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Controlled hinged beam equation

Given any time 7" > 0 and initial data
(u®,u') € H := HY0,7) x H(0,7),

the exact controllability in time 7" of the linear beam equation with
hinged (simply-supported) ends,

U (t, @) + Upgas (t,2) =0, x € (0,7), t>0
u(t,0) = u(t,n) = uze(t,0) =0, t>0
Ugr(t,m) =0(t), t>0

u(0,z) = u¥(z), v/ (0,z) =ul(z), x€(0,7)

(1)

consists of finding a scalar function v € L?(0,7T'), called control,
such that the corresponding solution (u,u’) of (1) verifies

W(T, ) =/(T, ) =0. (2)
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Several approaches are available for the study of a controllability
problem:
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Fattorini H. O. and Russell D. L., Exact controllability theorems for linear
parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 4
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J.-L. Lions, Controlabilité exacte, stabilisation et perturbations des
systemes distribués, Vol. 1, Masson, Paris, 1988.



Optimization method

Lemma

Let T > 0 and (u°,u') € H. The function v € L*(0,T) is a
control which drives to zero the solution of (1) in time T if and
only if, for any (©°, ') € 3,

T
/0 v(t)p,(t,1)dt = — <ul(x), @(O,$)>7171+<u0(1’), ¢'(0, x)>1’71 :
where (¢, ¢’) € H is the solution of the backward equation

" (t, %) + Pazac(t, z) =0 (t z) € (0,T) x(0,1)

gD(t,O) = gD(t, 1) — (0 ( 7T)
‘px:c(ta 0) = (p:car(ta 1) =0 ( )T) (3)
p(T,z) = () €(0,1)
@l(Tv x) = 901('7;) ( ) 1)



Optimization method

For each (u”,u') € X, define the functional J : H — R,

0 1 1 . 2 1 0 /
T = 5 [ lent D (! @), 0(0.0))_, =0 @). ¢ 0.2),

where (i, ') is the solution of (3) with initial data (¢?, o).
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Optimization method

For each (u”,u') € X, define the functional J : H — R,

0 1 1 . 2 1 0 /
T = 5 [ lent D (! @), 0(0.0))_, =0 @). ¢ 0.2),

where (i, ') is the solution of (3) with initial data (¢?, o).
m If J has a minimum at (@°, $') € I then 0(t) = $.(1,1) is a
control for (1).

m J has a minimum if it is coercive and it is coercive if the
following observability inequality holds for any (¢, ') € 3:

1((0), |m<c/ (). (4)

m Hence, if (4) holds, for any initial data (u”,u!) € 3, there
exists a control v € L?(0,T) with the property

lollz < VOl (u®, uh)lls. (5)



Ingham’s inequality

Observability inequality (4) is equivalent to inequality of the form

l
Z \an\Q < C(T) /ZT Z ape’nt

nez* Y2 nezx

2
(an)nEZ* € 62' (6)

Ingham's |nequa||ty

Forany T'> =%, 4o = hm mf |Un+1 — vpl, inequality (6) holds.

A. E. Ingham, Some trigonometric inequalities with applications to the
theory of series, Math. Zeits., 41 (1936), 367-379.

J. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization
of distributed semilinear control systems, Comm. Pure Appl. Math., 32
(1979), 555-587.

J. P. Kahane: Pseudo-Périodicité et Séries de Fourier Lacunaires, Ann.
Sci. Ecole Norm. Super. 37, 93-95 (1962).



Observability inequality

In our particular case

Vp = isgn(n) n2, Yoo = liminf |vp 41 — vy | = 00.
n—oo

Ingham's inequality implies that the observability inequality (4) is
verified for any T" > 0.

Consequently, given any T > 0, there exists a control v € L?(0,7)
for each (u®, ul) € H.

The control function v is not unique.



Moment problem for the beam equation

The null-controllability of the beam equation is equivalent to solve
a moment problem.

Let T'> 0 and

(W, ut) = (02 af sin(nz), > o0 | ap, sin(nx)) € H. The
function v € L*(0,T) is a control which drives to zero the solution
of (1) in time T if and only if

Nl

T_
T\ w (=D"e"z"™ o _ 1
v(t+ = |edt = ———— (Dpa) — a,, ne€Z"),
(7)

where v,, = i sgn(n)n? are the eigenvalues of the unbounded

skew-adjoint differential operator corresponding to (1).

A solution v of the moment problem may be constructed by means
of a biorthogonal family to the sequence (e’ ?),,c7+.



Moment problem for the beam equation

A family of functions (¢ )mez+ C L? (=L, L) with the property

T

* Sm()e"ntdt = 6y Vmy,m € T, (8)

_T
2
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Moment problem for the beam equation

A family of functions (¢ )mez+ C L? (=L, L) with the property

T

* Sm()e"ntdt = 6y Vmy,m € T, (8)

_T
2

is called a biorthogonal sequence to ("™ ') ez~ in L* (=%, 1).

Once we have a biorthogonal sequence to (€/"!),cz+, a “formal”
solution of the moment problem is given by

T—
SVn

P L (3 IO



Ingham's inequality and the existence of a biorthogonal

Consider a Hilbert space H and a family (f,)nez+ C H such that

2
Z |an|2 <Ci Z anfn

nez* nez*

(an)nGZ* S KQ’ (10)

Then there exists a biorthogonal sequence to the family (f,,)necz*-
B (fn)nez+ is minimal i. e.
fm & Span {(fu)nez\qmy}  (m € Z¥).
m Apply Hahn-Banach Theorem to {f,,} and
Span {(fn)nez\{m} }- There exists ¢,,, € H such that

(ém; fm) =1 and (¢, fn) = 0 for any n # m.

m The biorthogonal sequence which is bounded:

2
> bda| <5 3 Il

nez* nez*




No Ingham?

If we are in a context in which no Ingham’s type inequality is
available? We can take the inverse way:
m Construction of the biorthogonal

Paley-Wiener Theorem: Let F': C — C be an entire function
of exponential type (|F(z)| < Me”I#l) which belongs to
L?*(R) on the real axis. Then [ F(t)e"!dt is a function from
L*(~T,T).
R. E. A. C. Paley and N. Wiener, Fourier Transforms in Complex
Domains, AMS Collog. Publ., Vol. 19, Amer. Math. Soc., 1934.

[, s
F(t) = flx)e™ " du;
F@) = % /]R Pl)etdt = o

I fllze = V27| Fll 12(w)-

m Evaluation of its norm

m Construction of the control



Finite differences for the beam equation

N eN b=y, ;= jh 0<j <N +1,
o — —h, IN42 =T + h.
( ) Uj+2(t)—4Uj+1+GUj]EZ)—4Uj_1(t)-i—u]'_g(t)’ t> 0
()—UN+1()—0 u—1(t) = —u(t), t >0 (11)
UN+ :—uN+h vp(t), t>0

(§ Wi (0) =uj, 1<j<N.



Finite differences for the beam equation

NeN', h=FH 2j=7jh 0<j<N+1,
o — —h, IN42 =T + h.
( ) = uj+2(t)—4uj+1+6Ujlgi)—4uj—1(t)+uj—2(t)’ £>0
w(®) = uxia(0) =0, ua(®) =—w(®), t>0 )
UN+2:—UN+h vp(t), t>0
u;(0) = uf, uj(0) =uj, 1<j<N.

Discrete controllability problem: given 7" > 0 and
(U, Ul = (U?,U})lgjgN € C?V, there exists a control function
vy, € L2(0,T) such that the solution u of (11) satisfies

uy(T) = u(T) = 0, ¥j = 1,2, ..., N. (12)

System (11) consists of N linear differential equations with N
unknowns i, U, ..., UN-
ui(t) ~ u(t, ;) if (UP,U}) ~ (u®,ut).



Discrete controls

m Existence of the discrete control vy,.
m Boundedness of the sequence (vy)n>0 in L2(0,T).

m Convergence of the sequence (vp)p~0 to a control v of the
beam equation (1).



Discrete controls

m Existence of the discrete control vy,.

m Boundedness of the sequence (vy)n>0 in L2(0,T).

m Convergence of the sequence (vp)p~0 to a control v of the
beam equation (1).

L. LEON and E. ZUAZUA: Boundary controllability of the
finite-difference space semi-discretizations of the beam equation.
ESAIM:COCV, A Tribute to Jacques- Louis Lions, Tome 2, 2002, pp.
827-862.



Equivalent vectorial form

System (11) is equivalent to

U (t) + (Ap)?Un(t) = Fi(t) te(0,7T)
Uh(O) == U}? (13)
UL(0) = Uy,
2 -1 0 0o ... 0 0
-1 2 -1 0 ... 0 0 ulgg
1 o -1 2 -1 ... 0 0 Uz
Av=gs| L =
0 0 0 0 2 -1 un(t)
0O 0 0 0 1 9
0
0 uy u}
1 . 0 Uy 1 U
Fr(t) = 72 : . Up = ) . Ul = )
0 b 1



Discrete observability inequality

W/ (t)+ AZWy(t) =0 t€(0,T)

Wi(T) =W e CV (14)
Wi(T) =W} e CN.

The energy of (14) is defined by

Ea(t) = 5 ((AWi(t), Wa(0)) + (A3 Wi(0), Wh(1)) . (19)
and the following relation holds:
%Eh(t) 0. (16)

The exact controllability in time 7" of (11) holds if the following
discrete observability inequality is true

Wh,N(t)
h

T 2
B < o) [ \dt, (WP, Wh e . (17)
0




One or two problems

Eigenvalues:
Vo = isgn (n) fin, pin = 5 sin” ("51) ;1< [n| < N.
Eigenvectors form an orthogonal basis in C2/:

. sin(nh)
(p .
1 sin(2nh)
P = . Pt =2 _ 1< |n| < N.
V2 n :
—v,
" sin(Nnh)

The observability constant is not uniform in h:

1 1
IIrO IIrl _ N — ~
( h> h,) - ¢ = C(T7 h) - T cos2 (N;rh) Th2'

There are initial data (u°,u') € H such that the sequence of
discrete minimal L2?—norm controls (v,);,~¢ diverges!!!



Cures (L. Leon and E. Zuazua, COCV 2002)

Problems from the bad numerical approximation of high
eigenmodes (spurious numerical eigenmodes).

m Control the projection of the solution over the space
Span{¢™ : 1 < |n| <N}, with v € (0,1).
2

dt. (18)

2 an, el/,,, t

1<|n|<yYN

> ez

1<|n|<yN T2

m Introduce a new control which vanishes in the limit

T 2 T
/ dt + h? /
0 (

)
C = C(T) = uniform controllability =

Whn(t)

h

Win ()

Eh(t) S C

th] . (19)

convergence of the discrete controls.



Regularity and filtration of the initial data

We consider the controlled system
U'(t) + (Ap)2Un(t) = Fip(t) te€(0,7T)
Uu(0) = U (20)
U4 (0) = Uy,

We suppose that one of the following properties holds:

m Initial data (u ul) are sufficiently smooth (for instance, in
H?3(0,1) x H}(0,1)) and discretized by points
U° = (u’(jh))i<jen, U' = (u'(jh)<jen;

m Initial data (u®,u!) are in the energy space H and the high
frequencies of their discretization are filtered out,

(Uov Ul) = Z anp®" (6 €(0,1));
1<Inl<6N

Can we obtain the uniform controllability in any 7" > 07



Discrete moments problem

Lemma

Let T > 0 and € > 0. System (20) is null-controllable in time T' if
and only if, for any initial datum (UY,U}) € C?N of form

Uh’Uh (Z a’]h‘)ﬂ Za]h(p ) (21)

there exists a control v, € L*(0,T) such that

4 VUnt _ (_l)nh 1 -
/0 vp(t)e’ " dt = —ﬂsin(|n|7rh) (—aw,l + V"a’lon\h> , (22)

for any n € Z* such that |n| < N.



Biorthogonal family

If (6m)1<pmi<ny C L2 (=%, %) is a biorthogonal sequence to the

2772
. . . nt . 2 T T
family of exponential functions (e” )1§|n|§N in L ( ) then

a control of (13) will be given by
(=1)"he = 1 S r
vp(t) = ~————— (—ai,p + Tnlp ) On [ — = ).
1<nz|<Nfsm(|n|7rh) ( Inl Inl ) 2
We look for a biorthogonal sequence (0.m)1<|m|<n to
(e’”"t)lgn‘SN and we try to estimate the right hand side sum.
The exponents are real:

4 h
Vu = sgn(n) 1 sin <”72T> (1< |n| < N).

Semalt g wegeges  smangp



Biorthogonal sequence

Taking into account that

B *is' nmh g (2n + 1)mwh Sl if 6 <|n| <N
Vn41 =V = g5 sl —— | sl 2 4 otherwise,

we can use Ingham’s inequality and a Kahane's argument to show
that, for any T > 0, there exists a biorthogonal (6;,)1<|m|<n to

the family (e"n?) with the property that

1<|n|<N

2
> bubn scexp((T]) > jbal*

1<|n|<N 1<|n|<N

It follows that
2

T
n9 T

—1)"he™"
I = COhe™ 2 (o 5l Qn(t—>
len (0] 1<§nlj<N el QUL 5

c h? 12 20 |2
<cen(F) 5 o (bl + Pl

1<|n|<N



Regularity or filtration

C h?
lontl < Coxp () 3 s (lahynl + b Plaa )

9
L <Inl<N sin®(nwh)

m The initial data to be controlled are in H3(0,1) x H}(0,1)

S n? (labynl? + loallafal?) < Ol )R,
1<|n|<N

C
= onl = Coxp (5 ) 1620

m The high frequencies of the discrete initial data are filtered out

C 1
fonl? < Cyexp (5) Y (obusl + I Plebs?)

1<[n|<6N

, C
< c@en () It IR



Numerical results

Iritial position Initial velocity
2 1

18 08

16 06

14 04

12 02

1 i

08 02

06 04

04 06

02 08

% o1 92 03 04 05 08 07 08 05 1 Yo o1 02 03 04 05 06 07 08 09 1

x x

Figure: Initial data to be controlled.

N =100;T = .3;
A conjugate gradient method for the corresponding discrete
optimization approach.



Numerical results

voration 1 roration 2
200 : - 200 i =
150 150
100 100
B B
= o = o
50 50
100 100
150 150
2DDU 005 01 015 02 025 03 2ODU 005 01 015 02 025 T
¢ ¢
heretion 2 heretion 4
200 200
150 150
100 100
s s
= o = o
50 50
100 100
150 150
ZDDU 005 01 015 032 025 03 200, ] 03

Figure: Example 2 - The first four iterations of the conjugate gradient
method for the approximation of v;, with N = 100 without filtration.



Numerical results

=100 =200
30 30
20 20
10 10
e o e o
= =
10 10
20 20
30 30
49 0.05 01 015 0.2 025 03 49 0.05 01 015 0.2 025 03
t t
s e
30 30
20 20
10 10
= o = 0
> >
10 10
20 20
30 30
49 005 01 015 02 025 0.3 49 005 01 015 02 0256 0.3

Figure: The approximation of the control v, with NV = 100, 200, 500 and
1000 by using filtration of the initial data with 6 = 4—10.



Controlled position N=100

30

20

U (tx)
V()
=]

005 0.1 015 02 025 03

Figure: Controlled solution and the approximation of the control with
N =100 by using filtration of the initial data § = 5.



Numerical vanishing viscosity

Instead of (13) we consider the system

U/'(t) + (Ap)2Un(t) + cApUJ(t) = Fu(t) te (0,T)
Un(0) = Uy (23)
Uj(0) = U},

mec=c¢e(h), limp,0e=0

dE
m If F), =0, d—th(t) = —(A,UL (1), Ul (1)) <0

m The term €A, Uj (t) represents a numerical vanishing viscosity.



Numerical vanishing viscosity

Instead of (13) we consider the system

U/'(t) + (Ap)2Un(t) + cApUJ(t) = Fu(t) te (0,T)
Un(0) = Uy (23)
Uj(0) = U},

mec=c¢e(h), limp,0e=0

dE
m If F), =0, d—th(t) = —(A,UL (1), Ul (1)) <0

m The term €A, Uj (t) represents a numerical vanishing viscosity.
Can we obtain the uniform controllability in any 7" > 0

(without projection or additional controls) using this new
discrete scheme?
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Spectral analysis. Good news but no Ingham.

Eigenvalues: )\, = 3 <5 +isgn(n)v4 — 52> Hnpy 1< |n| < N.
Eigenvectors:

. s‘in(nhﬂ')
sin(Nnh)
If (W2, W}) = ¢ we obtain that
Jo ‘W%“)rdt ! R(Aw)

) = 003, 0), W O ™ cos? (58] 70w — 1

To ensure the uniform observability of these initial data we need

e>Cln (1> h?
h
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Jo ‘W%“)rdt ! R(Aw)

) = 003, 0), W O ™ cos? (58] 70w — 1

To ensure the uniform observability of these initial data we need

1

e>Cln (}> h? = R(An) > Cln (;) :
2 l



Discrete moments problem

Lemma

Let T'> 0 and € > 0. System (13) is null-controllable in time T' if
and only if, for any initial datum (UY,U}) € C?N of form

Uh’Uh (Z a’]h‘)ﬂ Za]h(p ) (24)

the exists a control v, € L?(0,T) such that

r Ant 1p (‘Dnh 1 ~
/0 vp(t)ertdt = m (—a‘nlh + (A — 5,u|n|)a|0n|h> , (25)

for any n € Z* such that |n| < N.



Biorthogonal family

If (Om)1<|m|<n C L? (—%, %) is a biorthogonal sequence to the
family of exponential functions (e/\nt)léln\SN in L? (—%, %) then

a control of (13) will be given by
(1) e

vp(t) = Z m (—alln‘h + (A — su|n|)a|0n‘h) 0, <t - g)

1<|n|<N

r
2

Now the main task in to show that there exists a biorthogonal
sequence (0, )1<|m|<n and to evaluate its L?—norm in order to
estimate the right hand side sum.



S.M., Uniform boundary controllability of a semi—discrete 1-D

wave equation with vanishing viscosity, SIAM J. Cont. Optim., 47
(2008), 2857-2885.

Main differences:

m We have the optimal value of the viscosity parameter e:

1
h)’

62Ch21n<



S.M., Uniform boundary controllability of a semi—discrete 1-D

wave equation with vanishing viscosity, SIAM J. Cont. Optim., 47
(2008), 2857-2885.

Main differences:

m We have the optimal value of the viscosity parameter e:

EZCh21n<1>.
h

m The controllability time T" should be arbitrarily small.

*
e FE
Large gap *

small gap
#

*
He-de—de—h—- *.

Small gap




Construction of a biorthogonal (I) - The big picture

Suppose that (0;,)1<|m|<n is a biorthogonal sequence to the family

in L? ( L T) and define

. . A t
of exponential functions (e’ -<,5

)1<ini<n
P
\I'm(z):/ O (t)e "2 dt,

B U, (i) = Onm

m U, is an entire function of exponential type %

m U, € L3(R)
Paley-Wiener Theorem ensures that the reciprocal is true and gives
a constructive way to obtain a biorthogonal sequence.

Up(2) = P(2) x Mim(2) = []

1
n#m n

Ay — 2
—F— x M .
D —ingy M)
P, (the product) and M, (the multiplier) should have small
exponential type and good behavior on the real axis.



Construction of a biorthogonal (II) - A small picture

Y Eigenvalues of the problem

@ Added values

Ak —Ah—k H—e . . . . .

Small gap family F1 Large gap family F2



Construction of a biorthogonal (II) - A small picture

Y Eigenvalues of the problem

@ Added values

Ak —Ah—k H—e . . . . .

Small gap family F1 Large gap family F2

m (&), is a biorthogonal to family Fy which is finite.
n (§£)k is a biorthogonal to family F» with good gap properties.
m A biorthogonal (6,,,), to full family F U F5 can be

constructed by using the Fourier transforms 91 and 92



Construction of a biorthogonal (IIl): The main result

Let T' > 0. There exist two positive constants hy and g such that
for any h € (0,ho) and € € (coh®In (3) ,coh) there exists a
biorthogonal (0,,)m to (e* '), and two constants o < T and

C = C(T) > 0 (independent of ¢ and h) such that

/ET Zamem(t)

for any finite sequence (Cty)m -

2
dt < C(T) ) |am|?eRO1 - (26)




Construction of a biorthogonal (IIl): The main result

Let T' > 0. There exist two positive constants hy and g such that
for any h € (0,ho) and € € (coh®In (3) ,coh) there exists a
biorthogonal (0,,)m to (e* '), and two constants o < T and

C = C(T) > 0 (independent of ¢ and h) such that

2

dt <C(T) Y~ JaPeROm1 - (26)

m

/ET Zamem(t)

for any finite sequence (m)m

Since

w(t) = ) m (—aﬂn‘h + (A — €M\n|)a?n\h) 0n, <t - g)

1<|n|<N

we obtain immediately from (26) the uniform boundedness (in h)
of the family of controls (vy)p>0-



Numerical results
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Figure: Initial data to be controlled.

N =100;T=23;e=h
A conjugate gradient method for the corresponding discrete
optimization approach.



Numerical
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Figure: The first four iterations with € = 0.
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Figure: The first four iterations with ¢ = h.



Example 2: The controlled solution Example 2: Control function

vty
)

Figure: Controlled solution and the control.



Controlled clamped beam equation

Given any time 7" > 0 and initial data
(u®,ut) € H := L*(0,7) x H%(0,n),

the exact controllability in time T" of the
linear clamped beam equation,

U (b, %) + Upgae (b, 2) =0, z € (0,m), t >0
u(t,0) = u(t,m) = uy(t,0) =0, t>0
ug(t,m) =v(t), t>0

u(0,2) = u%(z), v (0,z) = ul(z), =€ (0,7)

(27)

consists of finding a scalar function v € LZ(O, T'), called control,
such that the corresponding solution (u,u’) of (27) verifies

u(T, ) =4 (T, -) =0. (28)



Finite differences for the clamped beam equation

NGN*,h:NL_H,a?j:jh,OSjSN-‘rl,
1 =—h, xnyyo=m+h.

u;/(t> _ _Uj+2(t)—4uj'+1+6u]']—(bi)—4u]',1(t)-i—uj',g(t)’ t>0

uo(t) = UN+1(t) = 0, ufl(t) = ul(t), t>0
UN4+2 = UN + QhUh(t), t>0

uj(0) = uf, uwj(0) = uj, 1<j<N.

(29)

Discrete controllability problem: given 7" > 0 and
(U, Ul = (u?,u]l)lgjg]\r € C?V, there exists a control function
v, € L2(0,T) such that the solution u of (11) satisfies

uy(T) = u(T) = 0, ¥j = 1,2, ..., N. (30)



Discrete observability inequality

{ W/'(t) + BuWi(t) =0 t € (0,T)
Wi (T) = W2 e CN (31)
Wi(T) =W} eCV.

The energy of (31) is defined by

BA(t) = 5 ((BuWa(e), Wil0) + W0, Wh(e)) . (32)
and the following relation holds:
%Eh(t) 0. (33)

The exact controllability in time 7" of (29) holds if the following
discrete observability inequality is true

2

2 t
2Win (1) dt, (W2, W})ec*. (34)

.
En(t) < C(T, h) /O -




Spectral analysis

m Continuous spectrum: The eigenvalues of the corresponding
differential operator are given by the positive roots of the
equation cos(z) — cosh™*(z) = 0, which are asymptotically
exponentially close to the zeros of the cos(z) function.

m Discrete spectrum: The eigenvalues of the corresponding
discrete operator are given by the positive roots of the
equation f(z) =0, where

— o .o hz 2(1—5111 (%))TN-H(Z)
f(2) = cos z £+ sin <2 +r2(N+1>( S (%)TNH

r(z) =1+ 2sin (2>+\/sm (2)(1—|—sm <2)>

Function f has a sequence of well separated roots
(zn)1<n<n C (0, (N + 1)7). We obtain that our problem has a
sequence of eigenvalues \,, = h—14 cos? (%) and a complete set of

eigenfunctions &, 1 <n < N.




Observability inequality for discrete clamped beam

The observability inequality is equivalent to

> wrsef[ | ¥

1<|n|<N

i SENG) /A ol

1<|n\<N In]

dt.  (35)

Inequality (35) follows with C' = C/(T") = O (%) since
For any T' > 0 there exists np = O(1/T") € N, independent of
h, such that the following inequality holds

2
Vvt — Vo > % (nr<n<N-np). (36)
There exists a constant C' > 0, independent of h, such that
DY > Cyv A\, (1<n<N). (37)

We obtain that the discrete clamped beam equation is uniformly
controllable in any time. As in the continuous case, the
observability constant explodes as exp(x/T') as T tends to zero.



Thank you very much for your attention!



