Optimal shape of sensors or actuators for heat and wave equations with random initial data

Yannick PRIVAT, Emmanuel TRÉLAT and Enrique ZUAZUA

CNRS, LJLL, Univ. Paris 6

june 2015

・ロッ ・ 一 ・ ・ ・ ・

Yannick Privat (LJLL)

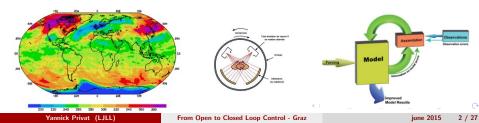
From Open to Closed Loop Control - Graz

june 2015 1 / 27

Motivations

What is the best shape and placement of sensors?

- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and estimations.



Outlines of this talk

1 Introduction and motivation

- 2 Modeling of the problem : a randomized criterion
- Optimal observability for wave and heat equations

N-D wave/heat equation

- $\hookrightarrow \Omega$ open bounded connected subset of \mathbb{R}^n such that $\partial \Omega \neq \emptyset$
- $\hookrightarrow \ T > 0 \ {\rm fixed}$
- $\hookrightarrow \omega \subset \Omega$ subset of positive measure

N-D wave equation	N-D heat equation	
$\partial_{tt} y - \bigtriangleup y = 0$ in $(0, T) \times \Omega$ $y_{ \partial\Omega} = 0$ $y(0, \cdot) = y^0, \ \partial_t y(0, \cdot) = y^1$ in Ω	$egin{aligned} &\partial_t y - riangle y = 0 \ ext{in} \ (0, \mathcal{T}) imes \Omega \ &y_{ _{\partial\Omega}} = 0 \ &y(0, \cdot) = y^0 \ & ext{in} \ \Omega \end{aligned}$	
$ \begin{array}{l} \hookrightarrow Generalization to many other boundary conditions (Neumann or mixed Dirichlet-Neumann or Robin on \partial\Omega)\hookrightarrow \forall (y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega), \text{ there exists a unique } y \in \mathcal{C}^0([0, T], L^2(\Omega)) \cap \mathcal{C}^1([0, T], H^{-1}(\Omega)). $	$ \begin{array}{l} \hookrightarrow \text{ Assume that } \partial\Omega \text{ is } \mathcal{C}^2 \text{ (for simplicity, but can be} \\ {}^{\text{easily weakened, e.g. when }\Omega \text{ is a convex polygon).} \\ \hookrightarrow \forall y^0 \in H_0^1 \cap H^2(\Omega), \text{ there exists a} \\ {}^{\text{unique }} y \in \mathcal{C}^0([0, T], H_0^1 \cap H^2(\Omega)) \cap \\ \mathcal{C}^1([0, T], L^2(\Omega)) \end{aligned} $	
Observable variable ($\omega \subset \Omega$ of positive measure)		

Observable variable ($\omega \subset \Omega$ of positive measure)

$$z(t,x) = \chi_{\omega}(x)y(t,x) = \begin{cases} y(t,x) & \text{if } x \in \omega \\ 0 & \text{else.} \end{cases}$$

Observability of the N-D wave/heat equation

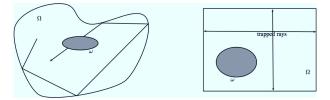
Observability inequality (wave equation)

The time ${\mathcal T}$ being chosen large enough, how to choose $\omega\subset\Omega$ to ensure that

$$\exists C > 0 \mid \forall (y^0, y^1) \in H^1_0(\Omega) \times L^2(\Omega), \quad C \| (y^0, y^1) \|^2_{H^1_0(\Omega) \times L^2(\Omega)} \le \int_0^T \int_\Omega z(t, x)^2 dx dt ?$$

• Microlocal Analysis. Bardos, Lebeau and Rauch proved that, roughly in the class of C^{∞} domains, the observability inequality holds iff (ω, T) satisfies the GCC.

• Observability constant :
$$C_T^{\text{wave}} = \inf_{\substack{y \text{ solution of the wave eq.} \\ (y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega)}} \frac{\int_0^T \int_{\omega} y(t, x)^2 dx dt}{\|(y^0, y^1)\|_{L^2(\Omega) \times H^{-1}(\Omega)}^2}.$$



(日)

Observability of the N-D wave/heat equation

Observability inequality (heat equation)

The time T being fixed, how to choose $\omega \subset \Omega$ to ensure that

$$\exists C > 0 \mid \quad C \| y(T, \cdot) \|_{L^2(\Omega)}^2 \leq \int_0^T \int_{\omega} y(t, x)^2 \, dx dt,$$

for every solution of the heat equation such that $y(0, \cdot) \in H^1_0 \cap H^2(\Omega)$?

- \hookrightarrow this ineq. holds for every open subset ω of Ω ;
- \hookrightarrow related to the inverse problem of recovering its final data from the L^2 -observation of its solution on the set ω during a time T.

$$C_T^{\text{heat}}(\chi_{\omega}) = \inf_{\substack{y \text{ solution of the heat eq.} \\ y(0,\cdot) \in H_0^1 \cap H^2(\Omega)}} \frac{\int_0^T \int_{\omega} |y(t,x)|^2 \, dx \, dt}{\|y(T,\cdot)\|_{L^2(\Omega)}^2}.$$

イロト イポト イヨト イヨ

Yannick Privat (LJLL)

From Open to Closed Loop Control - Graz

june 2015 5 / 27

Toward a new shape optimization problem The randomization procedure

A first natural idea of modeling

We investigate the problem of maximizing the quantity $C_{\tau}(\chi_{\omega})$ over all possible subsets $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

BUT, two difficulties

- Theoretical difficulties
- Interpretation The model is not relevant w.r.t. practical expectation

The usual observability constant is deterministic and gives an account for the worst case. It is pessimistic.

 \hookrightarrow In practice : many experiments, many measures.

 $\rightarrow\,$ Objective : optimize the sensor shape and location in average.

 $\rightarrow\,$ randomized observability constant.

< ロ > < 同 > < 回 > < 回 >

Toward a new shape optimization problem The randomization procedure

Introduce $(-\lambda_j^2, \phi_j)$, the *j*-th eigenpair of the Laplace-Dirichlet operator on Ω .

 \hookrightarrow Spectral expansion of the solution y of the wave equation

$$orall t \in (0,T), \ y(t,\cdot) = \sum_{j=1}^{+\infty} (a_j \cos(\lambda_j t) + b_j \sin(\lambda_j t)) \phi_j,$$

where a_i , b_i are determined by the initial conditions.

 \hookrightarrow Spectral expansion of the solution y of the heat equation

$$\forall t \in (0, T), y(t, \cdot) = \sum_{j=1}^{+\infty} a_j e^{-\lambda_j^2 t} \phi_j,$$

where a_i is determined by the initial condition.

Toward a new shape optimization problem The randomization procedure

 \hookrightarrow Random selection of the initial data (see Burg - Tzvetkov, Invent. Math. 2008) :

$$y^{\nu}(t,x) = \sum_{j=1}^{+\infty} \left(\beta_{1,j}^{\nu} a_j e^{i\lambda_j t} + \beta_{2,j}^{\nu} b_j e^{-i\lambda_j t}\right) \phi_j(x),$$

where $(\beta_{1,j}^{\nu})_{j \in \mathbb{N}^*}$ and $(\beta_{2,j}^{\nu})_{j \in \mathbb{N}^*}$ are two sequences of i.i.d random variables (Bernoulli/Gaussian) on a probability space $(X, \mathcal{A}, \mathbb{P})$ of mean 0.

→ Effects of the randomization

- Gaussian randomization : the map ν ∈ X → (y^ν(0, ·), y^ν_t(0, ·) "generates" a full measure set in H^s × H^{s-1}(Ω) for almost every initial data (y(0, ·), y_t(0, ·)) ∈ H^s × H^{s-1}(Ω).
- Bernoulli randomization : keeps the $H^s \times H^{s-1}(\Omega)$ -norm of the original function.
- No regularization effect : the map $\nu\mapsto y^{
 u}$ is measurable and

$$[\nu \mapsto (y^{\nu}, \partial_t y^{\nu})] \in L^2(X, L^2 \times H^{-1}(\Omega)).$$

If $(y(0, \cdot), y_t(0, \cdot) \notin H^{s+\varepsilon} \times H^{s-1+\varepsilon}(\Omega)$, then $(y^{\nu}, \partial_t y^{\nu}) \notin H^{s+\varepsilon} \times H^{s-1+\varepsilon}(\Omega)$ almost surely.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A randomized observability constant

 $\,\hookrightarrow\,$ Wave eq. : we consider the randomized observability inequality

$$\|C_{\mathcal{T},\mathrm{rand}}(\chi_\omega)\|(y^0,y^1)\|^2_{H^1_0 imes L^2}\leq \mathbb{E}\left(\int_0^{\mathcal{T}}\int_\omega y^
u(t,x)^2\,dxdt
ight),$$

for all $y^0(\cdot) \in L^2(\Omega)$ and $y^1(\cdot) \in H^{-1}(\Omega)$, where y^{ν} denotes the solution of the wave eq. with random initial data $y^{0,\nu}$ and $y^{1,\nu}$.

 \hookrightarrow Heat eq. : we consider the randomized observability inequality

$$C_{\mathcal{T},\mathrm{rand}}(\chi_{\omega})\|y(\mathcal{T},\cdot)\|_{L^2}^2 \leq \mathbb{E}\left(\int_0^{\mathcal{T}}\int_{\omega}y^{
u}(t,x)^2\,dx\,dt
ight),$$

for all $y(0, \cdot) \in H_0^1 \cap H^2(\Omega)$, where y^{ν} denotes the solution of the heat equation with the random initial data $y^{0,\nu}$.

Proposition

For every measurable set $\omega \subset \Omega$,

$$C_{T,\mathrm{rand}}(\chi_{\omega}) = T \inf_{j \in \mathbb{N}^*} \gamma_j \int_{\omega} \phi_j(x)^2 \, dx \quad \text{where} \quad \gamma_j = \begin{cases} \frac{1}{2} & \text{for the wave eq,} \\ \frac{e^{2\lambda_j^2 T} - 1}{2\lambda_j^2} & \text{for the heat eq.} \end{cases}$$

There holds $C_{T,rand}(\chi_{\omega}) \geq C_{T}(\chi_{\omega})$. There are examples where the inequality is strict. $S_{\mathcal{A}}$

Yannick Privat (LJLL)

From Open to Closed Loop Control - Graz

Optimal observability with respect to the domain

Question

What is the "best possible" observation domain ω of given measure?

Optimal design problem (energy concentration criterion)

We investigate the problem of maximizing

$$\frac{C_{\mathcal{T},\mathsf{rand}}(\chi_{\omega})}{\mathcal{T}} = \inf_{j \in \mathbb{N}^*} \gamma_j \int_{\omega} \phi_j(x)^2 \, dx.$$

over all possible subset $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

(日)

Related problems

Optimal design for control/stabilization problems

What is the "best domain" for achieving HUM optimal control?

$$y_{tt} - \Delta y = \chi_{\omega} u$$

What is the "best domain" domain for stabilization (with localized damping)?

$$y_{tt} - \Delta y = -k\chi_{\omega}y_t$$

See works by

- S. Cox, P. Freitas, F. Fahroo, K. Ito, ... : variational formulations and numerics.

- and many others. . .

< ロ > < 同 > < 回 > < 回 >

⁻ P. Hébrard, A. Henrot : theoretical and numerical results in 1D for optimal stabilization (for all initial data).

⁻ A. Münch, P. Pedregal, F. Periago : numerical investigations of the optimal domain (for one fixed initial data). Study of the relaxed problem.

⁻ M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ... : numerical investigations (among a finite number of possible initial data).

⁻ K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ... : numerical investigations for actuator placements (predefined set of possible candidates), Riccati approaches.

Additional remark

Let A > 0 fixed. If we restrict the search to

$$\{\omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } P_{\Omega}(\omega) \leq A\}$$
 (perimeter)

or

$$\{\omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } \|\chi_{\omega}\|_{BV(\Omega)} \le A\}$$
 (total variation)

or

$$\{\omega \subset \Omega \mid |\omega| = L |\Omega| \text{ and } \omega \text{ satisfies the } 1/A \text{-cone property} \}$$

or

 ω ranges over some finite-dimensional (or "compact") prescribed set...

then there always exists (at least) one optimal set ω .

 \rightarrow but then...

- the complexity of ω may increase with A
- we want to know if there is a "very best" set (over all possible measurable)

< ロ > < 同 > < 回 > < 回 >

Solving of the optimal design problem Generalities

General optimal design problem

$$\sup_{\substack{\omega \subset \Omega \\ \omega|=L|\Omega|}} J(\chi_{\omega}) := \sup_{\substack{\omega \subset \Omega \\ |\omega|=L|\Omega|}} \inf_{j \in \mathbb{N}^*} \gamma_j \int_{\Omega} \chi_{\omega}(x) \phi_j(x)^2 dx$$

• Admissible set for this problem :

$$\mathcal{U}_L = \{\chi_\omega \mid \omega \text{ is a measurable subset of } \Omega \text{ of measure } L|\Omega|\}.$$

• Convex closure of this set for the weak-star topology of L^{∞} :

$$\overline{\mathcal{U}}_L = \left\{ a \in L^\infty(\Omega; [0, 1]) \mid \int_\Omega a(x) dx = L|\Omega|
ight\}.$$

Relaxed optimal design problem

$$\sup_{a\in\overline{\mathcal{U}}_L}J(a):=\sup_{a\in\overline{\mathcal{U}}_L}\inf_{j\in\mathbb{N}^*}\gamma_j\int_{\Omega}a(x)\phi_j(x)^2dx$$

Yannick Privat (LJLL)

・ロッ ・ 一 ・ ・ ・ ・

To solve the problem, we distinguish between :

wave or Schrödinger equations

 \neq

parabolic equations (e.g., heat, Stokes)

< □ > < 同 > < 回 > <

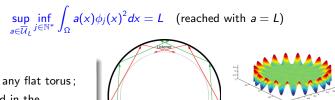
Solving of the optimal design problem (wave equation) Solving the relaxed problem

Geometrical assumption on Ω

• There exists p > 1 such that the sequence $(\phi_i^2)_{i \in \mathbb{N}^*}$ is uniformly bounded in L^p norm

• The whole sequence
$$\phi_j^2
ightarrow rac{1}{|\Omega|}$$
 vaguely as $j
ightarrow +\infty$. (QUE conjecture)

We have



< 口 > < 同 >

Remarks

- Verified in any flat torus;
- Not verified in the Euclidean disk (whispering galleries phenomenon).

Yannick Privat (LJLL)

iune 2015 13 / 27

Solving the optimal design problem (wave equation) $_{Gap or no-gap ?}$

A priori,

 $\sup_{\substack{\omega\subset\Omega\\|\omega|=L|\Omega|}}J(\chi_{\omega})\leq \sup_{a\in\overline{\mathcal{U}}_L}J(a).$

Remarks in 1D :

• Note that, for every
$$\omega$$
, $\int_{\omega} \sin^2(jx) dx \xrightarrow{j \to +\infty} \frac{L\pi}{2}$ as $j \to +\infty$.

• No lower semi-continuity (but upper semi-continuity) of the criterion.

• With
$$\omega_N = \bigcup_{k=1}^N \left[\frac{k\pi}{N+1} - \frac{L\pi}{2N}, \frac{k\pi}{N+1} + \frac{L\pi}{2N} \right]$$
, one has $\chi_{\omega_N} \rightharpoonup L$ but
$$\lim_{N \to +\infty} J(\chi_{\omega_N}) < L.$$

< ロ > < 同 > < 回 > < 回 >

Solving of the optimal design problem (wave equation)

Theorem (No-gap)

• Under the L^p boundedness assumption of the sequence $(\phi_j)_{j \in \mathbb{N}^*}$ (p > 1) and QUE, there is no gap, that is :

$$\sup_{\chi_{\omega}\in\mathcal{U}_{L}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}\chi_{\omega}(x)\phi_{j}(x)^{2}\,dx=\max_{a\in\overline{\mathcal{U}}_{L}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}a(x)\phi_{j}(x)^{2}\,dx=L.$$

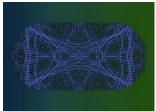
• the result also holds also true in the Euclidean disk.

< □ > < 同 > < 回 > <

On the QUE assumption Quantum Unique Ergodicity property (QUE) in multi-D

- true in 1D, since $\phi_j(x) = \sqrt{\frac{2}{\pi}} \sin(jx)$ on $\Omega = [0, \pi]$
- Gérard-Leichtnam (Duke Math. 1993), Burq-Zworski (SIAM Rev. 2005) : if Ω is a convex ergodic billiard with W^{2,∞} boundary then φ²_j → ¹/_{|Ω|} vaguely for a subset of indices of density 1.
- There exist some convex sets Ω (stadium shaped) that satisfy QE but not QUE (Hassell, Ann. Math. 2010)
- QUE conjecture (Rudnick-Sarnak 1994) : every compact manifold having negative sectional curvature satisfies QUE.

If the QUE assumption fails, we may have scars : energy concentration phenomena (there can be exceptional subsequences converging to other invariant measures, like, for instance, measures carried by closed geodesics : scars)



See Snirelman, Sarnak, Bourgain-Lindenstrauss, Colin de Verdière, Anantharaman, Nonnenmacher,

From Open to Closed Loop Control - Graz

In summary...(wave equation)

• Under "quantum ergodic assumtions" :

$$\sup_{\chi_{\omega}\in\mathcal{U}_{L}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}\chi_{\omega}(x)\phi_{j}(x)^{2}\,dx=\sup_{a\in\overline{\mathcal{U}}_{L}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}a(x)\phi_{j}(x)^{2}\,dx=L.$$

- Maximizing sequence : $\chi_{\omega_N} \rightarrow L$ is not enough ! A constructive homogenization procedure of maximizing sequences is known.
- Supremum of J over U_L : reached or not???

Particular cases :

- in 1D : the supremum is reached if and only if L = 1/2 (and there is an infinite number of optimal sets).
- in the 2D square, if we restrict the search of optimal sets to Cartesian products of 1D subsets, then the supremum is reached if and only if L ∈ {1/4, 1/2, 3/4}.

Conjecture

For generic domains Ω and generic values of *L*, the supremum is not reached and hence there does not exist any optimal set.

(日)

Truncated criterion (wave equation)

Truncated shape optimization problem

$$\sup_{\chi_{\omega}\in\mathcal{U}_{L}}\inf_{1\leq j\leq N}\int_{\Omega}\chi_{\omega}(x)\phi_{j}(x)^{2}\,dx$$

Theorem

Let $L \in (0,1)$. The shape optimization problem above has a unique solution ω_N^* .

- \hookrightarrow Γ -convergence result : $\lim_{N \to +\infty} \sup_{\chi_{\omega} \in \mathcal{U}_L} J_N(\chi_{\omega}) = \text{optimal value for the relaxed pb.}$
- \hookrightarrow If No-gap, L^{∞} weak-* convergence of $(\chi_{\omega_N^*})_{N \in \mathbb{N}^*}$ to a minimizer of the optimal design problem.
- \hookrightarrow Spillover phenomenon : the best domain ω^N for the first *N* modes is the worst possible for N + 1 modes.

Proved in 1D by Hébrard-Henrot (SICON, 2003) and Privat-Trélat-Zuazua (J. Fourier Anal. Appl., 2013)

Several numerical simulations : $\Omega = [0, \pi]^2$ For 4, 25, 100 and 500 eigenmodes and $L \in \{0.2, 0.4, 0.6\}$

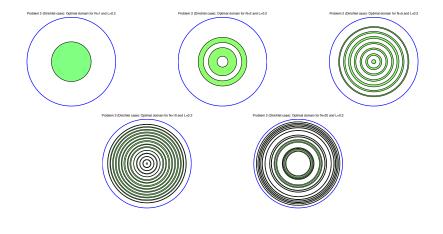
Problem 2 (Dirichlet case): Optimal domain for Nu-2 and Lu0.4

0.5 1 1.5 2 2.5 3

・ロト ・四ト ・ヨト ・ヨト

Yannick Privat (LJLL)

Several numerical simulations : Ω = unit disk L = 0.2, for 1, 4, 25, 100 and 400 eigenmodes



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Solving of the optimal design problem (N-D heat equation) ${\mbox{\sc An existence result}}$

Theorem

Assume that Ω is a bounded connected subset of \mathbb{R}^n such that $\partial\Omega$ is piecewise \mathcal{C}^1 . There exists $N_0 \in \mathbb{N}^*$ such that

$$\sup_{\chi_{\omega} \in \mathcal{U}_{L}} \inf_{1 \leq j} \gamma_{j} \int_{\Omega} \chi_{\omega}(x) \phi_{j}(x)^{2} dx = \max_{\chi_{\omega} \in \mathcal{U}_{L}} \min_{1 \leq j \leq N_{0}} \gamma_{j} \int_{\Omega} \chi_{\omega}(x) \phi_{j}(x)^{2} dx.$$

 \hookrightarrow Stationarity of the optimal domain in the truncation procedure...

 $\,\hookrightarrow\,$ The proof requires fine recent results in

J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, Observability inequalities and measurable sets, J. Europ. Math. Soc. (2013).

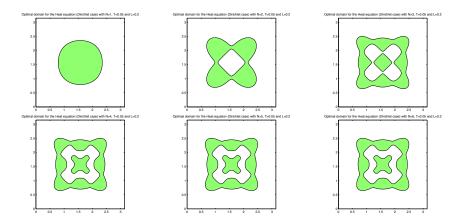
 \hookrightarrow Same kinds of results for optimal design null controllability issues for the N-dimensional heat equation

$$\partial_t y(t,x) = \Delta y(t,x) + \chi_\omega(x)u(t,x) \quad \text{on } (0,T) \times \Omega$$

Control function supported by ω , use of the moment method, maximization of the operator norm of the control w.r.t. ω ...

Generalization to parabolic systems (and even Stokes with Dirichlet boundary conditions, ...)

Several numerical simulations : $\Omega = [0, \pi]^2$, T = 0.05 and L = 0.2 for $N \in \{1, 2, 3, 4, 5, 6\}$



Stationarity of the maximizers from N = 4 (i.e. 16 eigenmodes)

Yannick Privat (LJLL)

Application to anomalous diffusion

Anomalous diffusion equations, Dirichlet : $\partial_t y + (-\triangle)^{\alpha} y = 0$ ($\alpha > 0$ arbitrary)

 \hookrightarrow protein diffusion within cells, or diffusion through porous media.

 $\,\hookrightarrow\,$ Associated optimal design problem :

$$\sup_{\chi_{\omega} \in \mathcal{U}_{l}} \inf_{j \in \mathbb{N}^{*}} \frac{e^{2\lambda_{j}^{\alpha}} - 1}{2\lambda_{j}^{\alpha}} \int_{\Omega} \chi_{\omega}(x) \phi_{j}(x)^{2} dx$$

In the square $\Omega = (0, \pi)^2$, with the usual basis (products of sine) : the optimal domain ω^* has a finite number of connected components, $\forall \alpha > 0$.

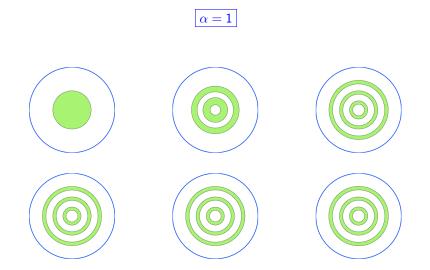
In the disk $\Omega = \{x \in \mathbb{R}^2 \mid ||x|| < 1\}$, with the usual basis (Bessel functions), the optimal domain ω^* is radial, and

- $\alpha > 1/2 \Rightarrow \omega^* =$ finite number of concentric rings (and $d(\omega, \partial \Omega) > 0$)
- α < 1/2 ⇒ ω^{*} = infinite number of concentric rings accumulating at ∂Ω! (or α = 1/2 and T small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk. (L. Hillairet, Y. Privat, E.T.)

< ロ > < 同 > < 回 > < 回 >

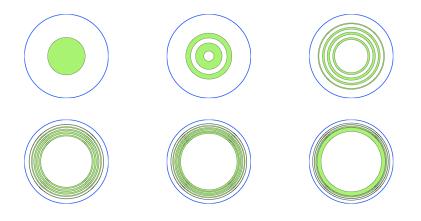
Several numerical simulations : Ω = unit disk L = 0.2, T = 0.05, for 1, 4, 9, 16, 25 and 36 eigenmodes



(日) (四) (三) (三)

Several numerical simulations : Ω = unit disk L = 0.2, T = 0.05, for 1, 4, 9, 16, 25 and 36 eigenmodes

$$\alpha = 0.15$$



< □ > < 同 > < 回 > <

To sum-up

 $\left|\sup_{\chi_{\omega}\in\mathcal{U}_{L}}\inf_{j\in\mathbb{N}^{*}}\gamma_{j}\int_{\Omega}\chi_{\omega}(x)\phi_{j}(x)^{2}\,dx\right|$

	square	disk
	relaxed solution $a = L$	relaxed solution $a = L$
wave or Schrödinger	$\exists \omega \text{ for } L \in \{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$	$\exists \omega \text{ for } L \in \{rac{1}{4}, rac{1}{2}, rac{3}{4}\}$
	A otherwise (conjecture)	$ \exists otherwise (conjecture) $
	$\exists ! \omega \forall L \forall \alpha > 0$	$\exists ! \omega$ (radial) $\forall L \forall lpha > 0$
diffusion $(-\triangle)^{lpha}$	$\#c.c.(\omega) < +\infty$	if $lpha > 1/2$ then $\# c.c.(\omega) < +\infty$
		if $lpha < 1/2$ then $\# c.c.(\omega) = +\infty$

Conclusion of this talk

Ongoing works :

- optimal design for boundary observability. (with P. Jounieaux)
 - Ω being assumed bounded connected and its boundary $\mathcal{C}^2,$ maximize

$$\inf_{i\in\mathbb{N}^*}\frac{1}{\lambda_j(\Omega)}\int_{\Sigma}\left|\frac{\partial\phi_j}{\partial n}\right|^2dx$$

over all possible subsets $\Sigma\subset\partial\Omega$ of given Hausdorff measure.

- new strategies to avoid spillover phenomena when solving optimal design problems (Césaro means).
- Same analysis for the optimal design of the domain of control. (effect of the randomization on the HUM operator?)
- discretization issues. Do the numerical designs converge to the continuous optimal design as the mesh size tends to 0?

Y. Privat, E. Trélat, E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. 19 (2013), no. 3, 514-544.

Y. Privat, E. Trélat, E. Zuazua, Optimal observability of wave and Schrödinger equations in ergodic domains, To appear in J. Eur. Math. Soc.

Thank you for your attention

・ロト ・ 同ト ・ ヨト ・ ヨ