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Motivations

What is the best shape and placement of sensors ?

- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and
estimations.
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Outlines of this talk

1 Introduction and motivation

2 Modeling of the problem : a randomized criterion

3 Optimal observability for wave and heat equations
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Introduction and motivation

N-D wave/heat equation

↪→ Ω open bounded connected subset of Rn such that ∂Ω 6= ∅
↪→ T > 0 fixed
↪→ ω ⊂ Ω subset of positive measure

N-D wave equation

∂tty −4y = 0 in (0,T )× Ω
y|∂Ω

= 0
y(0, ·) = y 0, ∂ty(0, ·) = y 1 in Ω

↪→ Generalization to many other boun-
dary conditions (Neumann or mixed Dirichlet-Neumann or

Robin on ∂Ω)

↪→ ∀(y 0, y 1) ∈ L2(Ω) × H−1(Ω), there
exists a unique y ∈ C0([0,T ], L2(Ω)) ∩
C1([0,T ],H−1(Ω)).

N-D heat equation

∂ty −4y = 0 in (0,T )× Ω
y|∂Ω

= 0
y(0, ·) = y 0 in Ω

↪→ Assume that ∂Ω is C2
(for simplicity, but can be

easily weakened, e.g. when Ω is a convex polygon).
↪→ ∀y 0 ∈ H1

0 ∩ H2(Ω), there exists a
unique y ∈ C0([0,T ],H1

0 ∩ H2(Ω)) ∩
C1([0,T ], L2(Ω))

Observable variable (ω ⊂ Ω of positive measure)

z(t, x) = χω(x)y(t, x) =

{
y(t, x) if x ∈ ω
0 else.
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Introduction and motivation

Observability of the N-D wave/heat equation

Observability inequality (wave equation)

The time T being chosen large enough, how to choose ω ⊂ Ω to ensure that

∃C > 0 | ∀(y 0, y 1) ∈ H1
0 (Ω)× L2(Ω), C‖(y 0, y 1)‖2

H1
0 (Ω)×L2(Ω) ≤

∫ T

0

∫
Ω

z(t, x)2dxdt ?

Microlocal Analysis. Bardos, Lebeau and Rauch proved that, roughly in the class of
C∞ domains, the observability inequality holds iff (ω,T ) satisfies the GCC.

Observability constant : Cwave
T = inf

y solution of the wave eq.

(y0,y1)∈L2(Ω)×H−1(Ω)

∫ T

0

∫
ω
y(t, x)2dxdt

‖(y 0, y 1)‖2
L2(Ω)×H−1(Ω)

.
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Introduction and motivation

Observability of the N-D wave/heat equation

Observability inequality (heat equation)

The time T being fixed, how to choose ω ⊂ Ω to ensure that

∃C > 0 | C‖y(T , ·)‖2
L2(Ω) ≤

∫ T

0

∫
ω

y(t, x)2 dxdt,

for every solution of the heat equation such that y(0, ·) ∈ H1
0 ∩ H2(Ω) ?

↪→ this ineq. holds for every open subset ω of Ω ;

↪→ related to the inverse problem of recovering its final data from the L2-observation of
its solution on the set ω during a time T .

C heat
T (χω) = inf

y solution of the heat eq.

y(0,·)∈H1
0∩H

2(Ω)

∫ T

0

∫
ω
|y(t, x)|2 dx dt

‖y(T , ·)‖2
L2(Ω)

.
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Modeling of the problem : a randomized criterion

Toward a new shape optimization problem
The randomization procedure

A first natural idea of modeling

We investigate the problem of maximizing the quantity CT (χω) over all possible subsets
ω ⊂ Ω of Lebesgue measure L|Ω|.

BUT, two difficulties

1 Theoretical difficulties

2 The model is not relevant w.r.t. practical expectation

The usual observability constant is deterministic and gives an account for the worst
case. It is pessimistic.

↪→ In practice : many experiments, many measures.

→ Objective : optimize the sensor shape and location in average.

→ randomized observability constant.
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Modeling of the problem : a randomized criterion

Toward a new shape optimization problem
The randomization procedure

Introduce (−λ2
j , φj), the j-th eigenpair of the Laplace-Dirichlet operator on Ω.

↪→ Spectral expansion of the solution y of the wave equation

∀t ∈ (0,T ), y(t, ·) =
+∞∑
j=1

(aj cos(λj t) + bj sin(λj t))φj ,

where aj , bj are determined by the initial conditions.

↪→ Spectral expansion of the solution y of the heat equation

∀t ∈ (0,T ), y(t, ·) =
+∞∑
j=1

aje
−λ2

j tφj ,

where aj is determined by the initial condition.
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Modeling of the problem : a randomized criterion

Toward a new shape optimization problem
The randomization procedure

↪→ Random selection of the initial data (see Burq - Tzvetkov, Invent. Math. 2008) :

yν(t, x) =
+∞∑
j=1

(
βν1,jaje

iλj t + βν2,jbje
−iλj t

)
φj(x),

where (βν1,j)j∈N∗ and (βν2,j)j∈N∗ are two sequences of i.i.d random variables
(Bernoulli/Gaussian) on a probability space (X ,A,P) of mean 0.

↪→ Effects of the randomization
Gaussian randomization : the map ν ∈ X 7→ (yν(0, ·), yνt (0, ·) “generates” a full
measure set in Hs × Hs−1(Ω) for almost every initial data
(y(0, ·), yt(0, ·)) ∈ Hs × Hs−1(Ω).
Bernoulli randomization : keeps the Hs × Hs−1(Ω)-norm of the original function.
No regularization effect : the map ν 7→ yν is measurable and

[ν 7→ (yν , ∂ty
ν)] ∈ L2(X , L2 × H−1(Ω)).

If (y(0, ·), yt(0, ·) /∈ Hs+ε × Hs−1+ε(Ω), then (yν , ∂tyν) /∈ Hs+ε × Hs−1+ε(Ω) almost
surely.
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Modeling of the problem : a randomized criterion

A randomized observability constant

↪→ Wave eq. : we consider the randomized observability inequality

CT ,rand(χω)‖(y 0, y 1)‖2
H1

0×L2 ≤ E
(∫ T

0

∫
ω

yν(t, x)2 dxdt

)
,

for all y 0(·) ∈ L2(Ω) and y 1(·) ∈ H−1(Ω), where yν denotes the solution of the wave
eq. with random initial data y 0,ν and y 1,ν .

↪→ Heat eq. : we consider the randomized observability inequality

CT ,rand(χω)‖y(T , ·)‖2
L2 ≤ E

(∫ T

0

∫
ω

yν(t, x)2 dx dt

)
,

for all y(0, ·) ∈ H1
0 ∩H2(Ω), where yν denotes the solution of the heat equation with

the random intial data y 0,ν .

Proposition

For every measurable set ω ⊂ Ω,

CT ,rand(χω) = T inf
j∈N∗

γj

∫
ω

φj(x)2 dx where γj =


1
2

for the wave eq,

e
2λ2

j T−1
2λ2

j
for the heat eq.

There holds CT ,rand(χω) ≥ CT (χω). There are examples where the inequality is strict.
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Optimal observability for wave and heat equations

Optimal observability with respect to the domain

Question

What is the “best possible” observation domain ω of given measure ?

Optimal design problem (energy concentration criterion)

We investigate the problem of maximizing

CT ,rand(χω)

T
= inf

j∈N∗
γj

∫
ω

φj(x)2 dx .

over all possible subset ω ⊂ Ω of Lebesgue measure L|Ω|.
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Optimal observability for wave and heat equations

Related problems

Optimal design for control/stabilization problems

1 What is the ”best domain” for achieving HUM optimal control ?

ytt −∆y = χωu

2 What is the ”best domain” domain for stabilization (with localized damping) ?

ytt −∆y = −kχωyt
See works by
- P. Hébrard, A. Henrot : theoretical and numerical results in 1D for optimal stabilization (for all initial data).
- A. Münch, P. Pedregal, F. Periago : numerical investigations of the optimal domain (for one fixed initial data). Study of the relaxed problem.
- S. Cox, P. Freitas, F. Fahroo, K. Ito, ... : variational formulations and numerics.
- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ... : numerical investigations (among a finite number of possible initial data).
- K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ... : numerical investigations for actuator placements (predefined set of possible candidates), Riccati
approaches.

- and many others. . .
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Optimal observability for wave and heat equations

Additional remark

Let A > 0 fixed. If we restrict the search to

{ω ⊂ Ω | |ω| = L|Ω| and PΩ(ω) ≤ A} (perimeter)

or

{ω ⊂ Ω | |ω| = L|Ω| and ‖χω‖BV (Ω) ≤ A} (total variation)

or

{ω ⊂ Ω | |ω| = L|Ω| and ω satisfies the 1/A-cone property}
or

ω ranges over some finite-dimensional (or ”compact”) prescribed set...

then there always exists (at least) one optimal set ω.

→ but then...
- the complexity of ω may increase with A
- we want to know if there is a ”very best” set (over all possible measurable)
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Optimal observability for wave and heat equations

Solving of the optimal design problem
Generalities

General optimal design problem

sup
ω⊂Ω
|ω|=L|Ω|

J(χω) := sup
ω⊂Ω
|ω|=L|Ω|

inf
j∈N∗

γj

∫
Ω

χω(x)φj(x)2dx

Admissible set for this problem :

UL = {χω | ω is a measurable subset of Ω of measure L|Ω|}.

Convex closure of this set for the weak-star topology of L∞ :

UL =

{
a ∈ L∞(Ω; [0, 1]) |

∫
Ω

a(x)dx = L|Ω|
}
.

Relaxed optimal design problem

sup
a∈UL

J(a) := sup
a∈UL

inf
j∈N∗

γj

∫
Ω

a(x)φj(x)2dx
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Optimal observability for wave and heat equations

To solve the problem, we distinguish between :

wave or Schrödinger
equations

6= parabolic equations (e.g., heat,
Stokes)
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Optimal observability for wave and heat equations

Solving of the optimal design problem (wave equation)
Solving the relaxed problem

Geometrical assumption on Ω

There exists p > 1 such that the sequence (φ2
j )j∈N∗ is uniformly bounded in Lp norm

The whole sequence φ2
j ⇀

1

|Ω| vaguely as j → +∞. (QUE conjecture)

We have

sup
a∈UL

inf
j∈N∗

∫
Ω

a(x)φj(x)2dx = L (reached with a = L)

Remarks

Verified in any flat torus ;

Not verified in the
Euclidean disk (whispering
galleries phenomenon).
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Optimal observability for wave and heat equations

Solving the optimal design problem (wave equation)
Gap or no-gap ?

A priori,

sup
ω⊂Ω
|ω|=L|Ω|

J(χω) ≤ sup
a∈UL

J(a).

Remarks in 1D :

Note that, for every ω,

∫
ω

sin2(jx)dx −−−−→
j→+∞

Lπ

2
as j → +∞.

No lower semi-continuity (but upper semi-continuity) of the criterion.

With ωN =
N⋃

k=1

[
kπ

N + 1
− Lπ

2N
,

kπ

N + 1
+

Lπ

2N

]
, one has χωN ⇀ L but

lim
N→+∞

J(χωN ) < L.
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Optimal observability for wave and heat equations

Solving of the optimal design problem (wave equation)

Theorem (No-gap)

Under the Lp boundedness assumption of the sequence (φj)j∈N∗ (p > 1) and QUE,
there is no gap, that is :

sup
χω∈UL

inf
j∈N∗

∫
Ω

χω(x)φj(x)2 dx = max
a∈UL

inf
j∈N∗

∫
Ω

a(x)φj(x)2 dx = L.

the result also holds also true in the Euclidean disk.
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Optimal observability for wave and heat equations

On the QUE assumption
Quantum Unique Ergodicity property (QUE) in multi-D

true in 1D, since φj(x) =
√

2
π

sin(jx) on Ω = [0, π]

Gérard-Leichtnam (Duke Math. 1993), Burq-Zworski (SIAM Rev. 2005) : if Ω is a

convex ergodic billiard with W 2,∞ boundary then φ2
j ⇀

1

|Ω|vaguely for a subset of

indices of density 1.

There exist some convex sets Ω (stadium shaped) that satisfy QE
but not QUE (Hassell, Ann. Math. 2010)

QUE conjecture (Rudnick-Sarnak 1994) : every compact manifold having negative
sectional curvature satisfies QUE.

If the QUE assumption fails, we may have
scars : energy concentration phenomena
(there can be exceptional subsequences
converging to other invariant measures, like,
for instance, measures carried by closed
geodesics : scars)

See Snirelman, Sarnak, Bourgain-Lindenstrauss, Colin de Verdière, Anantharaman, Nonnenmacher, . . .
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Optimal observability for wave and heat equations

In summary. . .(wave equation)

Under “quantum ergodic assumtions” :

sup
χω∈UL

inf
j∈N∗

∫
Ω

χω(x)φj(x)2 dx = sup
a∈UL

inf
j∈N∗

∫
Ω

a(x)φj(x)2 dx = L.

Maximizing sequence : χωN ⇀ L is not enough !
A constructive homogenization procedure of maximizing sequences is known.

Supremum of J over UL : reached or not ? ? ?

Particular cases :
in 1D : the supremum is reached if and only if L = 1/2 (and there is an infinite number of optimal sets).
in the 2D square, if we restrict the search of optimal sets to Cartesian products of 1D subsets, then the supremum
is reached if and only if L ∈ {1/4, 1/2, 3/4}.

Conjecture

For generic domains Ω and generic values of L, the supremum is not reached and hence
there does not exist any optimal set.
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Optimal observability for wave and heat equations

Truncated criterion (wave equation)

Truncated shape optimization problem

sup
χω∈UL

inf
1≤j≤N

∫
Ω

χω(x)φj(x)2 dx

Theorem

Let L ∈ (0, 1). The shape optimization problem above has a unique solution ω∗N .

↪→ Γ-convergence result : lim
N→+∞

sup
χω∈UL

JN(χω) = optimal value for the relaxed pb.

↪→ If No-gap, L∞ weak-* convergence of (χω∗
N

)N∈N∗ to a minimizer of the optimal
design problem.

↪→ Spillover phenomenon : the best domain ωN for the first N modes is the worst
possible for N + 1 modes.
Proved in 1D by Hébrard-Henrot (SICON, 2003) and Privat-Trélat-Zuazua (J. Fourier Anal. Appl., 2013)
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Optimal observability for wave and heat equations

Several numerical simulations : Ω = [0, π]2

For 4, 25, 100 and 500 eigenmodes and L ∈ {0.2, 0.4, 0.6}

Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.4
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Problem 2: Optimal domain for N=10 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.6
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Optimal observability for wave and heat equations

Several numerical simulations : Ω = unit disk
L = 0.2, for 1, 4, 25, 100 and 400 eigenmodes

Problem 2 (Dirichlet case): Optimal domain for N=1 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2

Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2 Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2
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Optimal observability for wave and heat equations

Solving of the optimal design problem (N-D heat equation)
An existence result

Theorem

Assume that Ω is a bounded connected subset of Rn such that ∂Ω is piecewise C1. There
exists N0 ∈ N∗ such that

sup
χω∈UL

inf
1≤j

γj

∫
Ω

χω(x)φj(x)2dx = max
χω∈UL

min
1≤j≤N0

γj

∫
Ω

χω(x)φj(x)2dx .

↪→ Stationarity of the optimal domain in the truncation procedure. . .

↪→ The proof requires fine recent results in

J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, Observability inequalities and measurable sets, J. Europ. Math. Soc. (2013).

↪→ Same kinds of results for optimal design null controllability issues for the
N-dimensional heat equation

∂ty(t, x) = ∆y(t, x) + χω(x)u(t, x) on (0,T )× Ω

Control function supported by ω, use of the moment method, maximization of the operator norm of the control w.r.t. ω. . .

↪→ Generalization to parabolic systems (and even Stokes with Dirichlet boundary
conditions, . . .)
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Optimal observability for wave and heat equations

Several numerical simulations : Ω = [0, π]2, T = 0.05 and L = 0.2
for N ∈ {1, 2, 3, 4, 5, 6}

Optimal domain for the Heat equation (Dirichlet case) with N=1, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=2, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=3, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=4, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=5, T=0.05 and L=0.2
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Optimal domain for the Heat equation (Dirichlet case) with N=6, T=0.05 and L=0.2
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Stationarity of the maximizers from N = 4 (i.e. 16 eigenmodes)
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Optimal observability for wave and heat equations

Application to anomalous diffusion

Anomalous diffusion equations, Dirichlet : ∂ty + (−4)αy = 0 (α > 0 arbitrary)

↪→ protein diffusion within cells, or diffusion through porous media.

↪→ Associated optimal design problem :

sup
χω∈UL

inf
j∈N∗

e2λαj − 1

2λαj

∫
Ω

χω(x)φj(x)2 dx

In the square Ω = (0, π)2, with the usual basis (products of sine) : the optimal domain
ω∗ has a finite number of connected components, ∀α > 0.

In the disk Ω = {x ∈ R2 | ‖x‖ < 1}, with the usual basis (Bessel functions), the optimal
domain ω∗ is radial, and

α > 1/2 ⇒ ω∗ = finite number of concentric rings (and d(ω, ∂Ω) > 0)

α < 1/2 ⇒ ω∗ = infinite number of concentric rings accumulating at ∂Ω !
(or α = 1/2 and T small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk. (L. Hillairet, Y. Privat, E.T.)
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Optimal observability for wave and heat equations

Several numerical simulations : Ω = unit disk
L = 0.2, T = 0.05, for 1, 4, 9, 16, 25 and 36 eigenmodes

α = 1
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Optimal observability for wave and heat equations

Several numerical simulations : Ω = unit disk
L = 0.2, T = 0.05, for 1, 4, 9, 16, 25 and 36 eigenmodes

α = 0.15
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Optimal observability for wave and heat equations

To sum-up

sup
χω∈UL

inf
j∈N∗

γj

∫
Ω

χω(x)φj(x)2 dx

square disk

relaxed solution a = L relaxed solution a = L

wave or Schrödinger ∃ω for L ∈ { 1
4
, 1

2
, 3

4
} ∃ω for L ∈ { 1

4
, 1

2
, 3

4
}

6 ∃ otherwise (conjecture) 6 ∃ otherwise (conjecture)

∃!ω ∀L ∀α > 0 ∃!ω (radial) ∀L ∀α > 0

diffusion (−4)α #c.c.(ω) < +∞ if α > 1/2 then #c.c.(ω) < +∞

if α < 1/2 then #c.c.(ω) = +∞

Yannick Privat (LJLL) From Open to Closed Loop Control - Graz june 2015 25 / 27



Optimal observability for wave and heat equations

Conclusion of this talk

Ongoing works :

optimal design for boundary observability. (with P. Jounieaux)
Ω being assumed bounded connected and its boundary C2, maximize

inf
j∈N∗

1

λj(Ω)

∫
Σ

∣∣∣∣∂φj

∂n

∣∣∣∣2 dx
over all possible subsets Σ ⊂ ∂Ω of given Hausdorff measure.

new strategies to avoid spillover phenomena when solving optimal design problems
(Césaro means).

Same analysis for the optimal design of the domain of control. (effect of the
randomization on the HUM operator ?)

discretization issues. Do the numerical designs converge to the continuous optimal
design as the mesh size tends to 0 ?

Y. Privat, E. Trélat, E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. 19 (2013), no. 3, 514–544.

Y. Privat, E. Trélat, E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré 30 (2013), no. 6,

1097–1126.

Y. Privat, E. Trélat, E. Zuazua, Optimal observability of wave and Schrödinger equations in ergodic domains, To appear in J. Eur. Math. Soc.
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Thank you for your attention
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