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Controlled hinged beam equation

Given any time T > 0 and initial data

(u0, u1) ∈ H := H1
0 (0, π)×H−1(0, π),

the exact controllability in time T of the linear beam equation with
hinged (simply-supported) ends,

u′′(t, x) + uxxxx(t, x) = 0, x ∈ (0, π), t > 0

u(t, 0) = u(t, π) = uxx(t, 0) = 0, t > 0

uxx(t, π) = v(t), t > 0

u(0, x) = u0(x), u′(0, x) = u1(x), x ∈ (0, π)

(1)

consists of finding a scalar function v ∈ L2(0, T ), called control,
such that the corresponding solution (u, u′) of (1) verifies

u(T, · ) = u′(T, · ) = 0. (2)



(Many) methods to study the controllability

Several approaches are available for the study of a controllability
problem:

Moment theory

Direct methods

Transmutation methods

Uniform stabilization

Optimization methods (Hilbert Uniqueness Method)

Multipliers
Carleman estimates
Microlocal Analysis
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Optimization method

Lemma

Let T > 0 and (u0, u1) ∈ H. The function v ∈ L2(0, T ) is a
control which drives to zero the solution of (1) in time T if and
only if, for any (ϕ0, ϕ1) ∈ H,∫ T

0
v(t)ϕx(t, 1) dt = −

〈
u1(x), ϕ(0, x)

〉
−1,1+

〈
u0(x), ϕ′(0, x)

〉
1,−1 ,

where (ϕ,ϕ′) ∈ H is the solution of the backward equation
ϕ′′(t, x) + ϕxxxx(t, x) = 0 (t, x) ∈ (0, T )× (0, 1)
ϕ(t, 0) = ϕ(t, 1) = 0 t ∈ (0, T )
ϕxx(t, 0) = ϕxx(t, 1) = 0 t ∈ (0, T )
ϕ(T, x) = ϕ0(x) x ∈ (0, 1)
ϕ′(T, x) = ϕ1(x) x ∈ (0, 1).

(3)



Optimization method

For each (u0, u1) ∈ H, define the functional J : H→ R,

J(ϕ0, ϕ1) =
1

2

∫ T

0

|ϕx(t, 1)|2 dt+
〈
u1(x), ϕ(0, x)

〉
−1,1−

〈
u0(x), ϕ′(0, x)

〉
1,−1 ,

where (ϕ,ϕ′) is the solution of (3) with initial data (ϕ0, ϕ1).

If J has a minimum at (ϕ̂0, ϕ̂1) ∈ H then v̂(t) = ϕ̂x(1, t) is a
control for (1).

J has a minimum if it is coercive and it is coercive if the
following observability inequality holds for any (ϕ0, ϕ1) ∈ H:

‖(ϕ(0), ϕ′(0))‖2H ≤ C
∫ T

0

|ϕx(t, π)|2dt. (4)

Hence, if (4) holds, for any initial data (u0, u1) ∈ H, there
exists a control v ∈ L2(0, T ) with the property

‖v‖L2 ≤
√
C‖(u0, u1)‖H. (5)
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Ingham’s inequality

Observability inequality (4) is equivalent to inequality of the form

∑
n∈Z∗

|αn|2 ≤ C(T )

∫ T
2

−T
2

∣∣∣∣∣∑
n∈Z∗

αne
νn t

∣∣∣∣∣
2

dt, (αn)n∈Z∗ ∈ `2. (6)

Ingham’s inequality

For any T > 2π
γ∞

, γ∞ = lim inf
n→∞

|νn+1 − νn|, inequality (6) holds.

A. E. Ingham, Some trigonometric inequalities with applications to the

theory of series, Math. Zeits., 41 (1936), 367-379.

J. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization

of distributed semilinear control systems, Comm. Pure Appl. Math., 32

(1979), 555-587.

J. P. Kahane: Pseudo-Périodicité et Séries de Fourier Lacunaires, Ann.

Sci. Ecole Norm. Super. 37, 93-95 (1962).



Observability inequality

In our particular case

νn = i sgn(n)n2, γ∞ = lim inf
n→∞

|νn+1 − νn| =∞.

Ingham’s inequality implies that the observability inequality (4) is
verified for any T > 0.

Consequently, given any T > 0, there exists a control v ∈ L2(0, T )
for each (u0, u1) ∈ H.

The control function v is not unique.



Moment problem for the beam equation

The null-controllability of the beam equation is equivalent to solve
a moment problem.

Lemma

Let T > 0 and
(u0, u1) =

(∑∞
n=1 a

0
n sin(nx),

∑∞
n=1 a

1
n sin(nx)

)
∈ H. The

function v ∈ L2(0, T ) is a control which drives to zero the solution
of (1) in time T if and only if∫ T

2

−T
2

v

(
t+

T

2

)
etνndt =

(−1)ne−
T
2
νn

√
2nπ

(
νna

0
n − a1n

)
(n ∈ Z∗),

(7)
where νn = i sgn(n)n2 are the eigenvalues of the unbounded
skew-adjoint differential operator corresponding to (1).

A solution v of the moment problem may be constructed by means
of a biorthogonal family to the sequence (eνn t)n∈Z∗ .



Moment problem for the beam equation

Definition

A family of functions (φm)m∈Z∗ ⊂ L2
(
−T

2 ,
T
2

)
with the property∫ T

2

−T
2

φm(t)eνn tdt = δmn ∀m,n ∈ Z∗, (8)

is called a biorthogonal sequence to (eνn t)n∈Z∗ in L2
(
−T

2 ,
T
2

)
.

Once we have a biorthogonal sequence to (eνn t)n∈Z∗ , a “formal”
solution of the moment problem is given by

v(t) =
∑
n∈Z∗

(−1)ne−
T
2
νn

√
2nπ

(
νna

0
n − a1n

)
φn

(
t− T

2

)
. (9)
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Ingham’s inequality and the existence of a biorthogonal

Consider a Hilbert space H and a family (fn)n∈Z∗ ⊂ H such that

∑
n∈Z∗

|an|2 ≤ C1

∥∥∥∥∥∑
n∈Z∗

anfn

∥∥∥∥∥
2

, (an)n∈Z∗ ∈ `2. (10)

Then there exists a biorthogonal sequence to the family (fn)n∈Z∗ .

(fn)n∈Z∗ is minimal i. e.

fm /∈ Span
{

(fn)n∈Z∗\{m}
}

(m ∈ Z∗).

Apply Hahn-Banach Theorem to {fm} and

Span
{

(fn)n∈Z∗\{m}
}

. There exists φm ∈ H such that

(φm, fm) = 1 and (φm, fn) = 0 for any n 6= m.

The biorthogonal sequence which is bounded:∥∥∥∥∥∑
n∈Z∗

bnφn

∥∥∥∥∥
2

≤ 1

C1

∑
n∈Z∗

|bn|2.



No Ingham?

If we are in a context in which no Ingham’s type inequality is
available? We can take the inverse way:

Construction of the biorthogonal
Paley-Wiener Theorem: Let F : C→ C be an entire function
of exponential type (|F (z)| ≤MeT |z|) which belongs to
L2(R) on the real axis. Then

∫
R F (t)eixtdt is a function from

L2(−T, T ).
R. E. A. C. Paley and N. Wiener, Fourier Transforms in Complex
Domains, AMS Colloq. Publ., Vol. 19, Amer. Math. Soc., 1934.

f(x) =
1

2π

∫
R
F (t)eixtdt ⇒


F (t) =

∫ T

−T
f(x)e−ixtdx;

‖f‖L2 =
√

2π‖F‖L2(R).

Evaluation of its norm

Construction of the control



Finite differences for the beam equation

N ∈ N∗, h = π
N+1 , xj = jh, 0 ≤ j ≤ N + 1,

x−1 = −h, xN+2 = π + h.
u′′j (t) = −uj+2(t)−4uj+1+6uj(t)−4uj−1(t)+uj−2(t)

h4
, t > 0

u0(t) = uN+1(t) = 0, u−1(t) = −u1(t), t > 0
uN+2 = −uN + h2vh(t), t > 0
uj(0) = u0j , u

′
j(0) = u1j , 1 ≤ j ≤ N.

(11)

Discrete controllability problem: given T > 0 and
(U0

h , U
1
h) = (u0j , u

1
j )1≤j≤N ∈ C2N , there exists a control function

vh ∈ L2(0, T ) such that the solution u of (11) satisfies

uj(T ) = u′j(T ) = 0, ∀j = 1, 2, ..., N. (12)

System (11) consists of N linear differential equations with N
unknowns u1, u2, ..., uN .
uj(t) ≈ u(t, xj) if (U0

h , U
1
h) ≈ (u0, u1).
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Discrete controls

Existence of the discrete control vh.

Boundedness of the sequence (vh)h>0 in L2(0, T ).

Convergence of the sequence (vh)h>0 to a control v of the
beam equation (1).

L. LEON and E. ZUAZUA: Boundary controllability of the

finite-difference space semi-discretizations of the beam equation.

ESAIM:COCV, A Tribute to Jacques- Louis Lions, Tome 2, 2002, pp.

827-862.
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Equivalent vectorial form

System (11) is equivalent to
U ′′h (t) + (Ah)2Uh(t) = Fh(t) t ∈ (0, T )
Uh(0) = U0

h

U ′h(0) = U1
h ,

(13)

Ah =
1

h2


2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2

 , Uh(t) =


u1(t)
u2(t)

...
uN (t)



Fh(t) =
1

h2


0
0
...
0

−vh(t)

 , U0
h =


u01
u02
...
u0N

 , U1
h =


u11
u12
...
u1N

 .



Discrete observability inequality


W ′′h (t) +A2

hWh(t) = 0 t ∈ (0, T )
Wh(T ) = W 0

h ∈ CN
W ′h(T ) = W 1

h ∈ CN .
(14)

The energy of (14) is defined by

Eh(t) =
1

2

(
〈AhWh(t),Wh(t)〉+ 〈A−1h W ′h(t),W ′h(t)〉

)
, (15)

and the following relation holds:

d

dt
Eh(t) = 0. (16)

The exact controllability in time T of (11) holds if the following
discrete observability inequality is true

Eh(t) ≤ C(T, h)

∫ T

0

∣∣∣∣WhN (t)

h

∣∣∣∣2 dt, (W 0
h ,W

1
h ) ∈ C2N . (17)



One or two problems

Eigenvalues:
νn = i sgn (n)µn, µn = 4

h2
sin2

(
nπh
2

)
, 1 ≤ |n| ≤ N.

Eigenvectors form an orthogonal basis in C2N :

φn =
1√
2µn

 ϕn

−νn ϕn

 , ϕn =
√

2


sin(nhπ)
sin(2nhπ)

...
sin(Nnhπ)

 , 1 ≤ |n| ≤ N.

The observability constant is not uniform in h:

(W 0
h ,W

1
h ) = φN ⇒ C(T, h) =

1

T cos2
(
Nπh
2

) ≈ 1

Th2
.

There are initial data (u0, u1) ∈ H such that the sequence of
discrete minimal L2−norm controls (v̂h)h>0 diverges!!!



Cures (L. Leon and E. Zuazua, COCV 2002)

Problems from the bad numerical approximation of high
eigenmodes (spurious numerical eigenmodes).

Control the projection of the solution over the space
Span{φn : 1 ≤ |n| ≤ γN}, with γ ∈ (0, 1).

∑
1≤|n|≤γN

|αn|2 ≤ C
∫ T

2

−T2

∣∣∣∣∣∣
∑

1≤|n|≤γN

αne
νn t

∣∣∣∣∣∣
2

dt. (18)

Introduce a new control which vanishes in the limit

Eh(t) ≤ C

[∫ T

0

∣∣∣∣WhN (t)

h

∣∣∣∣2 dt+ h2
∫ T

0

∣∣∣∣W ′hN (t)

h

∣∣∣∣2 dt
]
. (19)

C = C(T )⇒ uniform controllability⇒
convergence of the discrete controls.



Regularity and filtration of the initial data

We consider the controlled system
U ′′h (t) + (Ah)2Uh(t) = Fh(t) t ∈ (0, T )
Uh(0) = U0

h

U ′h(0) = U1
h ,

(20)

We suppose that one of the following properties holds:

Initial data (u0, u1) are sufficiently smooth (for instance, in
H3(0, 1)×H1

0 (0, 1)) and discretized by points

U0 = (u0(jh))1≤j≤N , U1 = (u1(jh))1≤j≤N ;

Initial data (u0, u1) are in the energy space H and the high
frequencies of their discretization are filtered out,

(U0, U1) =
∑

1≤|n|≤δN

anhΦn (δ ∈ (0, 1));

Can we obtain the uniform controllability in any T > 0?



Discrete moments problem

Lemma

Let T > 0 and ε > 0. System (20) is null-controllable in time T if
and only if, for any initial datum (U0

h , U
1
h) ∈ C2N of form

(U0
h , U

1
h) =

 N∑
j=1

a0jhϕ
j ,

N∑
j=1

a1jhϕ
j

 , (21)

there exists a control vh ∈ L2(0, T ) such that∫ T

0

vh(t)eνntdt =
(−1)nh√

2 sin(|n|πh)

(
−a1|n|h + νna

0
|n|h

)
, (22)

for any n ∈ Z∗ such that |n| ≤ N .



Biorthogonal family

If (θm)1≤|m|≤N ⊂ L2
(
−T

2 ,
T
2

)
is a biorthogonal sequence to the

family of exponential functions
(
eνnt

)
1≤|n|≤N in L2

(
−T

2 ,
T
2

)
then

a control of (13) will be given by

vh(t) =
∑

1≤|n|≤N

(−1)nhe−νn
T
2

√
2 sin(|n|πh)

(
−a1|n|h + νna

0
|n|h

)
θn

(
t− T

2

)
.

We look for a biorthogonal sequence (θm)1≤|m|≤N to(
eiνnt

)
1≤|n|≤N and we try to estimate the right hand side sum.

The exponents are real:

νn = sgn(n)
4

h2
sin

(
nπh

2

)
(1 ≤ |n| ≤ N).



Biorthogonal sequence

Taking into account that

νn+1−νn =
4

h2
sin

(
nπh

2

)
sin

(
(2n+ 1)πh

2

)
>

{
n if δ < |n| < δN
4 otherwise,

we can use Ingham’s inequality and a Kahane’s argument to show
that, for any T > 0, there exists a biorthogonal (θm)1≤|m|≤N to

the family
(
eiνnt

)
1≤|n|≤N with the property that∥∥∥∥∥∥

∑
1≤|n|≤N

bnθn

∥∥∥∥∥∥
2

≤ C exp

(
C

T

) ∑
1≤|n|≤N

|bn|2.

It follows that

‖vh(t)‖2 =

∥∥∥∥∥∥
∑

1≤|n|≤N

(−1)nhe−νn
T
2

√
2 sin(|n|πh)

(
−a1|n|h + νna

0
|n|h

)
θn

(
t− T

2

)∥∥∥∥∥∥
2

≤ C exp

(
C

T

) ∑
1≤|n|≤N

h2

sin2(nπh)

(
|a1|n|h|

2 + |νn|2|a0|n|h|
2
)
.



Regularity or filtration

‖vh(t)‖2 ≤ C exp

(
C

T

) ∑
1≤|n|≤N

h2

sin2(nπh)

(
|a1|n|h|

2 + |νn|2|a0|n|h|
2
)
.

The initial data to be controlled are in H3(0, 1)×H1
0 (0, 1)∑

1≤|n|≤N

n2
(
|a1|n|h|

2 + |νn|2|a0|n|h|
2
)
≤ C‖(u0, u1)‖23,1

⇒ ‖vh‖2 ≤ C exp

(
C

T

)
‖(u0, u1)‖23,1.

The high frequencies of the discrete initial data are filtered out

‖vh‖2 ≤ C(δ) exp

(
C

T

) ∑
1≤|n|≤δN

1

n2

(
|a1|n|h|

2 + |νn|2|a0|n|h|
2
)

≤ C ′(δ) exp

(
C

T

)
‖(u0, u1)‖21,−1.



Numerical results

Figure: Initial data to be controlled.

N = 100;T = .3;
A conjugate gradient method for the corresponding discrete

optimization approach.



Numerical results

Figure: Example 2 - The first four iterations of the conjugate gradient
method for the approximation of vh with N = 100 without filtration.



Numerical results

Figure: The approximation of the control vh with N = 100, 200, 500 and
1000 by using filtration of the initial data with δ = 1

40 .



Figure: Controlled solution and the approximation of the control with
N = 100 by using filtration of the initial data δ = 1

40 .



Numerical vanishing viscosity

Instead of (13) we consider the system
U ′′h (t) + (Ah)2Uh(t) + εAhU

′
h(t) = Fh(t) t ∈ (0, T )

Uh(0) = U0
h

U ′h(0) = U1
h ,

(23)

ε = ε(h), limh→0 ε = 0

If Fh = 0,
dEh
dt

(t) = −ε〈AhU ′h(t), U ′h(t)〉 ≤ 0

The term εAhU
′
h(t) represents a numerical vanishing viscosity.

Can we obtain the uniform controllability in any T > 0
(without projection or additional controls) using this new
discrete scheme?
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Spectral analysis. Good news but no Ingham.

Eigenvalues: λn = 1
2

(
ε+ i sgn (n)

√
4− ε2

)
µ|n|, 1 ≤ |n| ≤ N.

Eigenvectors:

φn =
1√
2µn

 ϕn

−λn ϕn

 , ϕn =
√

2


sin(nhπ)
sin(2nhπ)

...
sin(Nnhπ)

 , 1 ≤ |n| ≤ N.

If (W 0
h ,W

1
h ) = φN we obtain that

C(T, h) =

∫ T
0

∣∣∣WhN (t)
h

∣∣∣2 dt
‖(Wh(0),W ′h(0))‖2

≈ 1

cos2
(
Nπh
2

) <(λN )

e2T<(λN ) − 1
.

To ensure the uniform observability of these initial data we need

ε > C ln

(
1

h

)
h2

⇒ <(λN ) > C ln

(
1

h

)
.
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Discrete moments problem

Lemma

Let T > 0 and ε > 0. System (13) is null-controllable in time T if
and only if, for any initial datum (U0

h , U
1
h) ∈ C2N of form

(U0
h , U

1
h) =

 N∑
j=1

a0jhϕ
j ,

N∑
j=1

a1jhϕ
j

 , (24)

the exists a control vh ∈ L2(0, T ) such that∫ T

0

vh(t)eλntdt =
(−1)nh√

2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
, (25)

for any n ∈ Z∗ such that |n| ≤ N .



Biorthogonal family

If (θm)1≤|m|≤N ⊂ L2
(
−T

2 ,
T
2

)
is a biorthogonal sequence to the

family of exponential functions
(
eλnt

)
1≤|n|≤N in L2

(
−T

2 ,
T
2

)
then

a control of (13) will be given by

vh(t) =
∑

1≤|n|≤N

(−1)nhe−λn
T
2

√
2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
θn

(
t− T

2

)
.

Now the main task in to show that there exists a biorthogonal
sequence (θm)1≤|m|≤N and to evaluate its L2−norm in order to
estimate the right hand side sum.



S.M., Uniform boundary controllability of a semi–discrete 1–D
wave equation with vanishing viscosity, SIAM J. Cont. Optim., 47
(2008), 2857-2885.
Main differences:

We have the optimal value of the viscosity parameter ε:

ε ≥ Ch2 ln

(
1

h

)
.

The controllability time T should be arbitrarily small.
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Construction of a biorthogonal (I) - The big picture

Suppose that (θm)1≤|m|≤N is a biorthogonal sequence to the family

of exponential functions
(
eλnt

)
1≤|n|≤N in L2

(
−T

2 ,
T
2

)
and define

Ψm(z) =

∫ T
2

−T
2

θm(t)e−i tzdt.

Ψm(iλn) = δnm

Ψm is an entire function of exponential type T
2

Ψn ∈ L2(R)

Paley-Wiener Theorem ensures that the reciprocal is true and gives
a constructive way to obtain a biorthogonal sequence.

Ψm(z) = Pm(z)×Mm(z) =
∏
n6=m

iλn − z
iλn − iλm

×Mm(z).

Pm (the product) and Mm (the multiplier) should have small
exponential type and good behavior on the real axis.



Construction of a biorthogonal (II) - A small picture

(ξ1l )l is a biorthogonal to family F1 which is finite.

(ξ2k)k is a biorthogonal to family F2 with good gap properties.

A biorthogonal (θm)m to full family F1 ∪ F2 can be

constructed by using the Fourier transforms θ̂1k and θ̂2l .
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Construction of a biorthogonal (III): The main result

Theorem

Let T > 0. There exist two positive constants h0 and ε0 such that
for any h ∈ (0, h0) and ε ∈

(
c0h

2 ln
(
1
h

)
, c0h

)
there exists a

biorthogonal (θm)m to (eλnt)n and two constants α < T and
C = C(T ) > 0 (independent of ε and h) such that

∫ T
2

−T2

∣∣∣∣∣∑
m

αmθm(t)

∣∣∣∣∣
2

dt ≤ C(T )
∑
m

|αm|2eα|<(λm)|, (26)

for any finite sequence (αm)m.

Since

vh(t) =
∑

1≤|n|≤N

(−1)nhe−
Tλn

2

√
2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
θn

(
t− T

2

)
.

we obtain immediately from (26) the uniform boundedness (in h)
of the family of controls (vh)h>0.



Construction of a biorthogonal (III): The main result

Theorem

Let T > 0. There exist two positive constants h0 and ε0 such that
for any h ∈ (0, h0) and ε ∈

(
c0h

2 ln
(
1
h

)
, c0h

)
there exists a

biorthogonal (θm)m to (eλnt)n and two constants α < T and
C = C(T ) > 0 (independent of ε and h) such that

∫ T
2

−T2

∣∣∣∣∣∑
m

αmθm(t)

∣∣∣∣∣
2

dt ≤ C(T )
∑
m

|αm|2eα|<(λm)|, (26)

for any finite sequence (αm)m.

Since

vh(t) =
∑

1≤|n|≤N

(−1)nhe−
Tλn

2

√
2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
θn

(
t− T

2

)
.

we obtain immediately from (26) the uniform boundedness (in h)
of the family of controls (vh)h>0.



Numerical results

Figure: Initial data to be controlled.

N = 100;T = 2.3; ε = h
A conjugate gradient method for the corresponding discrete

optimization approach.



Numerical results

Figure: The first four iterations with ε = 0.



Numerical results

Figure: The first four iterations with ε = h.



Figure: Controlled solution and the control.



Controlled clamped beam equation

Given any time T > 0 and initial data

(u0, u1) ∈ H := L2(0, π)×H−2(0, π),

the exact controllability in time T of the
linear clamped beam equation,

u′′(t, x) + uxxxx(t, x) = 0, x ∈ (0, π), t > 0

u(t, 0) = u(t, π) = ux(t, 0) = 0, t > 0

ux(t, π) = v(t), t > 0

u(0, x) = u0(x), u′(0, x) = u1(x), x ∈ (0, π)

(27)

consists of finding a scalar function v ∈ L2(0, T ), called control,
such that the corresponding solution (u, u′) of (27) verifies

u(T, · ) = u′(T, · ) = 0. (28)



Finite differences for the clamped beam equation

N ∈ N∗, h = π
N+1 , xj = jh, 0 ≤ j ≤ N + 1,

x−1 = −h, xN+2 = π + h.


u′′j (t) = −uj+2(t)−4uj+1+6uj(t)−4uj−1(t)+uj−2(t)

h4
, t > 0

u0(t) = uN+1(t) = 0, u−1(t) = u1(t), t > 0
uN+2 = uN + 2hvh(t), t > 0
uj(0) = u0j , u

′
j(0) = u1j , 1 ≤ j ≤ N.

(29)

Discrete controllability problem: given T > 0 and
(U0

h , U
1
h) = (u0j , u

1
j )1≤j≤N ∈ C2N , there exists a control function

vh ∈ L2(0, T ) such that the solution u of (11) satisfies

uj(T ) = u′j(T ) = 0, ∀j = 1, 2, ..., N. (30)



Discrete observability inequality

 W ′′h (t) + B̃hWh(t) = 0 t ∈ (0, T )
Wh(T ) = W 0

h ∈ CN
W ′h(T ) = W 1

h ∈ CN .
(31)

The energy of (31) is defined by

Eh(t) =
1

2

(
〈B̃hWh(t),Wh(t)〉+ 〈W ′h(t),W ′h(t)〉

)
, (32)

and the following relation holds:

d

dt
Eh(t) = 0. (33)

The exact controllability in time T of (29) holds if the following
discrete observability inequality is true

Eh(t) ≤ C(T, h)

∫ T

0

∣∣∣∣2WhN (t)

h2

∣∣∣∣2 dt, (W 0
h ,W

1
h ) ∈ C2N . (34)



Spectral analysis

Continuous spectrum: The eigenvalues of the corresponding
differential operator are given by the positive roots of the
equation cos(z)− cosh−1(z) = 0, which are asymptotically
exponentially close to the zeros of the cos(z) function.
Discrete spectrum: The eigenvalues of the corresponding
discrete operator are given by the positive roots of the
equation f(z) = 0, where

f(z) = cos z ± sin2

(
hz

2

)
+

2
(
1− sin4

(
hz
2

))
rN+1(z)

r2(N+1)(z)− 2 sin2
(
hz
2

)
rN+1(z) + 1

,

r(z) = 1 + 2 sin2

(
zh

2

)
+

√
sin2

(
zh

2

)(
1 + sin2

(
zh

2

))
.

Function f has a sequence of well separated roots
(zn)1≤n≤N ⊂ (0, (N + 1)π). We obtain that our problem has a
sequence of eigenvalues λn = 1

h4
cos4

(
znh
2

)
and a complete set of

eigenfunctions Φn, 1 ≤ n ≤ N .



Observability inequality for discrete clamped beam

The observability inequality is equivalent to

∑
1≤|n|≤N

|an|2 ≤ C
∫ T

0

∣∣∣∣∣∣
∑

1≤|n|≤N

ane
i sgn(n)

√
λ|n|t

Φ
|n|
N√
λ|n|

∣∣∣∣∣∣
2

dt. (35)

Inequality (35) follows with C = C(T ) = O
(
κ
T

)
since

1 For any T > 0 there exists nT = O(1/T ) ∈ N, independent of
h, such that the following inequality holds√

λn+1 −
√
λn ≥

2π

T
(nT ≤ n ≤ N − nT ) . (36)

2 There exists a constant C > 0, independent of h, such that

Φn
N ≥ C

√
λn (1 ≤ n ≤ N) . (37)

We obtain that the discrete clamped beam equation is uniformly
controllable in any time. As in the continuous case, the
observability constant explodes as exp(κ/T ) as T tends to zero.



Thank you very much for your attention!


