& E_{x}\left(x_{n}, u_{n}\right)\left(\bar{x}-x_{n}\right)+E_{u}\left(x_{n}, u_{n}\right)\left(\bar{u}-u_{n}\right)+E\left(x_{n}, u_{n}\right)=0 . \\
& \left(E_{x}(\bar{x}, \bar{u})-E_{x}\left(x_{n}, u_{n}\right)^{*} \lambda_{n}+E_{x}\left(x_{n}, u_{n}\right)^{*} \lambda+F^{\prime}(\bar{x})=0\right. \\
& H(u)-H(\bar{u})+\left\langle\left(E_{u}(\bar{x}, \bar{u})-E_{u}\left(x_{n}, u_{n}\right)\right)(u-\bar{u}), \lambda_{n}\right\rangle \\
& \quad+\left\langle E_{u}\left(x_{n}, u_{n}\right)(u-\bar{u}), \lambda\right\rangle \geq \text { for all } u \in \mathcal{C}
\end{aligned}
$$

Remarks (1) Non-smoothness in H, F and E is treated directly. (2) SP is of the first order due to the term $(y=(x, u))$

$$
\left(E^{\prime}\left(y_{n}\right)-E^{\prime}\left(y^{*}\right)\right)^{*} \lambda^{*} .
$$

(3) The fixed point iterate is preconditioned (projected) gradient method of $u^{+} \in \mathcal{C}$ and we solve the saddle point (incomplete).
(4) The second order method incorporates the curveture'of the Lagrangian $L(y, \lambda)=F(y)+\langle E(y), \lambda)$ by the (secant) term

$$
\left(E^{\prime}(\bar{y})^{*}-E^{\prime}\left(y_{n}\right)^{*}\right) \lambda_{n}
$$

without quadratic model of L (SQP).
(5) For large scale problem the fixed point formulation (decomposition of coordinate) with "hot start" via damped fixed pint iterate or nonlinear CG method is effective.
(6) We have tested the optimal control problem and non-smooth elliptic control problem (L^{1} cost). It works very well for our numerical tests. We use the SP solver for the closed loop synthesis.

