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Closed loop synthesis
I Receding horizon synthesis
I Lagrange manifold method
I Time-splitting method for Hamilton Jacobi equation
I Coordinate decomposition (state dependent) synthesis
I Applications — Delay system and diffusion system
I Open loop synthesis by Sequential Programing method

Receding horizon (closed loop) synthesis Given x ∈ X , Hilbert
space space on [t , t + T ] we solve for control u ∈ U ( a
constraint set):

min
∫ t+T

t
f 0(x(s),u(s)) ds+V (x(t+T )) over u ∈ L2(t , t+T ; U)

subject to
d
dt

x = f (x ,u), u(t) ∈ U.



Remarks
(1) For the short horizon it is much easier to find the feedback
map x → u ∈ L2(t , t + T ; U)
(2) One can treat the control constraint u(t) ∈ U much easier.
(3) If we select a good ”look-up” cost V we have a good
asymptotic ad t →∞ [Ito-Kunisch]. For example V is the value
function for the infinite horizon problem. Or, if V is a control
Liapunov function iin the sense that there exists a Lipschitz
feedback law −K such that

f (x ,−K (x)) · Vx + f 0(x ,−K (x)) ≤ 0

(4) For example u = −B∗x (dissipative control, [Ito-Kang]) for
f (x ,u) = Ax + f (x) + Bu assume that

(x , (A− BB∗)x) + (f (x), x) + `(x) ≤ 0, for all x ∈ dom(A).

(5) Test Example, Burgers equation and Navier Stokes
equation, damped wave equations.



Lagrange manifold method Consider the optimal control
problem ∫ T

0
(`(x(t)) + h(u(t)) dt + G(x(T )) (1)

subject to

d
dt

x(t) = Ax + f (x(t)) + Bu(t), x(0) = x . (2)

The necessary optimality condition for (1)–(2) is of the form of
Two Point Boundary value problem:

d
dt x
∗(t) = Ax∗(t) + f (x∗(t)) + Bu∗(t), x∗(0) = x

− d
dt p(t) = (A + f ′(x∗))∗p(t) + `′(x∗(t)), p(T ) = G′(x∗(T ))

u(t) ∈ ∂h∗(−B∗p(t))
(3)

Given x ∈ X we define a map K (x) = p(0) ∈ X , which defines
the Lagrange manifold for (3).



Thus, for sufficiently large T > 0 we define a feedback law

u ∈ ∂h∗(−B∗K (x))

Moreover, it can be shown that

p(0) = Vx (0, x)

where the value function V for (1)–(2) is a viscosity solution to
the Hamilton Jacobi equation

∂

∂t
V + (Ax + f (x),Vx )− h∗(B∗Vx ) + `(x) = 0, V (T , x) = G(x)

Remarks We need sampling points x ∈ Σ and interpolation
method for K (x) — central difference, sparse sampling and
interpolation for high dimensions. Extrapolation by the
stationary HJ equation.



Exit (Time optimal) problem

min
∫ τ

0
`(x(s)) + h(u(s))) ds

subject to

d
dt x(t) = f (x(t),u(t)), x(0) = x , u(t) ∈ U

Cx(τ) = c.

The necessary optimality condition is

d
dt x
∗(t) = f (x∗,u∗), x(0) = x , Cx∗(τ) = c

− d
dt p(t) = fx (x∗,u∗)∗p(t) + `′(x∗), p(τ) = C∗µ

h(u)− h(u∗(t) + (fu(x∗,u∗)(u − u∗(t)),p(t)) ≥ 0 for all u ∈ U

1 + (f (x∗(τ),u∗(τ),p(τ)) = 0,



Time-splitting method Consider d
dt x = Ax + f (x) + Bu and

define

V +(t , x) = V (t ,S∆tx), S(t) = eAt , C0-semigroup,

Update V (t −∆t , x) for a local node x ∈ ω by the Hamilton
Jacobi equation:

∂

∂t
+ f (x) · Vx + h∗(−btVx ) + `(x) = 0. (4)

V (t −∆t , x)− V (t , x) = V (t −∆t , x)− V +(t , x) + V +(t , x)− V (t , x)
∼ Vx (S∆tx − x) + f (x) · V +

x + h∗(−btV +
x ) + `(x).

Navier Stokes system

V +(t , x) = V (t ,T∆tS∆tx)

where S∆t is the Stokes solution map and T∆t is the transport
by convective term. Then, we Update V (t −∆t , x) for a local
node x ∈ ω by the Hamilton Jacobi equation (4).



Delay Control Systems By the time splitting we have

d
dt

x ∼ A∆tx(t −∆t) + f (x(t)) + Bu(t)

where the Yosida approximation A∆t is defined by

A∆t =
1

∆t
(I − (I −∆t A)−1)

The resulting system is a delay differential equation.

In general we consider the control of delay differential
equations. Let xt (θ) = x(t + θ), θ ∈ [−r ,0] be the history
function for the state x(t) ∈ Rn.

d
dt

x(t) = f (x(t), xt , x(t − r)) + Bu(t)

x(0) = x0, x(θ) = φ(θ), θ ∈ (−r ,0)

(5)



where f = f (x , φ, x1) : Rn × L2(−r ,0; Rn)× Rn → Rn is locally
Lipschitz. The optimality condition is given by

d
dt

x∗(t) = f (x∗(t), x∗t , x
∗(t − r)) + Bu(t)

x(0) = x0, x(θ) = φ(θ), θ ∈ (−r ,0)

− d
dt
χ(t) = f t

xχ(t) + f ∗φχ(t + ·) + f t
x1
χ(t + r) + `′(x(t))

χ(T ) = G′(x(T )) χ(t) = 0, t > T

u(t) = −Btχ(t).

(6)



Coordinate decompostion

d
dt x1 = f (x1, x2) + Bu

d
dt x2 = g(x1, x2)

Assume x2 is a fixed on horozon t ∈ (tn, tn + ∆t) for the first
(control dynamics) equation and thus

x1(tn + ∆t) ∼ x+
1 = S1(∆t , x2)x1(tn) + Bu ∆t

and let

x+
2 = S2(∆t ,

x1 + x+
1

2
)

Then we minimize over u ∈ U

min G1(x+
1 ) + G(x+

2 ) + ∆t |u|2

— We have applied for the Lorenz 3× 3 system.



Sequential Programing method
Consider the constrained optimization of the form

min F (x) + H(u) subject to E(x ,u) = 0, u ∈ C

We consider a sequence linearized constrained optimization

min F (x) + H(u) subject to u ∈ C

Ex (xn,un)(x − xn) + Eu(xn,un)(u − un) + E(xn,un) = 0.

The necessary optimality is of the saddle point problem form:
Ex (xn,un)(x̄ − xn) + Eu(xn,un)(ū − un) + E(xn,un) = 0.

Ex (xn,un)∗λ+ F ′(x̄) = 0

H(u)− H(ū) + 〈Eu(xn,un)(u − ū), λ〉 ≥ for all u ∈ C



Fixed point formulation of saddle point problem
Assume E(x ,u) = E0(x) + Bu.

x+ = xn + (E ′0(xn))−1(Bu + E(xn))

λ = −(E ′0(xn))−∗F ′(x+)

u = Ψ(p) = argminu∈C{H(u)− (u,p)}, p = −B∗λ

(7)

where u+ = Ψ(−B∗λ) solves the optimality condition.

H(u)− H(u+) + (B∗λ,u − u+) ≥ 0 for all u ∈ C.

Fixed point iterate: for α ∈ (0,1]
I Given uc ∈ C, determine λ = λ(uc) by the first two

equations of (7).
I Update unew = αΨ(−B∗λ) + (1− α) u

If H(u) = 1
2(u,Ru) we have

u+ = ProjC(u+ − αR−1B∗λ(u+))

We use the nonlinear CG method for the fixed point.



The second order variant is given by

min F (x) + H(u) + 〈E(x ,u), λn〉 subject to u ∈ C

Ex (xn,un)(x − xn) + Eu(xn,un)(u − un) + E(xn,un) = 0.



Ex (xn,un)(x̄ − xn) + Eu(xn,un)(ū − un) + E(xn,un) = 0.

(Ex (x̄ , ū)− Ex (xn,un)∗λn + Ex (xn,un)∗λ+ F ′(x̄) = 0

H(u)− H(ū) + 〈(Eu(x̄ , ū)− Eu(xn,un))(u − ū), λn〉
+〈Eu(xn,un)(u − ū), λ〉 ≥ for all u ∈ C



Remarks (1) Non-smoothness in H, F and E is treated directly.
(2) SP is of the first order due to the term (y = (x ,u))

(E ′(yn)− E ′(y∗))∗λ∗.

(3) The fixed point iterate is preconditioned (projected) gradient
method of u+ ∈ C and we solve the saddle point (incomplete).
(4) The second order method incorporates the curveture’of the
Lagrangian L(y , λ) = F (y) + 〈E(y), λ) by the (secant) term

(E ′(ȳ)∗ − E ′(yn)∗)λn

without quadratic model of L (SQP).
(5) For large scale problem the fixed point formulation
(decomposition of coordinate) with ”hot start” via damped fixed
pint iterate or nonlinear CG method is effective.
(6) We have tested the optimal control problem and
non-smooth elliptic control problem (L1 cost). It works very well
for our numerical tests. We use the SP solver for the closed
loop synthesis.


