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Nonlinear Model Predictive Control (NMPC)
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Lyapunov stability of NMPC

* Nominal stability
— Basic idea

« Perfect model, no uncertainty: x* = f(x, u)

« Remain bounded and eventually achieve desired state

A function V: R" — R>¢ is a Lyapunov function for a system

z(k+1) = f(z(k),u(k))

if there exist a set X, three Ko, functions ay,as,a3 such that

aq(|z]) < V(x) < as(|z])
V(f(z,u)) = V(z) < —as(|z|)
Ve e X

» Can the objective function serve as V(x)?
4
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[i.  MPC Stability — Infinite Horizon
(Keerthi and Gilbert (1988)

Y 4

e [ [ tiam Goep

Input horizon

Output horizon

) L) Nominal stability — perfect model
Jp= - y* ”; +u(l)-u(l-1) ”z,, - Based on discrete Lyapunov arguments
=k = with J(x) as Lyapunov function
Je= T =SNy®)=y* I +llu(h)-u(k-DIE,
o ‘ ’ « Infinite time horizon, ideal case
Bz =) « Finite time horizon - need endpoint
kel constraint 2 z(k+p)=0
*Choice of terminal cost gives additional
stability properties
« Often m (input) < p (output)

= i(ll y(k)-y* Ilz‘ +llu(k)—u(k-1) II; )
k=1

= y(k) = y,,,u(k) = u(k - 1) 15

ical

Nominal Stability Proof for NMPC
J (e + 1)) = J (x(k))

N-1 N-1
W (zyok (2 D+ D () + Pk (2 ) =[P () + Fz,0)]

I=1 1=0
= lI’(f(ZN,K‘/»(ZN)))—‘P(ZN)+'l/}(ZN,Kf(ZN))—'l[}(ZO,VO)
=0
—P(29,vy) =~ (x(k),u(k))

A

IA

JO) 2 Y (el D)= (x(k) = 3, (k) u(h))

k=0 k=1
= x(k) = 0,u(k) =0

* Nominal case — no noise: perfect model

« Terminal cost, ¥(z,) — upper bound on control cost for z - 0.

» Robust case — keep (J(x(k) — J(x(k+1)) > a(x) > 0 even with noise/
mismatch

[&.: NMPC Nominal Stability with Terminal Cost
(Rawlings and Mayne, 2009)

min  J(x(k) = > iz u)+ P(zy)
Z0 = f(z,5u,))
Zo = x(k)

Bounds

Assumptions:
*  f{x, u)is Lipschitz continuous (will assume smooth)

+ The terminal cost ¥(*) satisfies W(x)>0

+ There exists a local control law u = k(x) for all x € X;
such that  W(f(x, K(x))) - P(x) = -p(x, K(x))

* Y(x,u) satisfies a,(Ix) = P(x, u) < ay(x) where a,(*),
a,(*) are K. functions.

» N sufficiently long (Griine, 2013) or ¥(x) sufficiently long
(Pannocchia, Rawlings, 2011): no terminal constraints

ical

Lyapunov stability of NMPC

* Robust stability

— Basic idea

« Uncertainty in model: x* = f{x, u, w), where w could be
additive disturbance or uncertain parameters;

* Remain stable in the presence of disturbances.

A function V(.) is called an ISS-Lyapunov function for a system
x(k+1) = fix(k), u(k)) + q(x(k), w(k))
if there exist a set X, K, functions aq,as,a3 and a K function o such that

ai(|a]) < V() < as(la])
V(f(z,u,w)) = V() < —as(lz|) - o(jw])
Vee X, VweW
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%ﬁ Proof of robust stability for NMPC

« Addditional Assumptions:
— lg(x,w)l < Iq(x,0)] + Lg/W/
— lg(x,0)l = 0/€ a,(Ix]), and Iq(x,0)I= q,,,, where 0 € (0,1).

J(x(k +1)) = J (x(k)
= S (xk),u(h)) - J(x(k)) +J (x(k +1)) = J (f (x(k), u(k)))
= (x(k),u(k)) + L, | q(x(k),w(k)) |

s -, (20D +L, Ea (0D +L,L, wib)|

A

IA

(o=-Da, (| x(k) )+ o [w(k)|

i Reformulating the NLP

— Disturbances may lead to infeasibility of the NLP
— Dependent active sets make system unstable under perturbations
» Formulation

— If ¢* = 0 the stability of the mixed constraint problem is the same as the
hard constraint-onlv problem.

JGR)= minW(z,)+ Sk S pele

=0 =
st Z =S (zv)

z, = x(k) .
Add barrier terms
g(z) s =0 (developed later)

v, EULI=0,.,N-1
e=[LLLL.1]"

If g(z) is linear, MFCQ, CRCQ are satisfied at KKT point.
=> Continuity of J(x(k)) with data perturbations

E@ﬁ Nonlinear programming (NLP) formulation for NMPC

Jy(x(k)):= minW(z,)+ Szp(z,,vl)

1=0
s.t. z,,=/(z,v),=0,..,N-1

z, = x(k)

g(z)=0,/=0,...N

v, €U,I=0,..,N-1
zo — initial value
x(k) — measurement of state at t,
Y, ¥- (quadratic) stage and terminal costs
v, - predicted controlled variable
z, - predicted manipulated variable

How will NLP formulation satisfy assumptions
of NMPC stability properties?

hicat

Reformulated NMPC Problem

J@x(k)= min(W(z,)- (e - g (z,))

N-1 N-1
s.t. +E(w(z,,v/)+ Eps,re - ,uEln(el”‘ -gz))
1=0 1=0 J
2= £z =0, N -1
7= x(6) Gl
£20,v EU,I=0,.,N-1 P(z,v)= w(z,,vl)+2p£,’e—u21n(5;N ~g”(z)

JO(R)= minW(z,)+ Sz

1=0

s.t. 2, =f(z,v),2, = x(k),l =0,...,N -1

» Reformulated problem satisfies LICQ for:
» Bounded multipliers
» Continuous solutions w.r.t. x(k)
12 » Sensitivity
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f®.... Nonlinear Model Predictive Control — Air Separation Unit
“ (Huang, B., 2011)

Objective: maintain product
specifications under ramping
demands

4 manipulated variables.
4 output variables.

Horizon: 100 minutes in 20
finite elements.
Sampling time: 5 minutes.

DAEs: 1520

After Discretization:
Variables: 117,140
Constraints: 116,900

Case Study: Basic Air Separation Unit

I Lis

Cheriite1§
ENi

*Mesh Equations for Distillation Column

Assumption:
Vapor holdups are negligible. Index 2 system.
Ideal vapor phases.

Fi
‘Well mixed entering streams.

Constant pressure drop.
Equilibrium stage model.

dM,;
Mass balance: lﬁl =L+ Vig—Li=Vi+ F
[
c ¢ balance: d(Miz:) , :
v ( st n = Licaziovj+ Vigwivry — Livij — Vigi; + F‘vxf.j
M.hL
Energy balance: d(‘\j’tl" ) _ LicthEy + Vi hyy = LibE = VihY + Fib!

at

Phase equilibrium:  y; ;p; = f‘r’f'J'T"\JP?.i Reformulated index 1 system

Summation: 1= 3w
JECOMP

Hydrodynamics : L; = kqM;

contains 320 ODEs, 1200 AEs.

ASU Nonlinear MPC - Case 1

t = 30-60 min, product rates are ramped down by 30%. t =1000-1030
min, they are ramped back. NMPC is compared to MPC with linear
input-output empirical model.

WA [molimin]

2N ow

st
£
i\

LN Imalmin]  EAMOIMIN] - G oy

0 200 400 600 800 1000 1200 1400 1600 1800 2000
tmin] t{min]

Output Variables Manipulated Variables
The green dot-dashed lines are the set-points, the blue dashed lines are the linear
controller profiles and red solid lines are NMPC profile.

All the tuning parameters are favored to the linear controller.
Horizon Solution Time: 200 CPUs, 6 IPOPT iters.

What about Fast NMPC?

» Fast NMPC is not just NMPC with a fast solver (Engell, 2007)

« Computational delay — between receipt of process measurement
and injection of control, determined by cost of dynamic optimization

» Leads to loss of performance and stability (see Rawlings and
Mayne, 2009; Findeisen and Allgéwer, 2004; Santos et al., 2001)

s e e e

Can computational delay be overcome?
- Fast Newton-based NMPC
- Cheap NLP Sensitivity
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NLP Sensitivity
ENGINE TS
Parametric Program
min  f(z,p) f(z,p)
s.t. c(z,p) =0 » P(p)
x>0

Solution Triplet
s*(p)'r — [L*I /\*'l' U*'l']

Optimality Conditions P (p)

Vaf(a,p) + Vec(z,p) A =v = 0
o(z,p) = O
XVe = 0

NLP Sensitivity > Rely upon Existence and Differentiability of s* (p)

. . Os . - : i
> Main Idea: Obtain poand find 5*(p1) by Taylor Series Expansion o).,

. . asT (1)
§(p1) ~ s™(po) + o (p1 — po)
P lpg 5 (po)
NLP Sensitivity with IPOPT
i .,|  (Pirnay, Lopez Negrete, B., 2011)
Obtaining o
Po

Optimality Conditions of P(p)

Vil = Vaf(z,p) + Vec(z,p) A = v
o(w,p)
XVe

E } Q(s,p) =0

Apply Implicit Function Theoremto  Q(s,p) = 0 around (pg, s*(po))

9Q(S*§€o),po) % + 3Q(6*§7;0),P0) =0

Plpo

A
W o) AG o) 1 [ %] [Veskls o)
AG )T 0 o || % |+| Voo | =0
Vi) 0 XGo) || 2 0

KKT Matrix IPOPT
W(xp, M) Alzy) —1
Az)T 0 o]
Vi 0 X

-> Already Factored at Solution
-> Sensitivity Calculation from Single Backsolve

- Approximate Solution Retains Active Set

KKT Properties and Constraint
Qualifications for Sensitivity

» LICQ, SOSC, SC - (ds*/dp) - derivatives can be
calculated (Fiacco, 1983)

* MFCQ, GSSOSC, CRCQ > (D,,x*) - directional
derivatives calculated with additional LP and QP
steps (Ralph and Dempe, 1995)

« MFCQ, GSSOSC - continuity of objective
functions and primal variables with respect to p.
(Kojima, 1985)

L TERING

— Fix-relax (in sIPOPT) . R 5 .
+ Bounds are violated > fix X +Ax=x"> Ar=x"-Xx
+ Multipliers become negative > fix v +Av=0 > Av= v

Updates for active set changes

— Clipping in first interval (CFI)
« Find step length a such that
Vi sy +ahv, <V
2 sz +ahz <zY
« Easiest to implement in asNMPC

— Specialized Linear and Quadratic Programming (Jaschke et al.,
2014)
+ Determine directional derivatives
« Track family of solutions through homotopy
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,Advanced Step Nonlinear MPC (zavala, B., 2009)

Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

x(kjo—M X1k

L] — ur

t b b CaNo] ten
+N-

min  J(x(k), u(k)) = F(x, n0)+ Elp(x,,k,v”k)

I=k+1

st X =|f (x(k),u(k)
Xy = fOeovp), | = k41, k+N-1
e €X, v €U, xm €X,

Solve NLP(k) in background (between #, and #,, ;)

,Advanced Step Nonlinear MPC (zavala, B., 2009)

Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

]
i
Xk+1\}< |
'
'
(k)@ x(k+1) '
(k+1) [ [
[ — '
u(k)f— __:uL
tk tk+1 tk&Z tk&N
° .
W, A, —I] [Ax :
AZ- o (0] AA|= [x 0 —x(E+ 1D
z, o X,] LAz (o]

Solve NLP(k) in background (between #,and #,, ;)
Sensitivity to update problem on-line to get (u(k+1))

Cher; |
ENGIN

Advanced Step Nonlinear MPC (zavala, B., 2009)

Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

]

1

‘ Xis2|ke1 H

: I

I

(k)@ x(k+1) '
s uyy

u(k+1) ] I UN-2uN 1] H
u(k) - L — : :u
— UL

b ter e kN ten

min  J(x(k+1), u(k+1)) = F(X oy ia) + EW(xmmVuM)

I=k+2
St Xpoper = fx(k+1),u(k + 1))

Xpnt = F Vi), 1= k+2,.k+N
X €EX, Via €U, Xyaun €EX;

Solve NLP(k) in background (between #,and ¢, ;)
Sensitivity to update problem on-line to get (u(k+1))
Solve NLP(k+1)in background (between?,, ,andz,,,)

Nominal Stablllty ideal NMPC and asNMPC
rrhm Jk—EI/J(z,,u,)+F(ZN)

=0
Zi = f(z,51))
zZ, = x(k)

(her wal

Bounds
=0

Jo=J 2k =1),u(k-1))+ {F(ZNM )= Yyt = F (2 )}
= yP(x(k—1),uk -1)

Ty 2 3y =d) = Pk =1),utk~1))
k=1 k=1

= x(k) = 0,u(k) =0

» Assumptions: f() is Lipschitz continuous, (), a() is a &, function in ||x||

* Nominal case — no noise: perfect model
» asNMPC yields identical solutions (no sensitivity perturbation)
- Identical NMPC stability property
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E@@ Robust Stability Margins

Plant Xew = L (X)) = [ (X 40) +q (X Uy, )
I gCrau w )l < L x, 1+ o(llw, 1)

Model Zi = J(214))), 20 = X,
j(xkfl)—j(xk)=(j(xkfl)—J(zk‘k71)+(J(ZWH)—J(xk))+(J(xk)—.7(xk))
2Y(X Uy ) = (X ) = €45( X )
2Y(X ) = (X ) = €4(X)

2 Y% ) - Ly L DfoiwDp a0, )7

Assume above noise and model mismatch model

« Advanced step NMPC is ISS and tolerates some model mismatch
(see Jiang and Wang, 2001; Magni and Scattolini, 2005; Zavala, B., 2009)

ASU Nonlinear MPC - Case 1

t = 30-60 min, product rates are ramped down by 30%. t =1000-1030
min, they are ramped back. asNMPC is compared to MPC with linear
input-output empirical model.

200 400 600 800 1000 1200 1400 1600 1800 2000
t[min]

Output Variables Manipulated Variables
The green dot-dashed lines are the set-points, the blue dashed lines are the linear
controller profiles and red solid lines are NMPC profile.

All the tuning parameters are favored to the linear controller.

Nonlinear Model Predictive Control — Air Separation Unit
" (Huang, B., 2011)

Gas Nitrogen
Objective: minimize operating -
cost subject to demand LP Column

specifications !
4 manipulated variables. kit
4 output variables. emperature at
the 30" tray
4 Ys (TI30)
Horizon: 100 minutes in 20 ATON) m
finite elements. Pure nitrogen Condenser
. . ) . Y2 (PNI) )
Sampling time: 5 minutes. il Nirogen

Temperature 4
the 15 tra

Crude Gas Nitrogen Us(LN)|

(¢}

DAEs: 1520

Variables: 117,140 i U (GN) 2
Constraints: 116,900 . I
Background: 200 CPUs, 6 IPOPT iters. w
Online: 1 CPUs

HP Column
Crude oxygen

NMPC of Air Separation Unit — Case 2

(Huang, B., 2009)

At t = 30-60 min, product rates are ramped down by 40%.
At t =1000-1030 min, they are ramped back. 5% disturbance is added to M,

1000% vt el

. : o ; N=20,K=3

et S 320 ODEs, 1200 AEs.
Variables: 117,140

Constraints: 116,900

8 rel
e R e e |
o

PN (motimin) POX [molimin]

., J
it : :
i O (/
L Aeavr sy nede |

4 400 NLPs solved
91 — T T T T A T Background: 200 CPUs, 6 iters.
o 7N Online: 1 CPUs

TI30 K]

Computational Feedback Delay
% § s Reduced from 200 - 1 second.

4 SV

Thi5 [K]

s f h I 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
t[min]

Blue dashed lines are ideal NMPC profile
Red lines are AS-NMPC profile.
In contrast, linearized controller is unstable
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ZwAdvanced Multi-step NMPC (amsNMPC)

* What if NLP solution exceeds one sampling time?

— Use longer sampling time? Degrades performance
— Define N, = solution time/sampling time.
— Do model linearization N, steps behind.
Backaround: predict state at t(k+ N;) and solve NLP using
prediction as initial value.
On-line: update u(k) based on NLP sensitivity at each t(k).

Serial approach: solve NLP every Ny sampling times, using
one processor.
Parallel approach: solve NLP on N, processors at t(k).

As N >, amsNMPC becomes neighboring extremal controller

X. Yang, L. T. Biegler, Advanced-multi-step nonlinear model predictive control, Journal of Process Control,
23,2013, pp. 1116-1128

amsNMPC Case study

C3 splitter distillation column
B., Yang, Fischer (2015)

Heat Condenser

*158 trays

*111650 variables

*111580 constraints Reflux
*Horizon length=35 a8 %

*Sampling time: 1 min

Q; &, . Distillate
(Propylene)

*Assumptions:
Pressure in the column js ~ Feed—S—(, 43, controlled
controlled ; variables
Pressure drop is constant from

B 4 Heat Reboiler
tray to tray. vapor

manipulated

o ical —
T Parallel amsNMPC, N, = 3
et Taieiatt = L. PN VR S P — NLP1
o 1 Processorl
uk) ———_ _ _ | H
I [ ——)
&v
tA tA+| tk+k\/—3 t/(-hV tk+1+’\/
ool - I
NLP2 g
Processor2 | u(k+1)_| o
Ilm=|
== L Lo Livasn
x(k+2)g - B e e I I R
NLP3
Processor3 Jutk+2 |
‘L—l'
&WE 7% leazen Lessen

No noise, ideal NMPC Vs parallel approach

Nominal case — no noise

No noise, ideal NMPC Vs parallel approach

—— setpoint === ideal NMPC = ==Neags™ 122

o

INtray]

0997 j
o

o 10 Y

States of iN

e Parallel a

20 e s L o 0 ) a E) E &0
time step time step

IMPC Vs parallel approach Control profile of INMPC Vs parallel approach

pproach behaves identically to ideal NMPC and asNMPC.

¢ NLP takes 50 CPUs, Sensitivity update takes less than 0.5 CPUs
* Increasing N, does not change performance.
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Noisy case for amsNMPC

— 1% noise in x[1] and 0.05% noise in x[Ntray]

Set point change, mixed level of noise, parallel approach

Set point change, mixed level of noise, parallel approach

[ = — o — P [ Pt — Pt ot

09| n

0997

x{Ntray]

0ess|

0 10 20 a0 0 EY & 0 10 20 30 a0 50 60
time step time step

States with mixed level of noise control profile with mixed level of noise

* Parallel amsNMPC can handle a small level of noise with set point change,
and for small level of noise N, makes no difference.

* Asnoise increases, more deviation of the states with N, =3 than with
smaller N,.

* Robust performance deteriorates with increasing N,

=]
Economic NMPC

NLP formulation

N-1
min  W(z, )+ Zw(zl,v,)
=0

st oz, =f(z,v),0=0,.,N-1
z, = x(k)
z,€X,v,€U,l=0,..N-1z, X

sZ N

where¥(zy).y(z,v) are economic terms
Steady state set point is not known -> no terminal region
(see Griune, 2013; Griine and Stieler, 2014)

Challenge: normally, J does not satisfy a1 (|z|) < J(z) < as(|z])

35

5% noise in x[1] and 0.1% noise in x[Ntray]

. L p— ]

g™ ——Naarg™T —— Noarg™ =

set paint

Fox A MMTW&W

098

=098
= PUNUEISPR S

g
£ oswr

= 099 A
osss|

W50 60
time step

Performance loss with increasing N, does not occur because model
response to noise is not highly nonlinear.

34

Challenges with D-RTO

Replace regulation objective with economic objective in NVIPC?

Bartusiak, Young et al. (2007)

Dadhe and Engell (2008), Engell (2007, 2009)
Wauerth, Marquardt, Rawlings (2009)

Angeli and Rawlings (2010)

Angeli, Amrit and Rawlings (2011)

Diehl, Amrit and Rawlings (2011)

Wolf, Wiirth, Marquardt (2012)

Robust Stability of Lyapunov function & must be K function (e.g., strong
convexity of stage cost)

Maxz {Profiti } + Profit N
Open Questions

- should D-RTO optimum go to a steady state?
- how do we enforce optimal steady state?

Remedy: Regularize economic stage cost?

6/20/15



Economic NMPC Stability-1

» Economic stage costs generally do not satisfy assumptions
for Lyapunov stability e.g., a,(|x]) < w(x,u) < oy(|x|)
» Obtain steady state solution
miny(z,v), s.t.z= f(z,v),z€X,velU
+ Define transformed states and controls
=z-7 v=vy—"
» Define rotated stage cost (Diehl, Amrit, Rawlings, 2011)
L(z, ) = W (@, v) + A% (21— F(z, )
« If rotated stage cost is strongly convex at all feasible steady
state points, then Lyapunov assumptions are satisfied:

L(z,9)>1/2 /0 l [z #V2L(1z, T70) [ ]dr

2]

<i

> n (|2 +17%) = B (12)

%« Apply Gershgorin’s theorem (Jaschke, Yang, B., 2014)

Al

<

] T =T 2 .
Recall at steady  L(Z.7) > 1/2/0 " VIV (e, o) [ } dt
state optimum > n (12 + 17) = Ba(l2)

For a matrix 4=(a, ;) = V[y(z,v)+ A" (z- f(z.V))]

ai,i_z Sﬂisai,i"'z

a,.J.

=] i=j

ai’j

where g, is the ith eigenvalue of A.
To ensure that all the eigenvalues of A+Q are positive, we
require

0<qi+am,—E

=

q; > E

i)

A+Q should be positive definite for every z and v!
39

ai,j = lui +qi

therefore
_all

4

Economic NMPC Stability-2

 If rotated stage cost is not strongly convex, add
regularization terms to original stage cost

Y(z,v,) = w(z[,vl)+1/2H(z[ —z*,v, —v*)HQ

W(zy) =Wz, )42z, -2

« Property 1: There exists Q sufficiently large to satisfy
Lyapunov assumptions for rotated stage cost

* Q threshold determined from steady state solution

» Property 2: The NMPC controller with rotated stage costs
yields the same control trajectory as with original stage
costs. (Diehl, Amrit, Rawlings, 2011)

» Stability and Robustness properties extended to cyclic
steady states with k steps (Huang, Harinath, B; 2012).

ﬁm Economic NMPC: Distillation Case study

Two distillation columns in sequence

*41 trays

*Feed enters at stage 21
*Manipulated variables:

i o1xa] L] ozlxe LT1, VBL, LT2, VB2
F,qF B1 *Additive noise

*Without regularization, the
Hessian matrix of Lagrange
function of the steady state
problem is not positive definite
with 4, =-1.414
se[xc]

min, J(u) =pprF +py(VB1+VB2)— (paD1+ ppD2+ pcB2)

s.t. Massbalance, Equilibrium

TA 2 TAmin, TB 2 TBmin, LC 2 TCmin
0< LT1,LT2 < LT ez, 0 < VBL, VB2 < VB

RB. Leer. Self-optimizing control structures for active constraint regions of a sequence of distillation columns. Master’s thesis, Norweign
University of Science and T , 2012, Url: http, divaportal.org /diva2:629241/FULLTEXTOL.pdf.
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@gﬂements of Regularization matrix (Q = diag{q})

for Distillation Case Study

log, g

100 200 300 400 500 600 700 800 600 1000
variable index

Y(z,v)= 1!)(2,V)+I/ZH(Z—Z*,V—V*)H;

~100 g; are 0, ~600 q; are <1, ~50 q; are > 100

Economic NMPC without Noise

I m., ical
EHGINEE

Economic NMPC without Noise:
Partial Gershgorin weights

0.01 x Gershgorin—offset in xg.

0.1 x Gershgorin—offset becomes very small.

0.5 x Gershgorin—offset becomes even smaller.

Since Hessian is still not positive definite, positive definiteness is just
sufficient conditions for stability of Economic NMPC.

4 | T T — S —
£ —
@ o ‘
| = LC |
| L 1
\ B — g
§
time step o n E) 0 a El & ) El
e sep

E — i — T e e
& 95’ g
razion — Garsrgoinweighs -~ -~ Tracking i |
o woo®m @ @ W @ 0 s« 10 W W 0 4 S e W & 0 100
-
"[L B
S 085 X 0 0 Ed 40 50 60 0 El £ 100
R R I s Y
! 4 0 20 0 40 50 B0 0 El a0 100
58 099) o 6|
g
L L L L L >4
CED W w70 @ T 2 T T T T m
e dep T AL R
time step
Case 1: no regularization—x, cannot reach optimum steady
state; x. diverges.
Case 2: economic term +regularization—optimum steady state
reached quickly.
i
Economic NMPC with 5% noise
o " ~ [—Setpont —No eguanatior — Gersngonnweghts
K.,m! W AATT e G
o = Set poirt —— Noregularizaion —— Gershgain weigns Tmmn\ 10 20 El 4 50 ] 70 El El 100
B % ® % 5 » ® e W
& o]
S
R - .
e e T
T m % w W e w W w5 i Fie e .
: T A
\r'J, — 10 0 30 a0 50 60 0 80 £l 100
o \//\//"‘
‘ L S Mo
10 20 0 40 50 B0 0 80 £ 100 il e
time step [T TR I T )

No regularization—very large oscillations in x, xg and x
Gershgorin Regularization—states remain within a small region around

optimum steady state.
44
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@g Economic NMPC with 5% noise:
partial Gershgorin weights

ERE
time step

0.01 x Gershgorin—large oscillations in x,_
0.1 x Gershgorin, 0.5 x Gershgorin—behavior very close to
full value of Gershgorin weights.

45

Summary of Results

< Stability Properties for asNMPC (Zavala, B., 2009)
— Nominal stability — no disturbances nor model mismatch
— Input to State Stability (ISS)
— RPI set =" due to soft constraints

« Advanced Multi-step NMPC (amsNMPC, Yang, B., 2013)
— Coordinate background NLP solves over multiple time steps
— Extend NLP sensitivity with Schur complement approach

Yang, B., 2014 )
— Nominal and ISS stability based on rotated stage costs
— Gershgorin analysis leads to sufficient regularization
— Extended to cyclic processes
— Development of unbiased regularized stage costs?
* Moving Horizon Estimation (Lopez Negrete, Huang, B., 2010, 2011)
— Fast sensitivity-based smoothed covariance of arrival cost
— Robust stability for embedded asMHE and asNMPC?
— Statistical properties of arrival cost formulations?

- Extension to economic objectives (Huang, Harinath, B., 2012; Jaeschke,

@g Comparison of Time Average Economic Costs
with Regularization
100

Min E p.F+p,(VBl,+VB2))~(p Dl + p,D2,+ p B2,

=1

Cost with No noise 5% noise
No regularization 2.476 -19.97
0.01 x Gershgorin -20.4 -21.77
0.1 x Gershgorin -22.09 -22.97
0.5 x Gershgorin -22.26 -20.1

Gershgorin -22.27 -22.03

Cost is worst without regularization.
CPU time also suffers
Without regularization ~6mins/NLP
With regularization ~50s/NLP
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Conclusions
[ Tnical
ENGINGLT T

Sensitivity-based Nonlinear Estimation & Control
* MHE > asMHE
* NMPC > asNMPC
+ RTO - D-RTO

Bigger NLPs are not harder to solve

» Embrace and exploit size, sparsity and structure
» Exact first and second derivatives are essential
» Newton-based optimization is fast

» Optimal sensitivity is (nearly) free

NMPC and MHE Computational Strategies
« Full-Discretization + Fast Sensitivity Calculations
» Large-scale distillation with nonlinear DAE models

From NMPC Tracking to Economic Optimization
» Direct optimization in real-time

* Maintain stability and exploit uncertainties

« Still many open questions

A Nonrobust NMPC Example

(Grimm et al., 2004)

min| g(x,))+ DSy + E I(x,u)+p,s,
1=0

X

=0 B+ 53 (k) u(k) + x,(k)
L (o (k) + 2 ()t (k) = 22x, (K (k)
x, (k)
L (] (k) + x3 (k)Y (k) = 2x, (K )u(k)
X, s c+5,i=0,.,N=L|x, |se+sy |
w11,k (x)=-1
1 (=[x D(=1x])
[x]yJx] + (=[x )
| X[ (%= + 0, = [ X DO (x, =D~ x])
a+ Gy [X P 061 + (=D [ x )2

Grimm, G., Mgssina, M. J., Tuna, S. and Teel, A. [2004], ‘Examples when nonlinear model

st x(k+1)= fi(x,u)=

X, (k+1)=f,(x,u) =

g(x)=[x]|cos”

I(x,u) =[x |cos™

predictive control is nonrobust’, Automatica 40, 523-533.

(4 ¥ nical
L TERING

Nonrobust NMPC Example

= fard constraint
i—+—soft constrint

——hard constraint
soft constraint

L,
5 10

15 20 2
time step

» The constraint X, < ¢ prevents the trajectory from going beyond x,=c

» Soft constraint allows the trajectory to go beyond x,=c and then
converge

Bical

Economic NMPC Case study: CSTR

. 1 First order reaction A>B
min  -m(2c, ——)
2 ¢, — concentration of A

st de, _ ﬂ(c —c,)—ke ¢y — concentration of B
4 = a8 T €4 4

dt v m — manipulated input in L/min
dc, m

—dﬁ =;(—CB)+kCA v=10L

d k =1.2L/(molemin)
10=m=<20
c,— feed concentration

045=c, =<1

cg =1mol/L

M. Diehl, R. Amrit, J. B. Rawlings, A lyapunov function for economic optimizing model predictive control,
|EEE Transactions on Automatic Control 56 (2011) 703-707.
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@ CSTR NMPC Example — Model Mismatch

0.1} 08, -25% - — Z
- - N - <
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; . . . . . .
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=, 005t 2 ‘ gy // | A
X ,
w // \\ // // N -
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[} 3 10 15 25 0 46 50
Time [s]

Advanced Step NMPC not as robust as ideal - suboptimal selection of u(k)

CSTR Example: Mismatch + Noise
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Tracking

oss-
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55

o
085
o,
& oas
o]
s
0 s

w5 w

EEE
time step

w5
time step

Case 1: no regularization—very large oscillations in c, c; and m.
Case 2, Case 3—the state stay within a small region around the optimum

steady state.

CSTR Case Study:

Comparison of economic cost

50 1
Z -m;(2cy, - 5)

Cost with 10% noise
No regularization -145.4996
Gershgorin weights -146.3681
tracking -146.3506

Cost is the worst without regularization.

Cost is the lowest with both economic terms and

regularization.
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Advanced-step Economic NMPC

o LL

time step time step

Case 1: ideal NMPC—converges to the setpoint quickly
Case 2: asNMPC—control bounds are violated. Strategy not feasible.
Case 3: asNMPC + clipping—Avoids control bounds violation. Similar results to

ideal NMPC.
57
CSTR NMPC Example (Hicks and Ray)
kN1
; 9 (2632 4 Ol 2 + Rlvm )2
min ; Qu(23)" + Qulziy)” + Rlvge)
st ae = g1 = (e +#50) — koexp (*W> (#jr +#5)
2t = l(t — (2hp + 25,)) + koexp —i 2 — alv + o) (2l +25,) —te)
ik 7l = G+ 24,) & o o) i T oA )G )
e = 2°(R), Zi-u;:-f't(ﬁ')
Sone = 0 2hnp =0 u’ o<t

Maintain unstable setpoint

Close to bound constraint o

Final time constraint for stability = -
Zjuny = 0, (N is finite) os
Study effects of: 02

Computational Delay

T
Advanced Step NMPC //j

Measurement Noise Tw w0 s CR—
Model Mismatch

Recent asNMPC Studies

* Various CSTRs (Zavala, B., 2009)
* NMPC, D-RTO for LDPE reactors (Zavala, B., 2009)

* NMPC, D-RTO for Air Separation Units (Huang, Zavala,
B., 2009, 2010; Huang, Patwardhan, B., 2010)

» Large-scale distillation, C3 splitters (Fischer, B., 2011)

» Multi-stage NMPC for power generation cycles (d’Amato,
Kumar, Lopez-Negrete, B., 2012)

* Thermo-mechanical pulping (Harinath, B., Dumont, 2010)

» Multi-stage Thermo-mechanical pulping (Harinath, B.,
Dumont, 2013)

» Advanced multi-step NMPC for distillation control (Yang,
Fischer, B., 2013)

58

CSTR NMPC Example — Nominal Case

N=10,t=05

* NMPC applied with N = 10, t = 0.5 sampling time

« Stable (z = 0) and unstable (z = 0.1) steady states
* u,* close to upper bound

» Computational delay = 0.5, leads to instabilities
*asNMPC has identical performance as Ideal NMPC
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asNMPC: Concepts and Properties

Interpretation: Fast linear MPC controller using
linearization of nonlinear model at previous step.

NLP solved between samples, “instantaneous” sensitivity
update at sampling time

On-line computation 2-3 orders of magnitude faster;
= Computational delay virtually eliminated
Second order errors compared to ideal NMPC
= Nominal and ISS stability (zavala, B., 2009)

ISpS stability when coupled with embedded state
estimators (Huang, Patwardhan, B., 2009a,b, 2010a-c, 2012)

~ Advanced-multi-step NMPC

* Motivation: what if the solution of NLP
takes more than one sampling time?
— Slow down sampling?

(4 ¥ nical
L TERING

Summary: Advanced-(multi) step NMPC

Avoids computational delay
Allows solving NLP = one sampling time

Behaves close to ideal NMPC and asNMPC with small
level of measurement noise and less nonlinear model

With increasing noise, process nonlinearity and N,
memory effect becomes more significant

Robustness could be obtained by using soft constraints
and adding { penalty to the objective. Moreover,
robustness is preserved when amsNMPC is applied,
under additional assumptions on memory effect

Dynamic On-line Optimization:

w
m Plant
APC
u y
D-RTO
RTO DR-PE
c(x,u,p)=0 N c(x,u,p)=0

Integrate On-line Optimization with APC
-Consistent, first-principle dynamic models
-Consistent, feed-forward optimization
«Increase in computational complexity
-Time-critical calculations

Essential for:

-Feed changes

-Nonstandard operations

-Optimal disturbance rejection
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Robustness will not be lost when the advanced-multi-step strategy is applied.

65

Stability Properties of asNMPC

‘ x(k+1) = f(x(k), u(k)) — plant and model identical ‘
Nominal Stability Theorem (Zavala, B., 2008)

Assume that the NLP can be solved within one sampling time, nominal stability
assumptions hold for ideal NMPC (Mayne, 2000), and the nonlinear model is
perfect without measurement noise. Then ideal NMPC controller performance
and asNMPC controller performance are identical.

Ideal NMPC stability = asNMPC stability.

x(k+1) = f(x(k), u(k)) + q(x(k), u(k)., w(k))
plant and model not identical

Robust Stability Theorem (Zavala, B., 2008)

Assume that the NLP can be solved within one sampling time, and that robust
stability assumptions hold for ideal NMPC (Magni, Scattolini, 2007). Then there
exist bounds on the noise, w, and model mismatch, g, for which the cost
function Jy,(x), obtained from the asNMPC strategy, is an input-to-state (ISS)-
Lyapunov function and the resulting closed-loop system is ISS stable.

NMPC — Can we avoid on-line optimization?

Divide Dynamic Optimization Problem (Diehl, Bock et al., 2002):
— preparation, feedback response and transition stages
— solve complete NLP in background ( ‘between’ sampling times)
as part of preparation and transition stages
— solve perturbed problem on-line
— > two orders of magnitude reduction in on-line computation
Based on NLP sensitivity of z, for dynamic systems
— Extended to Collocation approach — Zavala et al. (2008, 2009)
— Similar approach for MH State and Parameter Estimation — Zavala et al.
(2008)
Stability Properties (Zavala et al., 2009)
— Nominal stability — no disturbances nor model mismatch
+ Lyapunov-based analysis for NMPC
— Robust stability — some degree of mismatch
« Input to State Stability (ISS) from Magni et al. (2005)
— Extension to economic objective functions
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