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Randomness in evolution models

Randomness can be included into modeling evolution equations in two
different ways:

Noise is added to deterministic evolution equations to model random
perturbations.

Random perturbations are being modeled by jump (point) processes,
where a stochastic action affects the deterministic motion only at some
instants of time.

In all cases, the state of such processes can be characterized by the shape
of the corresponding probability density functions (PDFs).

The evolution of the PDF of a stochastic process is modelled by a
Fokker-Planck-Kolmogorov partial differential equation.
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Piecewise deterministic processes and all that

Piecewise Deterministic Process (PDP):

A PDP involves a hybrid state space, with both continuous and discrete states.
Randomness appears only in the discrete transitions; between two consecutive
transitions the continuous state evolves according to a system of ODEs.
Transitions occur according to a generalized Poisson process and are driven by
a transition matrix. Ex: telegraph process, growth of bacterial populations.

Switching Diffusion Process (SDP):

A SDP involves a hybrid state space, with both continuous and discrete states.
The continuous state evolves according to a SDE, while the discrete state that
enters in the SDE is a Markov chain. Ex: school of fishes.

Stochastic Hybrid System (SHS):
A SHS involves a hybrid state space, with both continuous and discrete states.
The continuous state obeys a SDE/ODE that depends on the hybrid state.
Transitions occur when the continuous state hits the boundary of the state
space. The value of the discrete state after the transition is determined
deterministically by the hybrid state before the transition. The new value of the
continuous state is governed by a probability law which depends on the IasE“
WU

hybrid state. Ex: bouncing ball with dissipation. RzsunG
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Piecewise deterministic processes
A piecewise-deterministic process is a model governed by a set of
differential equations that change their deterministic structure at random
points in time.

We consider a PDP model with a d-components state function
X :[tg,00) = Q, QC R,
The state function satisfies the following evolution equation

X(t) = As)(X), t € [to,0),

where S(t) : [tp, 0o[— S is a Markov process with discrete states
S={1,...,S}.

Given s € S, we say that the dynamics is in the deterministic state s,
driven by the dynamics function

A Q — RY, A € {A1,...,As}

We require that all As(+),s € S, be Lipschitz continuous, so that for fixed
s, the solution X(t) exists and is unique and bounded.

The state function satisfies the initial condition X(ty) = Xo € Q beinl T
the initial state sp = S(tp).
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Transition probabilities

The process S(t) is characterized by a Poisson process PDF given by
Ys(t) = pse =, It is the PDF for the time the system stays in the state
s.

The process S(t) is modeled by a stochastic transition probability matrix,
G = {qjj}, with the following properties

S
i=1

When a transition event occurs, the PDP system switches
instantaneously from a state j € S, with dynamic function A;, randomly
to a new state i € S, driven by the dynamic function A;. Virtual
transitions from the state j to itself are allowed for this model, this means

that we allow gj; > 0.
I UNIVERSITAT
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The PDP Fokker-Planck-Kolmogorov equation

The PDP Fokker-Planck-Kolmogorov (FPK) equation for the PDFs of a
PDP process is given by

s
Oefs(x, t) + V (As(x, us) Z ;i fi(x s=1,...,S.

where Qsj = 11jqsj if j # s, and Qss = s (gss — 1), s =1,..., S,
x € Q C R, for the scalar process X(t) in the state s. We have
Zle Qsj = 0. The initial conditions are given as follows

f.(x,0) = f2(x), s=1,...,S,
where f2(x) >0 and 32, Jo R2(x) =1.
The solutlon to the FPK system has the following properties

Do fQ x,t) =1, t > to: conservativeness of the total probability;
fs(x) >0, t > to non-negativity of the PDFs; o
I UNIVERSITAT
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A FPK framework to control stochastic processes
Consider a controlled stochastic process

dX(t) = b(X(t),s, us) dt + c(X(t), vs) dW(t)
Assume that the corresponding FPK system is given by
(‘3tf$+F(b(us),c(vs),fs,Vﬂ,szs):O, s=1...,S.

A robust control framework (i.e. independent of the single
stochastic realisation) is formulated with an objective depending on
the PDFs and the FPK system as follows

min J(f, u, v)

f,u,v

s.t. Oifs + F(b(us), c(vs), fs, Vs, V2£,) = 0, s=1,...,S.

This strategy has been successfully applied to Ito processes, o
subdiffusion diffusion processes, PDP processes, ... using quadr@ﬁ&i‘&?
cost functionals.
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A FPK optimal control problem with quadratic objective

Consider the following tracking objective

S
1
= S D6 T) = T Ol Z sl 20,7
s=1

To be minimized under the constraint given by a PDP model. We
obtain the following optimality system.

Qgfi(x,t),  fi(x,0) = £2(x)

Mo

Oefs(x,t) + V (As(x, us) fs(x, t)) =

j=1
S
_8tpS(X7 t) - AS(X7 US) VPS(X, t) = Z stpj(X, t)v
j=1
pe(x, T) = = (K(x, T) = £7())
AS y HUs
v ug(t) — / (Vps(x, 1)) 22s0) ¢ iy — 0, .
Q Ous =
where s =1,...,S, and p = (ps)>_, is the vector of adjoint var.
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A PDP process with dichotomic noise

Consider the case of a dissipative process subject to dichotomic noise. Let
X(t) be a process whose evolution is described by the following equation

X=-X+(1+u)¢

where the noised input £(t) represents a dichotomic noise (random
telegraph signal), that takes values +1, with Poisson statistics of the
switching time.

We have the following (controlled) dynamics
Ar(x i) =1 —x+ ug, Ao(x, ) = —=(1 4 x + w).
The adjoint equations are as follows

—0epr(x, t) = (1 = x4+ u1) Oxpr(x,t) = —ppi(x,t) + pp2(x,t)
_8tP2(Xa t) + (1 +x+ U2) aXP2(X7 t) i pl(Xv t) - HPQ(Xa t)

with terminal condition given as follows
P T) == (R ) - £7(),  s=12 [E&
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Numerical experiments with dichotomic noise

The initial PDF is given by two narrow Gauss distributions centered
in x = 0 and variance 0 = 0.1. The Poisson parameter of the
underling Markov process is ;1 = 0.8 (singular case).

We define a PDF target given by two Gauss densities traveling in
opposite directions and with increasing variances as follows

cd 1 7(X*2u%()t))2
X, t) = ——=——¢e ot
1 ( ’ ) 24/27o(t)
(x—pp())?
d 1 _ WX R2LY))
fl(x,t) = e 2

24/27o(t)

where o(t) = 0.14/(1 + t) and we take an asymmetric pair of
Gaussian densities with different velocities for the distribution mean

as follows, p1(t) =1— et and po(t) = —pu1(t)/3. E
UNIVERSITAT
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Results of numerical experiments with dichotomic noise
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Figure : Results obtained with the PDP process with Poisson rate
1 = 0.8. Dotted lines denote the desired PDF target. Solid lines
represent the PDFs resulting from the FP evolution. Left is for the
controlled process; right the uncontrolled process.
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Dichotomic noise: Monte Carlo simulations

UNIVERSITAT
WURZBURG

Modelling and control of stochastic hybrid PDP systems

Alfio Borzi



From open to closed loop control
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An alternative PDP FPK control setting
Consider the following PDP FPK system for the PDFs of a PDP

process
S
Oefe(x, 1) + V (As(x, us) f(x, ) = Y Qg fi(x, 1), s=1,...,S,
j=1
with controls us = us(x,t), s=1,...,S.

Now, we chose the following expectation objective

J(f,u) = Z/gs fo(x, T) dx+= Z/ /\us(xt\fxt)dxdt

We focus on the optimal control problem of finding us, s € S, such

that this objective is minimized subject to the constraint given lt
UNIVERSITAT

the PDP FPK system. i
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The PDP FPK optimality system with expectation objective

The solution of our new PDP FPK optimal control problem is
characterized by the solution of the optimality system consisting of
the PDP FPK equation and the following

S
1
Orps(x, t) + As(x, us) Vps(x, t) + 5(”5)2 = - Z QSjpj(Xa t)
=1

ps(X7 T) = gS(X)
us(x,t) + (gﬁ:) Vps(x,t) = 0,

where s = 1,...,S. Notice this adjoint problem is decoupled from
the FPK system.

I UNIVERSITAT
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Equivalence to the HJB equation

The HJB optimal control of our PDP model was considered in Moresino
et al.. In this work, the following Hamiltonian is derived

s
. 1
Hs(t, x, {qj}le, Vgs) = min As(x,us)Vas + Eug + Z Qjsqj
j=1

It is also proved that the corresponding HJB problem

{ deqs + Hs(t, x, {Qj}js:p Vgs) =0
gs(x, T) = gs(x)

admits a unique viscosity solution that is also the classical solution to the
adjoint FPK equation including the optimality condition.
The adjoint variable ps corresponds to the value function gs.

UNIVERSITAT
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Modelling and control of Subtilin production

I Subtilin

[\subitin induction

N
activated gene

expression

Figure . A schematic representation of the Subtilin production mechanism.
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Subtilin production

We discuss PDP systems for modelling the production of the antibiotic
Subtilin that is synthesized by the Bacillus Subtilis to eliminate
competing microbial species in the same ecosystem.

Whenever the amount of nutrients is sufficient, the B. Subtilis population
grows without changing the Subtilin concentration.

When the amount of nutrients falls under a threshold, Subtilin
production starts, thus the dynamics of the model changes. The Bacillus
Subtilis produces Subtilin to eliminate competing species and other B.
Subtilis cells, with the purpose of reducing the demand for nutrients
while the decomposition of the killed cells also releases additional
nutrients in the environment.

UNIVERSITAT
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The biological mechanism of Subtilin production

The mechanism of Subtilin production can be sketched as follows. If the
amount of nutrients is scarce the composition of SigH, a sigma factor
that regulates gene expressions, is turned on. This sigma factor enables
the production of SpaRK (SpaR and SpaK) proteins by binding the
promoter regions of their genes. The SpaRK ensamble directs the
production of the Subtilin structural peptide SpaS, the biosynthesis
complex SpaBTC and the immunity machinery SpalFEG. The complex
SpaBTC modifies SpaS to yield the final product Subtilin.

In the Subtilin production model presented in Hu et al., the complexes
SpaBTC and SpalFEG are not taken into account and the proteins SpaK
and SpaR are considered as one protein SpaRK. This model comprises 5
dependent variables: the normalized population of Bacillus Subtilis, y;,
the concentration of the nutrients, y», and the concentrations of the
molecules SigH, SpaRK, and SpaS that are denoted with y3, y4, and ys,

respectively.
I WoRzoRG "
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A PDP model of Subtilin production (1)

The growth of the Bacillus Subtilis population can be modeled by the

logistic equation
d p2!
iy 1 7L
dt)’l ry ( Doo(y2) )

where Do (y2) represents the equilibrium population size depending on
the amount of nutrients y». It is given by

Deo ()/2) = mm{ A max}a

where Yg and D,ax are constants (constraints due to space limitation
and competition).
The dynamics of the nutrients y» is given by

d
— = —k k.
dty2 1y1 + Koys,

where k; and ko are constants describing the rate of nutrient

consumption and the rate of nutrient production, respectively. The o
second term describes a nutrient increase due to the concentration offl_Wirsone
Spa$S protein, ys, that eliminates the competitors in the environment.
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A PDP model of Subtilin production (II)

The sigma factor SigH, y3, is produced if and only if the amount of
nutrients y» falls below a certain threshold 7Dp,.x for some n > 0.
The dynamics of y3 can be modeled as follows

d
el K3 X (=00, 1Dmax) (¥2) — ALY3,

where k3 represents the production rate of SigH and A; represents its
natural decaying rate. We use the indicator function

xm(y)={1lifye M, 0ify ¢ M}.

Notice that y3 decreases exponentially towards zero whenever y» > 1D a5
and tends exponentially towards k3 /A1 whenever y» < 1D pax.

UNIVERSITAT
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A PDP model of Subtilin production (IlI)

The production of the protein SpaRK, y4, is controlled by a binary switch
S1. The ensamble SpaRK is produced if and only if S; is ON. Therefore
the dynamics of y, is as follows

i o —)\2}/4 if 51 is OFF,
dty4 o ky — Aoya if S; is ON,

where kg4 represents the SpaRK production rate and A, represents its
natural decaying rate.

The production of the protein SpaS is also controlled by a binary switch
denoted by S;. Its dynamics is similar to the dynamics of y,. We have

d o =y if S, is OFF,
dtys - ks — /\3y5 if S5 is ON.

The parameter kg represents the production rate and A3 represents the
natural decaying rate of SpaS.
E\‘lER’SITﬂT
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A PDP model of Subtilin production (1V)

The Subtilin production model can be in four different dynamical states
given by (51, 52) € {(0,0),(1,0),(0,1),(1,0)} where ON=1 and
OFF=0.
The switch S; is modeled by a 2-states continuous time Markov chain
with transition probabilities ag(y3) and a;1(y3), depending on the
concentration of SigH and at random exponentially distributed times.
We assume the following

e~AGu/RT 1

ao(y3) = 1+e—A—Grk/RTy3 and ai(y3) = IH—e‘A—Grk/RT)@’

where AG, is the Gibbs free energy of the molecular configuration when
the switch S; in ON, T is the temperature in Kelvin and R = 1.99
cal/mol/K is the gas constant.

Likewise, the switch S, is also modeled according to a Markov chain,
with bo(ya) and by1(ya) denoting the probabilities that S, switches from
OFF to ON and from ON to OFF, respectively. As above, we assume the
following

e AG/RTy, 1 e
bo(y4):m and bl(y4):m. E
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A reduced PDP model of Subtilin production

We assume that the variable y; is very slowly varying. We obtain
y1 = Doo(y2) & y2/ Yo provided that Dy, is large enough. Next, we have

d Y2

—yo & —ky - + koys.

g 1 Yo + koys

Monte Carlo simulations: SpaRK and Spa$S have similar behaviour
Reduced model with (xi, x2, x3), where x; = y» (amount of nutrients),
x2 = y3 (concentration of SigH), and x3 = y5 (concentration of SpaS).
We obtain the following reduced Subtilin production PDP model

%Xl = —k1X1 + k2X3

X2 = X(~oo, anax)(Xl) ks — A1x2
d _ 7/\3X3 if 52 is OFF,
@ = { ks — Asxs if Sy is ON.

where we set k; ~ ki/ Yo.
The transition probabilities for the switch S, are given by bg(x2) and E\‘)si{s‘-fx‘f
bl (X2 ) . WURZBURG
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A comparison of the Subtilin production models
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Compare x1 — y2, x2 — y3, and x3 — ys. Top: full model; bottom: reduced model. Left: A run of
the Subtilin production model; Right: Evolution of the average variables values corresponding to 2!

runs of the reduced Subtilin production model. un
The parameter setting is as follows: k; = 0.02, ko = 0.4, k3 = 0.5, ks = 1,£ = 0.1, \; = 0.2, A3
0.2,7 =4, Dmax = 1,e 2C€s/RT — 0.4 and T = 1000. The initial values are-y; (0) = 0.5, y3(0) = 10,
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PDP dynamics and control functions

We write our reduced PDP model of Subtilin production in the general
form x(t) = As(s)(x, us(t))- The dynamics-control functions
As i Qx U—R3 s=1,2, are as follows

7/;1 X1+ ko x3 + tn
AL(X, 11) = | X(“oo, nDmax)(¥1) k3 — A1x2 |

—)\3X3
and .
—ki x1 + ko xz + w2
Ao (X, 12) = | X(—oo, nDmax) (X1) k3 — A1x2 |
ks — A3x3

where us € U C R denotes the value of the control acting on the Subtilin
PDP model in the state s. Notice that the controls model an increase or
decrease of concentration of the nutrients.
EGEEE:fR%
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Stochastic validation
In our model, the stochastic probability transition matrix results in the

following (1 = pi1 = p2)

) = () Bl ).

We use results of Monte Carlo simulation to compare the PDFs obtained
solving the FPK system with the trajectories of the PDP model. This
procedure allows to determine Q such that Pr(x(t) € Q:t€ (0, T)) = 1.

FIgU € . Representation of the probability density function in the 3 dimensional space. Surface level _
of the PDFs with value 0.01 (left); a trajectory of the PDP model (right). E\‘,ER'SITAT
WURZBURG
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Control’s objective

We consider the following objective functional

Z//|usxt xtdxdt+2/g5 T)dx.

The first term represents the mean nutrition effort of the control
u=(uy,un).

The function g5 models an attractive potential for the final configuration:
we require that the mean quantity of Spa$S (antibiotics) reaches a desired
value given by ds.

We choose the following attracting potential

(x3 — d3)?
(x)=——— —e 202
g 20V27 ’
where o > 0. We take g1(x) = g(x) and g(x) = g(x). E\‘m{s‘n‘h
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The adjoint FPK system and the optimal controls

With our optimal control setting, we obtain the following
us(x, t) + 01 ps(x,t) =0, s=1,2.

We insert this result in the adjoint FPK equations:

3

8tps X, t Z X)al ps X, t) (81Ps X, t Z Qsl P/(X t)

ps(x, T) = ? ), s=1,2.

The resulting (p1, p2) are inserted in the optimality condition above to
obtain the controls.

We derive an appropriate discretization of the transformed adjoint FPK
equations using a first-discretize-than-optimize approach where the FPK
system is approximated by a first-order accurate, positive preserving,
conservative scheme!
B
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Results of numerical experiments: uncontrolled PDP model

We show results of Monte-Carlo simulation with our PDP Subtilin
production model with zero controls.
The initial conditions are given by

Xl(O) = 4-57 XQ(O) = 10, X3(0) =0.
The obtained mean values at terminal time are given by

X1 =3.861, X»=1.083,  X3=0.759.

o 1 2 3 4 5 6§ 7 8 9 10 o1 0z 03 04 05 06 07 08 08 1
3 3
X22 2
‘\% 1
0 %

o 1 2 3 4 5 6§ 7 8 9 10 01 02 03 04 05 06 07 08 03 1
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Results of numerical experiments: controlled PDP model

We solve the transmormed adjoint FPK problem to determine the
optimal controls u; and wo, that are inserted in the PDP model for a new
set of Monte Carlo simulations.

The initial conditions are given by (equal to the uncontrolled case)

Xl(O) = 4-57 X2(0) = 10, X3(0) =0.
The obtained mean values at terminal time are given by

X1 =3.783,  X»=2242,  X3=1.743.

0 1 2 3 4 5 6 7 8 9 10 0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 08 1
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