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Why viscoelastic materials?

Why viscoelastic materials?a

aSee H. T. Banks, S. Hu and Z. R. Kenz, A Brief Review of Elasticity and
Viscoelasticity for Solids, Adv. Appl. Math. Mech., 3 (1), (2011), 1-51.

Viscoelastic materials are those for which the behavior combines liquid-like
and solid-like characteristics.

Viscoelasticity is important in areas such as biomechanics, power
industry or heavy construction:

Synthetic polymers;

Wood;

Human tissue, cartilage;

Metals at high temperature;

Concrete, bitumen;

...
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Viscoelasticity

Viscoelasticity

A wave equation with both viscous Kelvin-Voigt damping:

ytt −∆y −∆yt = 1ωh, x ∈ Ω, t ∈ (0,T ), (1)

y = 0, x ∈ ∂Ω, t ∈ (0,T ), (2)

y(x , 0) = y0(x), yt(x , 0) = y1(x) x ∈ Ω. (3)

Here, Ω is a smooth, bounded open set in RN and h = h(x , t) is a control
located in a open subset ω of Ω.

We want to study the following problem:

Given (y0, y1), to find a control h such that the associated solution to
(1)-(3) satisfies

y(T ) = yt(T ) = 0.
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Viscoelasticity

A geometric obstruction

Standard results on unique continuation do not apply. The principal part
of the operator is

∂t∆.

Then characteristic hyperplanes are of the form

t = t0 and x · e = 1.

And the zero sets do not propagate by standard unique continuation
arguments.
This phenomenon was previously observed by S. Micu in the context of the
Benjamin-Bona-Mahoni equation 3 4

In that context the underlying operator is

∂t − ∂3xxt
but its principal part is the same

∂3xxt .
3S. Micu, SIAM J. Control Optim., 39(2001), 1677–1696.
4X. Zhang and E. Z. Matematische Annalen, 325 (2003), 543-582.
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Viscoelasticity

Viscoelasticity = Waves + Heat

ytt −∆y −∆yt = 0

=

ytt −∆y = 0

+

∂t [yt ]−∆yt = 0

Both equations are controllable. Should then the superposition be
controllable as well?

Interesting open question: The role of splitting and alternating directions
in the controllability of PDE.
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Viscoelasticity

Viscoelasticity = Heat + ODE

yt −∆y = z , (4)

zt + z = 1ωh, (5)

y(x , t) = v(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (6)

z(x , 0) = z0(x), x ∈ Ω, (7)

y(x , 0) = y0(x), x ∈ Ω. (8)

The question now becomes:
Given (y0, z0), to find a control h such that the associated solution to
(9)-(13) satisfies

y(T ) = z(T ) = 0.

In this form the controllability of the system is less clear. We are acting on
the ODE variable z . But the control action does not allow to control the
whole z . We are effectively acting on y through z . What is the overall
impact of the control?
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Viscoelasticity

Viscoelasticity = Heat + ODE. Second version

Note that
ytt −∆y −∆yt + yt = (∂t −∆)(∂t + I ).

Then

yt + y = v , (9)

vt −∆v = 1ωh, (10)

v(x , t) = y(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (11)

v(x , 0) = y1(x) + y0(x), x ∈ Ω, (12)

y(x , 0) = y0(x), x ∈ Ω. (13)

The question now becomes:
Given (y0, z0) to find a control h such that the associated solution to
(9)-(13) satisfies

y(T ) = v(T ) = 0.
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Viscoelasticity

Viscoelasticity = Heat + Memory

Note that

ytt −∆y −∆yt = ∂t [yt −∆y −∆

∫ t

0
y ].

The later, heat with memory, was addressed by Guerrero and Imanuvilov5,
showing that the system is not null controllable.

5S. Guerrero, O. Yu. Imanuvilov, Remarks on non controllability of the heat
equation with memory, ESAIM: COCV, 19 (1)(2013), 288–300.
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Viscoelasticity

The controllability of the system is unclear:

vt −∆v = 1ωh,

yt + y = v . (14)

But we can consider the system with an added ficticious control:

vt −∆v = 1ωh,

yt + y = v + 1ωk. (15)

Control in two steps:

Use the control h to control v to zero in time T/2.
Then use the control k to control the ODE dynamics in the
time-interval [T/2,T ].

Warning. The second step cannot be fulfilled since the ODE does not
propagate the action of the controller which is confined in ω.

Possible solution: Make the control in the second equation move or,
equivalently, replace the ODE by a transport equation.
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Viscoelasticity

This strategy was introduced and found to be successful in

P. Martin, L. Rosier, P. Rouchon, Null Controllability of the Structurally
Damped Wave Equation with Moving Control, SIAM J. Control Optim.,
51 (1)(2013), 660–684.
L. Rosier, B.-Y. Zhang, Unique continuation property and control for the
Benjamin-Bona-Mahony equation on a periodic domain, J. Differential
Equations 254 (2013), 141-178.

by using Fourier series decomposition.

In the context of the example under consideration, if we make the control
set ω move to ω(t) with a velocity field a(t), then the ODE becomes:

yt + a(t) · ∇y = 1ωk.

And it is sufficient that all characteristic lines pass by ω to ensure
controllability or, in other words, that the set ω(t) covers the whole
domain Ω in its motion.

Question: How to prove this kind of result in a more general setting so
that the system does not decouple?
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Viscoelasticity

An example of moving support of the control

Ω

0 ≤ t < t1 t2 < t ≤ T

Ω1(t)

X(ω0, t, 0) X(ω0, t, 0) X(ω0, t, 0)

Γ(t)

t1 < t < t2

Γ(t)Γ(t)

Ω2(t) Ω1(t) Ω2(t)
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Viscoelasticity

Other related systems

This issue of moving control is closely related to the works by J. M. Coron,
S. Guerrero and G. Lebeau67 on the vanishing viscosity limit for the
control of convection-diffusion equations. It is also linked to the recent
work by S. Ervedoza, O. Glass, S. Guerrero & J.-P. Puel 8 on the control
of 1− d compressible Navier-Stokes equations.

6J.-M. Coron and S. Guerrero, A singular optimal control: A linear 1-D
parabolic hyperbolic example, Asymp. Analisys, 44 (2005), pp. 237-257.

7S. Guerrero and G. Lebeau, Singular Optimal Control for a
transport-diffusion equation, Comm. Partial Differential Equations, 32 (2007),
1813-1836.

8S. Ervedoza, O. Glass, S. Guerrero, J.-P. Puel, Local exact controllability
for the 1-D compressible Navier- Stokes equation, Archive for Rational
Mechanics and Analysis, 206 (1)(2012), 189-238.
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Viscoelasticity

Observability

We consider the dual problem of (16)-(20):

−pt −∆p = 0, (x , t) ∈ Ω× (0,T ), (16)

−qt + q = p, (x , t) ∈ Ω× (0,T ), (17)

p(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (18)

p(x ,T ) = p0(x), x ∈ Ω, (19)

q(x ,T ) = q0(x), x ∈ Ω. (20)

The null controllability property i equivalent to the following observability
one

||p(0)||2 + ||q(0)||2 ≤ C

∫ T

0

∫
ω
|q|2dxdt, (21)

for all solutions of (16)-(20).

But the structure of the underlying PDE operator and, in particular, the
existence of time-like characteristic hyperplanes, makes impossible the
propagation of information in the space-like directions, thus making the
observability inequality (21) also impossible.
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Viscoelasticity

Lack of observability

−pt −∆p = 0 , (x , t) ∈ Ω× (0,T ), (22)

−qt + q = p, (x , t) ∈ Ω× (0,T ), (23)

It is impossible that

||p(0)||2 + ||q(0)||2 ≤ C

∫ T

0

∫
ω
|q|2dxdt, (24)
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Viscoelasticity

Those negative results are well-known in a number of other models:

Benjamin-Bona-Mahoni (S. Micu, X. Zhang & E. Z.);

Heat equations with memory (closely related to the coupled systems
under consideration ”heat + ODE”) ( S. Guerrero & O. Yu.
Imanuvilov)

In both cases the controllability fails because of the presence of
accumulation points in the spectrum. A similar situation can be
encountered in:

F. Ammar Khodja, K. Mauffrey and A. Münch, Exact boundary
controllability of a system of mixed order with essential spectrum, , SIAM
J. Cont. Optim. 49 (4) (2011), 1857 D1879.

In the context of the system of viscoelasticity under consideration the
accumulation point in the spectrum is due to the ODE component of the
system. In the BBM case is due to the compactness of the generator of
the dynamics.
E. Zuazua (Ikerbasque – BCAM) Control & Memory Graz, June 2015 18 / 31



Viscoelasticity

Remedy: Moving control

Let us assume that ω ≡ ω(t).
The controllable system under consideration then reads:

yt −∆y = z , (25)

zt + z = 1ω(t)h, (26)

y(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (27)

z(x , 0) = z0(x), x ∈ Ω, (28)

y(x , 0) = y0(x), x ∈ Ω. (29)
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Viscoelasticity

Motion of the support of the control

In practice, the trajectory of the control can be taken to be determined by
the flow X (x , t, t0) generated by some vector field
f ∈ C ([0,T ]; W 2,∞(RN ;RN)), i.e. X solves

∂X

∂t
(x , t, t0) = f (X (x , t, t0), t),

X (x , t0, t0) = x .
(30)

Admissible trajectories: There exist a bounded, smooth, open set
ω0 ⊂ RN , a curve Γ ∈ C∞([0,T ];RN), and two times t1, t2 with
0 ≤ t1 < t2 ≤ T such that:

Γ(t) ∈ X (ω0, t, 0) ∩ Ω, ∀t ∈ [0,T ]; (31)

Ω ⊂ ∪t∈[0,T ]X (ω0, t, 0) = {X (x , t, 0); x ∈ ω0, t ∈ [0,T ]}; (32)

Ω \ X (ω0, t, 0) is nonempty and connected for t ∈ [0, t1] ∪ [t2,T ];(33)

Ω \ X (ω0, t, 0) has two connected components for t ∈ (t1, t2); (34)

∀γ ∈ C ([0,T ]; Ω), ∃t ∈ [0,T ], γ(t) ∈ X (ω0, t, 0). (35)
E. Zuazua (Ikerbasque – BCAM) Control & Memory Graz, June 2015 20 / 31



Viscoelasticity

A failing moving support

X(ω0, T, 0)

Ω

X(ω0, t, 0)

ω0

Figure: Example for which condition (34) fails.
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Viscoelasticity

A successful motion

Ω

0 ≤ t < t1 t2 < t ≤ T

Ω1(t)

X(ω0, t, 0) X(ω0, t, 0) X(ω0, t, 0)

Γ(t)

t1 < t < t2

Γ(t)Γ(t)

Ω2(t) Ω1(t) Ω2(t)
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Viscoelasticity

Observability inequality

The system is null controllable under the assumptions above on the
moving support. But the proof needs to employ Carleman inequalities to
prove the observability one.
Two main difficulties appear:

1 Carleman inequalities for heat and ODE equations with a moving
control region;

2 We must have the same weight functions in the Carleman for both
equations.

Fortunately, we can handle both difficulties. Note that similar strategies
were implemented successfully for the system of thermoelasticity in

P. Albano, D. Tataru, Carleman estimates and boundary observability for a
coupled parabolic-hyperbolic system, Electron. J. Differential Equations,
22 (2000), 1–15.

G. Lebeau, E. Zuazua, Null controllability of a system of linear
thermoelasticity. ARMA, 141 (4)(1998), 297-329.
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Viscoelasticity

As a consequence, we have the null controllability of (1)-(3):

Theorem

Let T > 0, X (x , t, t0) and ω0 be as in (31)-(35), and let ω be any open
set in Ω such that ω0 ⊂ ω. Then for all (y0, y1) ∈ L2(Ω)2 with
y1 −∆y0 ∈ L2(Ω), there exists a function h ∈ L2(0,T ; L2(Ω)) for which
the solution of

ytt −∆y −∆yt + b(x)yt = 1ω(t)(x)h, (x , t) ∈ Ω× (0,T ),(36)

y(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (37)

y(., 0) = y0, yt(., 0) = y1, (38)

fulfills y(.,T ) = yt(.,T ) = 0.
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Viscoelasticity

Comments

Can the technical geometric assumptions on the moving control be
removed?

Can one derive similar results by simply assuming that the support of
the control covers the whole domain?

To which extent this methodology can be applied in problems where
there are vertical characteristic hyperplanes (BBM, heat with
memory,...)?

Nonlinear versions.
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Viscoelasticity

Heat processes with memory terms

A simple system of heat process with memory:
yt −∆y +

∫ t

0
y(s)ds = uχω(x) in Q,

y = 0 on Σ,
y(0) = y0 in Ω.

(39)

Setting z(t) =
∫ t
0 y(s)ds, this system can be rewritten as

yt −∆y + z = uχω(x) in Q,
zt = y in Q,
y = z = 0 on Σ,
y(0) = y0, z(0) = 0 in Ω.

(40)

And the previous results apply.
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Viscoelasticity

More general exponential/polynomial memory kernels


yt −∆y +

∫ t

0
M(t − s)y(s)ds = uχω(x) in Q,

y = 0 on Σ,
y(0) = y0 in Ω,

(41)

with

M(t) = eat
K∑

k=0

aktk (42)

where K ∈ N, and a, a0, · · · , aK , b0, · · · , bK are real constants.
Writing

Z =

∫ t

0
M(s − t)y(s)ds (43)

we get 
yt + ∆y = Z in Q,

∂K+1
t Z =

K∑
k=0

k!ak∂
K−k
t y in Q.

(44)

And the same techniques apply.E. Zuazua (Ikerbasque – BCAM) Control & Memory Graz, June 2015 27 / 31



Viscoelasticity

What about more general memory kernels?
Note, for instance, that for general analytic kernels we get a coupled
PDE+ODE system involving an infinite number of ODEs.
Can a strategy in the spirit of Cauchy-Kovalewski be applied?
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Viscoelasticity

Waves with memory

Similar techniques can be applied to reduce the following wave equation
with memory 

ytt −∆y +
∫ t
0 y(s)ds = χOu in Q,

zt = y in Q,
y = z = 0 on Σ,
y(0) = y0, yt(0) = y1, z(0) = 0 in Ω,

(45)

into 
ytt −∆y + z = χOu in Q,
zt = y in Q,
y = z = 0 on Σ,

(46)

by setting

z(t) =

∫ t

0
y(s)ds.
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Viscoelasticity

In view of this structure it is natural to introduce the following Moving
geometric Control Condition (MGCC):
We say that an open set U ⊂ (0,T )× Ω satisfies the MGCC, if

1 all rays of geometric optics of the wave equation enter into U before
time T ;

2 the projection of U onto the x variable covers the whole domain Ω.

This geometric condition turns out to be sufficient for moving control.
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Viscoelasticity

Perspectives

What about?

Uniformity on the vanishing viscosity or velocity of propagation on the
ODE?
In other words, in {

ytt −∆y + z = 0 in Q,
zt = y in Q,

(47)

we could replace
zt = y

by
zt = ε∆y , zt = εV · ∇y ztt = ε∆y .

Delay systems?
More general memory terms (in the principal part of the PDE
operator for instance)
Nonlinear models
PDE-ODE models appear systematically in other contexts such as
population dynamics.
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