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Mathematisches Institut, Universität Bayreuth

theory based on joint work with
Marleen Stieler (Bayreuth), Matthias Müller & Frank Allgöwer (Stuttgart)

Anastasia Panin (Bayreuth), Karl Worthmann (Ilmenau)

application based on joint work with
Arthur Fleig (Bayreuth), Roberto Guglielmi (Linz)

supported by DFG, Elitenetzwerk Bayern and Marie-Curie ITN SADCO

International Workshop “From Open to Closed Loop Control”
Mariatrost, June 22–26, 2015



Setup

We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x

with xu(n) ∈ X, u(n) ∈ U , X, U normed spaces

Usual interpretation:

xu(n) = state of the system at time tn

u(n) = control acting from time tn to tn+1

f = solution operator of a controlled ODE/PDE
or of a discrete time model (or a numerical
approximation of one of these)
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xu(n+ 1) = f(xu(n),u(n)), xu(0) = x

with xu(n) ∈ X, u(n) ∈ U , X, U normed spaces

Problem: infinite horizon optimal control

Prototype problem: For a stage cost ` : X × U → R solve

minimize J∞(x,u) =
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n=0

`(xu(n),u(n))

subject to state/control constraints xu(n) ∈ X, u(n) ∈ U

with optimal control in feedback form u(n) = µ(xu(n))
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 3



Setup

We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x

with xu(n) ∈ X, u(n) ∈ U , X, U normed spaces

Problem: infinite horizon optimal control

Prototype problem: For a stage cost ` : X × U → R solve

minimize J∞(x,u) =
∞∑
n=0

`(xu(n),u(n))

subject to state/control constraints xu(n) ∈ X, u(n) ∈ U

with optimal control in feedback form u(n) = µ(xu(n))
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Receding horizon control
Direct solution of the problem is numerically hard

Alternative method: receding horizon or model predictive control
(MPC)

Idea: replace the infinite horizon problem

minimize J∞(x,u) =
∞∑
n=0

`(xu(n),u(n))

by the iterative solution of finite horizon problems

minimize JN(x,u) =
N−1∑
n=0

`(xu(k),u(k))

with fixed N ∈ N and xu(k) ∈ X, u(k) ∈ U

We obtain a feedback law µN by a receding horizon technique

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 4
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MPC from the trajectory point of view
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black = predictions (open loop optimization)

red = MPC closed loop xµN (n, x0)
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Model predictive control
Basic receding horizon MPC concept:

At each time instant n solve for the current state xµN (n):

minimize JN(xµN (n),u) =
N−1∑
k=0

`(xu(k),u(k)), xu(0) = xµN (n)

subject to the constraints xu(k) ∈ X, u(k) ∈ U

 optimal trajectory x?(0), . . . , x?(N − 1)

 with optimal control u?(0), . . . ,u?(N − 1)

 MPC feedback law µN(xµN (n)) := u?(0)

 closed loop system

xµN (n+1) = f(xµN (n), µN(xµN (n))) = f(xu?(0),u?(0)) = xu?(1)
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Why use MPC?

What is the advantage of MPC over other methods of solving
optimal control problems?

significantly reduced computational complexity
 real time capability

ability to react to perturbations

applicability to problems in which data becomes available
online

But: The trajectory delivered by MPC can be far from optimal!

 Key question in this talk: When does MPC yield closed
loop trajectories with approximately optimal performance?

First question: How to define performance?

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 7
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Performance
In this talk we do not want to limit ourselves to tracking type
functionals, i.e., `(x, u) = ‖x− x∗‖2 + λ‖u− u∗‖2

MPC with more general ` is often termed economic MPC. In
this setting, performance of µN can be measured in two ways

Infinite horizon averaged performance:

J
cl

∞(x, µN) = lim sup
K→∞

1

K

K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

Finite horizon (or transient) performance:

J clK(x, µN) =
K−1∑
n=0

`(xµN (n, x), µN(xµN (n, x)))

Only in special cases K →∞ makes sense

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 8
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Example: minimum energy control
Example: Keep the state of the system inside the admissible
set X minimizing the quadratic control effort

`(x, u) = u2

with dynamics

x(n+ 1) = 2x(n) + u(n)

and constraints X = [−2, 2], U = [−3, 3]

For this example, a good strategy is to control the system to
xe = 0 and keep it there with ue = 0

 (xe, ue) is an optimal equilibrium with `(xe, ue) = 0

(recall: (xe, ue) equilibrium ⇔ f(xe, ue) = xe)

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 9
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 9



Example: minimum energy control
Example: Keep the state of the system inside the admissible
set X minimizing the quadratic control effort

`(x, u) = u2

with dynamics

x(n+ 1) = 2x(n) + u(n)

and constraints X = [−2, 2], U = [−3, 3]

For this example, a good strategy is to control the system to
xe = 0 and keep it there with ue = 0

 (xe, ue) is an optimal equilibrium with `(xe, ue) = 0

(recall: (xe, ue) equilibrium ⇔ f(xe, ue) = xe)
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 10



Example: trajectories

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 5
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 10



Example: trajectories

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 5

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 10
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 10



Example: trajectories

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 5

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)

N = 10
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Example: averaged closed loop performance
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∞(0.5, µN)− `(xe, ue) depending on N , logarithmic scale
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optimal open loop trajectories approach the optimal
equilibrium, stay there for a while, and turn away

– “turnpike property”
closed loop trajectories converge to a neighborhood of the
optimal equilibrium whose size tends to 0 as N →∞
the averaged closed loop performance satisfies

J
cl

∞(x, µN)→ `(xe, ue) as N →∞ (exponentially fast)

Can we prove this behavior?

The first property will turn out to be the crucial one
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Towards a performance estimate
Defining the optimal value function VN(x) := infu JN(x,u),
the “trick” in all MPC proofs lies in relating VN and VN−1

In economic MPC, the desired inequality is

VN(x) ≤ VN−1(x) + `(xe, ue) + ε

for a small error term ε > 0

⇒ `(x, µN(x))+VN−1(f(x, µN(x))) ≤ VN−1(x)+`(xe, ue)+ε ⇒

Using this inequality for x = xµN (0), . . . , xµN (K − 1) yields

J
cl
K(x, µN ) =

1

K

K−1∑
n=0

`(xµN (n), µN (xµN (n)))

≤ 1

K
(VN−1(xµN (0))− VN−1(xµN (K))) + `(xe, ue) + ε

⇒ J
cl

K(x, µN) = lim sup
K→∞

J
cl

K(x, µN) ≤ `(xe, ue) + ε ⇒
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Towards a performance estimate

Similarly, estimates for the non averaged J clK can be obtained

Hence, the desired inequality is

VN(x) ≤ VN−1(x) + `(xe, ue) + ε

for a small ε > 0

In order to obtain this inequality, one

takes an optimal trajectory corresponding to VN−1(x)

prolongs this trajectory such that its value increases by no
more than `(xe, ue) + ε

uses the resulting JN(x, u) as an upper bound for VN(x)

This can be achieved by prolonging the trajectory close to xe
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Prolonging near xe

Sketch of the idea:

x?(·)

xe
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Assumptions needed for this construction

What do we need to make this construction work? [Gr. ’13]

(1) Continuity of VN near xe (uniform in x and N)
I ensures that we can prolong the trajectory in the middle

without changing the value of the tail too much

(2) Turnpike property

I ensures that the finite horizon optimal trajectories stay
for a certain time near the optimal equilibrium xe

I note: in numerical examples we often observe
exponential turnpike, i.e., the minimum distance to xe

shrinks exponentially fast as N increases

Instead of the turnpike property, in the MPC literature another
property is usually imposed: strict dissipativity

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 16
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Strict dissipativity [Willems ’72]
The optimal control problem is called strictly dissipative if
there exists λ : X→ R bounded from below and α ∈ K∞ with

˜̀(x, u) :=

`(x, u)−`(xe, ue)+λ(x)−λ(f(x, u)) ≥ α(‖x−xe‖)

for all x ∈ X, u ∈ U

While originally introduced as a sufficient condition
guaranteeing the turnpike property, a recent result shows:

Theorem [Gr./Müller ’15]: Under suitable controllability
conditions, strict dissipativity is equivalent to the turnpike
property plus optimality of the equilibrium (xe, ue)

The previous example is strictly dissipative with λ(x) = −x2/2

Tracking type functionals are strictly dissipative with λ ≡ 0

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 17
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 17



Strict dissipativity [Willems ’72]
The optimal control problem is called strictly dissipative if
there exists λ : X→ R bounded from below and α ∈ K∞ with

˜̀(x, u) := `(x, u)−`(xe, ue)+λ(x)−λ(f(x, u)) ≥ α(‖x−xe‖)

for all x ∈ X, u ∈ U

While originally introduced as a sufficient condition
guaranteeing the turnpike property, a recent result shows:

Theorem [Gr./Müller ’15]: Under suitable controllability
conditions, strict dissipativity is equivalent to the turnpike
property plus optimality of the equilibrium (xe, ue)

The previous example is strictly dissipative with λ(x) = −x2/2

Tracking type functionals are strictly dissipative with λ ≡ 0
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Economic MPC theorem

Theorem: [Gr./Stieler ’14]

Let f and ` be Lipschitz, X and U be compact and assume

(i) local controllability near xe

(ii) strict dissipativity

(iii) reachability of xe from all x ∈ X

(iv) polynomial growth conditions for ˜̀

}
⇒ uniform continuity of VN}

⇒ turnpike property

(i)–(iv) ⇒ exponential turnpike)
[Damm/Gr./Stieler/Worthmann ’14])

(for alternative conditions see also [Porretta/Zuazua ’13])

[Trelat/Zuazua ’14])
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 18



Economic MPC theorem

Theorem: [Gr./Stieler ’14]

Let f and ` be Lipschitz, X and U be compact and assume

(i) local controllability near xe

(ii) strict dissipativity

(iii) reachability of xe from all x ∈ X

(iv) polynomial growth conditions for ˜̀

}
⇒ uniform continuity of VN}

⇒ turnpike property

(i)–(iv) ⇒ exponential turnpike)
[Damm/Gr./Stieler/Worthmann ’14])

(for alternative conditions see also [Porretta/Zuazua ’13])

[Trelat/Zuazua ’14])
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Economic MPC theorem
Under assumptions (i)–(iii), there exist ε1(N), ε2(K)→ 0 as
N →∞ and K →∞, exponentially fast if additionally (iv)
holds, such that the following properties hold

(1) Approximate average optimality:

J
cl

∞(x, µN) ≤ `(xe, ue) + ε1(N)

(2) Practical asymptotic stability: there is β ∈ KL:

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + ε1(N) for all k ∈ N

(3) Approximate transient optimality: for all K ∈ N:

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

for all admissible u with ‖xu(K,x)− xe‖ ≤ β(‖x− xe‖,K) + ε1(N)

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 19
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Illustration of (2) and (3)

e
x

x

n

(2): xµN (n) converges to the ε1(N)-ball around xe

(3): cost of all other trajectories reaching the ball at time K is
(3): higher than that of xµN (n) up to the error Kε1(N) + ε2(K)
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Schemes with terminal constraints

If we know the equilibrium xe, we may use it as a terminal
constraint, i.e., in each step of the MPC scheme we optimize
only over those trajectories satisfying xu(N) = xe

Example:
N = 5

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)
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Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 21



Schemes with terminal constraints

If we know the equilibrium xe, we may use it as a terminal
constraint, i.e., in each step of the MPC scheme we optimize
only over those trajectories satisfying xu(N) = xe

Example:
N = 5

0 5 10 15 20 25

0

0.5

1

1.5

2

n

x
(n

)
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Schemes with terminal constraints
Imposing xu(N) = xe improves the previous results

Theorem: [Angeli/Amrit/Rawlings ’12; Diehl/Rawlings ’11]

Under strict dissipativity and controllability, the resulting MPC
scheme yields averaged optimal trajectories, i.e,

J
cl

∞(x, µN) ≤ `(xe, ue) +

for which xe is asymptotically stable, i.e.,

‖xµN (k, x)− xe‖ ≤ β(‖x− xe‖, k) + .

In addition [Gr./Panin ’15] we get approx. transient optimality

J clK(x, µN(x)) ≤ JK(x,u) + + ε2(K)
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Example: closed loop cost

J clK(x, µN(x)) ≤ JK(x,u) +Kε1(N) + ε2(K)

vs.
J clK(x, µN(x)) ≤ JK(x,u) +Kε̃1(N) + ε2(K)
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But: terminal constraints can cause infeasibility and severe
numerical problems
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Extensions, further results

In the affine linear quadratic case our conditions are
equivalent to the system being stabilizable [Gr./Stieler ’14]

The optimal equilibrium can be replaced by an optimal
periodic orbit [Zanon/Gr. ’15, Müller/Gr. ’15]

The terminal constraint xu(N) = xe can be relaxed to
xu(N) ∈ X0 for a neighborhood X0 of xe if the functional
JN is appropriately modified [Amrit/Rawlings/Angeli ’12,

Gr./Panin ’15]

The results can be formulated directly in continuous time
[Faulwasser/Bonvin ’15, Alessandretti/Aguiar/Jones ’15]

First results for time varying systems are available
[Zanon/Gros/Diehl ’13, Alessandretti/Aguiar/Jones ’15]
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Example: Fokker-Planck Equation

Consider a stochastic process governed by a controlled
Itô stochastic differential equation (SDE)

dXt = b(Xt, t;u)dt+ σ(Xt, t)dWt, Xt0 = x0

where the random variable Xt ∈ Rd represents the state

Idea: control the statistical properties of Xt by controlling its
probability density function y(x, t)

Lars Grüne, On conditions under which receding horizon control delivers approximately optimal feedbacks, p. 25
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The Fokker-Planck Equation

The probability density function (PDF) y(x, t) of Xt solves the
Fokker-Planck Equation

∂ty(x, t)−
d∑

i,j=1

∂2xixj

(
aij(x, t)y(x, t)

)
+

d∑
i=1

∂xi

(
bi
(
x, t;u)

)
y(x, t)

)
= 0

y(·, 0) = y0

where y : Rd × [0,∞[→ R≥0 is the PDF

y0 : Rd → R≥0 is the initial PDF

a = σσT/2 is a positive definite symmetric matrix

bi : Rd × [0,∞[×U → R, i = 1, . . . , d.
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MPC for the Fokker-Planck equation

∂ty(x, t)−
d∑

i,j=1

∂2xixj

(
aij(x, t)y(x, t)

)
+

d∑
i=1

∂xi

(
bi
(
x, t;u)

)
y(x, t)

)
= 0

Idea: [Annunziato/Borz̀ı ’10ff.] Prescribe a desired PDF yd(x, t)
and use MPC for the FP equation in order to track this PDF

 JN(y, u) =
1

2

N−1∑
n=0

(
‖y(tn+1)− yd(tn+1)‖2

L2(Ω) + λ‖u(tn)‖2
)

tn = nT

[Annunziato/Borz̀ı ’10ff.] used this idea with N = 2 and u
independent of the space variable x

We extended this to arbitrary N and u depending on t and x
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Numerical Example in 2D
2d Ornstein-Uhlenbeck type process on Ω = (−5, 5)2

dXt = b(Xt, t;u)dt+ σ(Xt, t)dWt, Xt0 = x0

with

σ(x, t) =

(
0.8 0
0 0.8

)
, b(x, t;u) =

(
−µ1x1 + u1

−µ2x2 + u2

)
 Fokker-Planck equation

∂ty(x, t)−
d∑

i,j=1

∂2xixj

(
aij(x, t)y(x, t)

)
+

d∑
i=1

∂xi

(
bi
(
x, t;u)

)
y(x, t)

)
= 0

with

a(x, t) =

(
0.32 0

0 0.32

)
, b(x, t;u) =

(
−µ1x1 + u1

−µ2x2 + u2

)
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Numerical Example in 2D

Reference PDF is a bi-modal Gaussian given by

yd(x, t) =
1

2

exp
(
− (x1+µ(t))2

2σ2
11
− (x2−µ(t))2

2σ2
21

)
2πσ11σ21

+
1

2

exp
(
− (x1−µ(t))2

2σ2
12
− (x2+µ(t))2

2σ2
22

)
2πσ12σ22

with µ(t) = 2 sin(πt
5

), σ11 = σ21 = 0.4, σ12 = σ22 = 0.6.
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Numerical Example in 2D

Cost functional

J(y, u) :=
1

2
‖y(t+ T )− yd(t+ T )‖2

L2(Ω) +
λ

2
‖u(t)‖2

L2(Ω)

Simulation parameters

initial distribution y0(x) = yd(x, 0)

optimization horizon N = 2

sampling time T = 0.5

control penalization λ = 0.001

control range u1/2 ∈ [−10, 10]
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Summary and conclusion
Model Predictive Control can be seen as a method for
splitting up an infinite horizon optimal control problem
into the iterative solution of finite horizon problems

The existence of the turnpike property at an optimal
equilibrium is the key ingredient to make this approach
work

Strict dissipativity is essentially equivalent to this property
and may be used as a checkable condition

Good news: if MPC works, then it works regardless of
whether we checked the conditions — but if we want to
be sure we need to check

If we want to do this for more complex examples, the
theory still needs appropriate extension:
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Good news: if MPC works, then it works regardless of
whether we checked the conditions — but if we want to
be sure we need to check

If we want to do this for more complex examples, the
theory still needs appropriate extension:
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Open questions
For instance, for the Fokker-Planck equation the following
questions are still open:

the problem is time varying — but even for a constant
reference PDF open questions remain

is the problem strictly dissipative?

it is not clear whether the problem satisfies the
controllability properties needed to apply our general
results  alternative approaches may be needed

Overall conclusion: conceptually, the turnpike property appears
to be the right tool to understand when receding horizon
control works, but: technical issues remain in order to establish
the regularity which is needed on top, particularly for PDEs
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L. Grüne, Economic receding horizon control without terminal
constraints, Automatica, 49, 725–734, 2013
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